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Abstract: The incompatible insect technique based on Wolbachia is a promising alternative to
control mosquito-borne diseases, such as dengue fever, malaria, and Zika, which drives wild female
mosquitoes sterility through a mechanism cytoplasmic incompatibility. A successful control program
should be able to withstand the perturbation induced by the immigration of fertilized females from
surrounding uncontrolled areas. In this paper, we formulated a system of delay differential equations,
including larval and adult stages, interfered by Wolbachia-infected males. We classified the release
number of infected males and immigration number of fertile females, to ensure that the system displays
globally asymptotically stable or bistable dynamics. The immigration of fertile females hinders the
maximum possible suppression efficiency so that the wild adults cannot be reduced to a level below
A∗∞. We identified the permitted most migration number to reduce the wild adults to a target level. To
reduce up to 90% of wild adults in the peak season within two months, an economically viable strategy
is to reduce the immigration number of wild females less than 0.21% of the carrying capacity of adults
in the control area.

Keywords: dengue fever; Wolbachia; migration; mosquito population suppression; delay differential
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1. Introduction

As a rapidly spreading mosquito-borne disease, dengue fever poses severe economic burden and
public health threat in tropical and subtropical areas [1]. In recent years, dengue virus has infected
over 50−100 million people each year, and almost half the world’s population has been threatened [1].
Brazil has experienced a serious outbreak of dengue, with over 6.3 million dengue cases and 4483 death
cases since the start of 2024. In the absence of licensed vaccines and effective therapeutic methods,
mosquito control remains the main method to control dengue fever, which focuses on larval source
reduction and adult control based on chemical pesticides [1, 2]. The growing problems in pesticide
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resistance and environmental pollution give rise to failure of the current control measures. Innovative
methods are sought to prevent and control dengue fever.

The incompatible insect technique (IIT) based on Wolbachia has been proven to be a promising
technology for dengue control [3, 4]. Some Wolbachia strains can block the reproduction of dengue
virus in Aedes mosquitoes, and cause a mechanism called cytoplasmic incompatibility (CI) that
causes infected male mosquitoes to be effectively sterile when they mate with uninfected
females [4, 5]. By releasing millions of factory-reared Wolbachia infected males in Shazai island in
Guangzhou since 2015, the IIT approach has been applied successfully to suppress Aedes albopictus
populations, with over 97% reduction of adults in the control areas [4].

As a frequently used tools in theoretical research, mathematical models have played a critical role
in designing release strategies and optimizing release programmes [4, 6, 7]. Typically, differential
equations or difference equations are often used to define the target mosquito populations, identify the
threshold release level of infected males for population suppression, and quantify the impact of
various factors on the threshold. These factors include environmental stochasticity [8, 9], spatial
diffusion [10, 11], mosquito development period [12–14], incomplete CI and impaired mating
competitiveness of infected males [15, 16], imperfect maternal transmission and fecundity
cost [17, 18], density dependence [19], and so on. Interestingly, by using impulsive and periodic
release strategy, Yu et al gave the conditions to guarantee the periodical oscillation of wild mosquito
populations [14, 20, 21]. Since the density-dependent competition primarily occurs in the larval stage,
stage-structured models, including the aquatic and terrestrial stages are more suitable to describe the
mosquito dynamics of wild and suppression populations [12, 16, 22].

We consider a wild mosquito population distributing uniformly in terms of space and gender. Let
L(t) and A(t) be the total number of larvae and adults at time t, respectively. The target mosquito
population is suppressed by releasing a total number R(t) of Wolbachia infected male adults, which
induce complete CI in wild females and have equal mating competitiveness with wild males. The field
trails of Aedes albopictus population suppression experiment in shazai island, Guangzhou suggested
that human activities facilitate mosquito immigration into release sites and compromise the efficiency
of Aedes albopictus elimination [4]. Besides, theoretical studies also identified that the immigration
of fertile female mosquitoes from surrounding uncontrolled areas has potential to seriously hinder the
suppression efficiency [23–25]. In this paper, we use a stage-structured model incorporating larval
density dependence to analyze how the immigration of wild fertile female and male mosquitoes from
surrounding uncontrolled areas hinders the IIT suppression efficiency by omitting the migration of
native mosquitoes from the control area to surrounding areas. Let D(t) be the immigration number
of wild female adults from surrounding areas into the target area. Note that there is also number
D(t) of wild males immigrating into the control area. Under random mating, the incompatible mating
probability of a wild female with an infected male at time t is the ratio of the number R(t) of infected
males over the total number A(t)/2+D(t)+R(t) of males in the control area R(t)/[A(t)/2+D(t)+R(t)].
Prompting by field experiment studies [26–28], we assume that wild females immigrate into the control
area after mating with wild males. Let β > 0 be the average number of first instar larvae produced by
a female from compatible mating with wild male, and τ1 > 0 be the average development period from
the eclosion of female adults to the hatching of eggs of next generation. Hence, the production rate of
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larvae at time t is given by

β ·
A(t − τ1)

2
·

A(t − τ1)/2 + D(t − τ1)
A(t − τ1)/2 + D(t − τ1) + R(t − τ1)

+ β · D(t − τ1). (1.1)

The competition for limited breeding sites and food supply, mostly in larval stage, has shown to be
a major factor impairing mosquito growth by delaying development time and elevating mortality
rate [29–33]. We follow the classical logistic model to describe the larval density-dependent
competition

f (L) = m
(
1 +

L
KL

)
L, (1.2)

where m > 0 is the natural mortality rate of larvae, and KL > 0 is a constant characterizing the intensity
of density dependence [12, 34–36]. As usual, we assume first order stage transition with µ ∈ (0, 1] be
the pupation rate of larvae and α ∈ (0, 1] be the eclosion rate of pupae, and first order natural death
in adults with δ > 0 be the natural mortality rate of adults. Let τ2 > 0 be the average development
period of larvae and pupae. By combining (1.1) and (1.2), we derive the following delay differential
equations: 

dL(t)
dt =

β

2 ·
(A(t−τ1)+2D(t−τ1))A(t−τ1)
A(t−τ1)+2D(t−τ1)+2R(t−τ1) + βD(t − τ1) − m

(
1 + L(t)

KL

)
L(t) − µL(t),

dA(t)
dt = αµL(t − τ2) + 2D(t) − δ(A(t) + 2D(t)).

(1.3)

By letting s = (m + µ)t, and using the following change of variables, we get

x(s) =
m

(m + µ)KL
L(t), y(s) =

m
µKL

A(t), D(s) =
2m
µKL

D(t), R(s) =
2m
µKL

R(t), (1.4)

supplemented with the conversions of parameters

b =
βµ

2(m + µ)2 , α =
m + µ
δ

α, ρ =
1 − δ
δ

, τ1 = (m + µ)τ1, τ2 = (m + µ)τ2, (1.5)

and we transform (1.3) into the following equations
dx(s)

ds
= b

(y(s − τ1) + D(s − τ1))y(s − τ1)

y(s − τ1) + D(s − τ1) + R(s − τ1)
+ bD(s − τ1) − x(s)(1 + x(s)),

dy(s)
ds
=

δ

m + µ
(αx(s − τ2) + ρD(s) − y(s)).

(1.6)

We consider the compensation release strategy such that the infected males in the control area
are maintained almost a constant with R(t) ≡ R ≥ 0 by replacing the loss of infected males with
new release [22, 37]. Besides, we assume that the immigration number of fertilized females from
surrounding areas keeps as a constant with D(t) ≡ D ≥ 0. By replacing s with t, and omitting the
overlines in D, R, α, τ1, and τ2 derive

dx(t)
dt
= b

y(t − τ1) + D
y(t − τ1) + D + R

y(t − τ1) + bD − x(t)(1 + x(t)),

dy(t)
dt
=

δ

m + µ
(αx(t − τ2) + ρD − y(t)).

(1.7)
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We study the dynamics of (1.7) under the initial conditions

x(t) = ϕ(t) > 0, y(t) = ψ(t) > 0, t ∈ [t0 − τ, t0], τ = max{τ1, τ2}, (1.8)

for some fixed time t0 ≥ 0 and continuous functions ϕ(t) and ψ(t) on [t0 − τ, t0].
We analyze the global stabilities of (1.7) and (1.8) in Section 2, which are summarized in

Theorems 2.1–2.3, and interpret them in terms of the original system parameters in Section 3.
Theorem 2.1 reveals that the immigration of fertilized females makes it impossible to completely
eliminate the target mosquito populations. Furthermore, Theorems 2.1 and 2.2 identify the threshold
immigration number

D∗ =
αβµ − 2δ(m + µ)

4mβ
(m + µ)KL,

over which (1.3) has a unique positive equilibrium point and displays globally asymptotically stable
dynamics. When 0 < D < D∗, Theorem 2.1 identifies two threshold release numbers

RD =
αβµ − (m + µ)δ

(m + µ)δ2 D,

and

R∗ =
αµKL

4mδ2 (αβµ + δ(m + µ)) −
D
δ
−
αµKL(m + µ)

4mδ

√
3(

2β(αµKL(m + µ) − 4mD)
δKL(m + µ)2 − 1).

Theorem 2.2 shows that (1.3) has a globally asymptotically stable equilibrium point E∗(L∗, A∗)
when R ≥ R∗, or 0 < D < D∗ and 0 < R ≤ RD. Otherwise, Theorems 2.2 and 2.3 verify that (1.3) may
display bi-stability or global asymptotical stability when 0 < D < D∗ and RD < R < R∗, depending
on the number of positive equilibria. Our simulations show that the combination of small immigration
number and moderate release intensity leads to bistable dynamics with one of the stable equilibrium
near A = 0. Furthermore, we identify the maximum possible suppression efficiency by identifying the
infima

L∗∞ =
(m + µ)KL

2m


√

4mβD
KL(m + µ)2 + 1 − 1

 , and A∗∞ =
αµ

δ
L∗∞ +

2D(1 − δ)
δ

,

of L∗(R) and A∗(R), respectively. A∗∞ defines the maximum suppression efficiency for wild adults
with A(t) > A∗∞. We use the suppression rate index defined in (3.12) to assess the permitted most
immigration number Dp0 of wild females to reach a given suppression target p0 ∈ (0, 1]. Besides, we
estimate the least release number Rm(D) of infected males to reduce up to 90% of wild adults in the
peak season within two months. Our simulations show that Rm(D) increases in the immigration number
D, and increases near-vertically as D approaches to the most immigration number D0.1 of wild females,
about 0.38% of the carrying capacity of wild adults in the target area.
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2. Stability analysis of system (1.7)

In this section, we enumerate the non-negative equilibria of (1.7) and study their stabilities. We note
that the solution (x(t), y(t)) of the initial-value problem (1.7) and (1.8) remains positive and bounded
in [t0,∞). In fact, if the positivity fails, then there is t1 > t0 or t2 > t0 such that x, y > 0 in [t0, t1) and
x(t1) = 0, or x, y > 0 in [t0, t2) and y(t2) = 0. If the first case occurs, then x′(t1) ≤ 0. By substituting
t = t1 in the first equation of (1.7), and using the nonnegativity of D and R, we obtain an obvious
contradiction with

0 < b
y(t1 − τ1) + D

y(t1 − τ1) + D + R
y(t1 − τ1) + bD =

dx(t1)
dt
≤ 0.

Similarly, if the second case occurs, then y′(t2) ≤ 0 and the second equation of (1.7) gives

0 <
δ

m + µ
(αx(t2 − τ2) + ρD) =

dy(t2)
dt
≤ 0.

The contradictions verify the positivity of (x(t), y(t)) for all t ≥ t0. The boundedness of (x(t), y(t))
can be proved by a similar method as the proof of Lemma 2.1 in [22], and we omit it.

2.1. The enumeration of the equilibria

We note that the model (1.7) degenerates to model (6) in [22] in an isolated area without mosquito
immigration with D = 0. To study the impact of fertile mosquitoes immigrating from surrounding
areas on the suppression efficiency, we assume D > 0 in the rest of our discussion. As in [22], we
maintain the following basic assumption

b∗ = αb − 1 > 0. (2.1)

By the definition of b and α in (1.5), under the parameters in origin system (1.3), the inequality in
the condition (2.1) holds if and only if

β

2
µα > (m + µ)δ,

which gives a threshold condition ensuring the persistence of isolated populations.
Let E(x, y) be an equilibrium of equations (1.7), which satisfies y = αx + ρD and x(1 + x) − bD =

by(y + D)/(y + D + R). Hence, x is a positive root of function

g(x) = αx3 + (R +
D
δ
− αb∗)x2 + (R −

2b∗ + 1
δ

D)x − bD(R +
D
δ2 ) = 0. (2.2)

Note that the complete suppression state E0(0, 0) is no longer an equilibrium of (1.7) when D > 0.
The number of positive roots of g(x) depends on the signs of its extreme points, satisfying

g′(x) = 3αx2 + 2(R +
D
δ
− αb∗)x + R −

2b∗ + 1
δ

D. (2.3)

The discriminant of g′(x) is 4∆g with

∆g = R2 + (
2D
δ
− α(2b∗ + 3))R +

D2

δ2 +
αD
δ

(4b∗ + 3) + (αb∗)2. (2.4)
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If ∆g ≤ 0, then g′(x) ≥ 0, and g(x) increases strictly in x ≥ 0. By combining

g(0) = −bD(R +
D
δ2 ) < 0, and lim

x→+∞
g(x) = +∞, (2.5)

for R ≥ 0 and D > 0, we derive that g (x) has a unique positive root x∗, and (1.7) has a unique positive
equilibrium E∗(x∗, y∗) with y∗ = αx∗ + ρD. If ∆g > 0, then g′(x) has two roots

x1 = −
R + D

δ
− αb∗ +

√
∆g

3α
, and x2 =

−(R + D
δ
− αb∗) +

√
∆g

3α
. (2.6)

In this case, the number of positive roots of g(x) is determined by the signs of the extremums g(x1)
and g(x2). We classify the equilibria of (1.7) in the following theorem.

Theorem 2.1. Let (2.1) hold. Denote

D∗ =
δb∗

2b
, RD =

2b∗ + 1
δ

D, R∗ = α(b∗ +
3
2

) −
D
δ
− α

√
3(b∗ +

3
4
−

2bD
δ

), (2.7)

and g(x) defined in (2.2), x1 and x2 defined in (2.6). Then (1.7) has a unique positive equilibrium
E∗(x∗, y∗) with y∗ = αx∗ + ρD when one of the following conditions holds:

(i) D ≥ D∗;
(ii) R ≥ R∗;
(iii) 0 < D < D∗ and 0 < R ≤ RD;
(iv) 0 < D < D∗, RD < R < R∗, and g(x1)g(x2) > 0.

Moreover, if 0 < D < D∗, RD < R < R∗, and g(x2) < 0 < g(x1), then (1.7) has three positive equilibria
E∗1(x∗1, y

∗
1), E∗2(x∗2, y

∗
2) and E∗3(x∗3, y

∗
3), satisfying

0 < x∗1 < x1 < x∗2 < x2 < x∗3, and y∗i = αx∗i + ρD, i = 1, 2, 3.

Proof. By using the discriminant of ∆g

∆D =
24α2b
δ

(
δ

8b
(4b∗ + 3) − D), (2.8)

we obtain that ∆D > 0 if and only if

D < D1 =
δ

8b
(4b∗ + 3). (2.9)

For the case D > D1, we derive ∆D < 0, and ∆g > 0 for any R ≥ 0. Hence the two roots x1 and x2

of g′(x) satisfy

x1 + x2 =
2

3α
(αb∗ − R −

D
δ

), and x1x2 =
R − RD

3α
, (2.10)

where

RD =
2b∗ + 1

δ
D. (2.11)
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If D > D1 and R ≥ RD, then x1x2 ≥ 0, and

R +
D
δ
− αb∗ ≥

2b∗ + 1
δ

D +
D
δ
− αb∗ >

2αb
δ

D1 − αb∗ =
3
4
α > 0.

Hence x1+ x2 < 0, and x1 < x2 ≤ 0, which implies that g′(x) > 0 and g(x) increases strictly in x > 0.
It follows from (2.5) that g(x) has a unique positive root x∗. If D > D1 and 0 < R < RD, then x1x2 < 0,
and g′(x) has two opposite-sign roots x1 < 0 < x2. By combining (2.5), g′(x) < 0 for 0 ≤ x < x2, and
g′(x) > 0 for x > x2, we obtain that g(x) has a unique positive root x∗ > x2. In summary, (1.7) has a
unique positive equilibrium E∗(x∗, y∗) with y∗ = αx∗ + ρD when D > D1 and R > 0.

For the case D = D1, we have ∆D = 0, which implies that ∆g ≥ 0 for all R ≥ 0, and ∆g has a unique
positive root

R = R1 =
α(2b∗ + 3) − 2D1

δ

2
=

8(b∗ + 1)2 + 1
8b

= α2b +
1

8b
. (2.12)

In this case, we have

RD =
2b∗ + 1

δ
D1 = α

2b +
1

8b
−

3α
4
= R1 −

3α
4
< R1.

If D = D1 and R = R1, then ∆g = 0, which gives g′(x) ≥ 0 for all x, and g′(x) = 0 if and only if

x = x1 = x2 =
1

3α
(αb∗ − R1 −

D1

δ
) =

1
3α

(αb∗ − α2b −
1

8b
−

4b∗ + 3
8b

) = −
1
2
.

Hence g′(x) > 0 for all x ≥ 0. If D = D1, R ≥ RD, and R , R1, then ∆g > 0, and the two roots x1

and x2 of g′(x) defined in (2.6) satisfy (2.10). Hence, x1x2 = (R − RD)/(3α) ≥ 0, and

x1 + x2 =
2

3α
(αb∗ − R −

D1

δ
) ≤

2
3α

(αb∗ − RD −
D1

δ
) = −

1
2
< 0,

which lead to x1 < x2 ≤ 0, and g′(x) > 0 for all x > 0. Therefore, g′(x) > 0, and g(x) increases strictly
in x > 0, which implies g(x) has a unique positive root x∗ > 0, for D = D1 and R ≥ RD. If D = D1

and 0 < R < RD, then x1x2 = (R − RD)/(3α) < 0, and x1 < 0 < x2. Similarly to case D > D1 and
0 < R < RD, we have g(x) has a unique positive root x∗ > x2. Summarily, (1.7) has a unique positive
equilibrium E∗(x∗, y∗) with y∗ = αx∗ + ρD when D = D1 and R > 0.

For the case 0 < D < D1, we have ∆D > 0, and ∆g has two roots

R∗ =
1
2

[α(2b∗ + 3) −
2D
δ
−

√
∆D], R2 =

1
2

[α(2b∗ + 3) −
2D
δ
+

√
∆D], (2.13)

satisfying

R∗ + R2 = α(2b∗ + 3) −
2D
δ
> α(2b∗ + 3) −

2D1

δ
= 2α2b +

1
4b
= 2R1 > 0,

and

R∗R2 =
D2

δ2 +
α(4b∗ + 3)

δ
D + (αb∗)2 > 0,
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for all D > 0. Hence 0 < R∗ < R2. If 0 < D < D1 and R∗ < R < R2, then ∆g < 0, and g′(x) > 0 for all
x. If 0 < D < D1 and R = R∗ or R = R2, then ∆g = 0, g′(x) ≥ 0, and g′(x) = 0 has a unique solution
x̃ = (αb∗ − R − D/δ)/(3α). If 0 < D < D1 and R > R2, then ∆g > 0, and

x1 + x2 =
2

3α
(αb∗ − R −

D
δ

) <
2

3α
(αb∗ − R2 −

D
δ

) = −(1 +
√
∆D

3α
) < 0,

and

x1x2 =
R − RD

3α
>

R2 − RD

3α
=

1
3α

(
α(2b∗ + 3)

2
−

2αb
δ

D +
√
∆D

2
)

>
1

3α
(
α(2b∗ + 3)

2
−

2αb
δ

D1 +

√
∆D

2
) =

1
4
+

√
∆D

6α
> 0,

which derive that the two roots of g′(x) satisfy x1 < x2 < 0, and g′(x) > 0 for all x ≥ 0. Hence, g(x)
increases strictly in x ≥ 0 when 0 < D < D1 and R ≥ R∗. In this case, it follows from (2.5) that g(x)
has a unique positive root x∗, and (1.7) has a unique positive equilibrium E∗(x∗, y∗) with y∗ = αx∗+ρD.

If 0 < D < D1 and 0 < R < R∗, then α(2b∗ + 3) − 4αbD/δ > 3α/2 > 0, and

2(R∗ − RD) = α(2b∗ + 3) −
4αbD
δ
−

√
∆D =

4α2(b∗ − 2bD
δ

)2

α(2b∗ + 3) − 4αbD
δ
+
√
∆D
≥ 0.

Hence R∗ ≥ RD, and R∗ = RD if and only if

D = D∗ =
δb∗

2b
. (2.14)

Note that D1 > D∗ by D1 = D∗ + 3δ/(8b).
If D = D∗ and 0 < R < R∗, then R∗ = RD, and the two roots x1 and x2 of g′(x) satisfy x1x2 =

(R − RD)/(3α) = (R − R∗)/(3α) < 0, which implies x1 < 0 < x2. Similarly, if 0 < D < D1, D , D∗, and
0 < R < RD, then x1x2 = (R − RD)/(3α) < 0, and x1 < 0 < x2. If 0 < D < D1, D , D∗, and R = RD,
then

g′(x) = 3αx(x −
2
3

(b∗ −
2bD
δ

)).

Obviously, x1 = 0 < x2 when 0 < D < D∗ and R = RD, and x1 < 0 = x2 when D∗ < D < D1 and
R = RD. If D∗ < D < D1, and RD < R < R∗, then x1x2 = (R − RD)/(3α) > 0 and

x1 + x2 =
2

3α
(αb∗ − R −

D
δ

) <
2

3α
(αb∗ − RD −

D
δ

) =
2
3

(b∗ −
2bD
δ

) <
2
3

(b∗ −
2bD∗

δ
) = 0,

which imply x1 < x2 < 0, and g′(x) > 0 for all x ≥ 0. It follows from (2.5) that g(x) has a unique
positive root x∗ > 0, and (1.7) has a unique positive equilibrium E∗(x∗, y∗) with y∗ = αx∗ + ρD, when
0 < D < D1 and 0 < R ≤ RD, or D∗ ≤ D < D1 and RD ≤ R < R∗.

For the case 0 < D < D∗ and RD < R < R∗, we obtain x1x2 = (R − RD)/(3α) > 0, and

x1 + x2 >
2

3α
(αb∗ − RD −

D
δ

) =
2
3

(b∗ −
2bD
δ

) >
2
3

(b∗ −
2bD∗

δ
) = 0,
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which imply that g′(x) has two positive roots 0 < x1 < x2. Hence g′(x) > 0 when x < x1 or x > x2,
and g′(x) < 0 when x ∈ (x1, x2), which lead to g(x1) > g(x2). By using R + D/δ − αb∗ < 0 and
R−(2b∗+1)D/δ = R−RD > 0, the parameter values of g(x) change signs three times. By Descart’s Rule
of Signs [38], g(x) has 3 or 3 − 2 = 1 positive roots, which implies g(x1)g(x2) , 0. If g(x1)g(x2) > 0,
then g(x1) > g(x2) > 0 or 0 > g(x1) > g(x2). In both cases, using (2.5), we have g(x) has a unique
positive root x∗, and (1.7) has a unique positive equilibrium E∗(x∗, y∗) with y∗ = αx∗ + ρD. Similarly,
if g(x1)g(x2) < 0, then g(x1) > 0 > g(x2), and g(x) has three positive roots x∗1 < x∗2 < x∗3 satisfying
0 < x∗1 < x1 < x∗2 < x2 < x∗3. In this case, (1.7) has three positive equilibria E∗1(x∗1, y

∗
1), E∗2(x∗2, y

∗
2) and

E∗3(x∗3, y
∗
3), with y∗i = αx∗i + ρD for i = 1, 2, 3. □
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Figure 1. The positive roots of polynomial g(x) defined in (2.2). Take the parameters β = 2,
α = 0.95, m = 0.1, µ = 0.1, δ = 0.1, KL = 20000, and D = 100. g(x) has one positive
equilibrium when R = 31000, and three positive equilibria when R = 27000.

We use numerical example to show that the polynomial g(x) has one or three positive roots when
0 < D < D∗ and RD < R < R∗. Let the parameter values β = 2, α = 0.95, m = 0.1, µ = 0.1, δ = 0.1,
KL = 20000, and D = 100. By using the change of variables in (1.4), and the conversions of parameters
in (1.5), we derive

b = 2.5, α = 1.9, b∗ = 3.75, D = 0.01, D
∗
= 0.075, RD = 0.85, and R

∗
= 3.2932.

If R = 27000, then

R = 2.7, x1 = 0.2576, x2 = 1.2599, g(x1) = 0.1295, and g(x2) = −0.8272,

which satisfy 0 < D < D
∗
, RD < R < R

∗
, and g(x2) < 0 < g(x1). As shown in Figure 1, g(x) has three

positive roots x∗1 = 0.5755, x∗2 = 0.4895, and x∗3 = 1.7295. Similarly, if R = 31000, then

R = 3.1, x1 = 0.4068, x2 = 0.9704, g(x1) = 0.2912, and g(x2) = 0.121.

Hence 0 < D < D
∗
, RD < R < R

∗
, and g(x1)g(x2) > 0. As shown in Figure 1, g(x) has a unique

positive equilibrium.
Note that (1.7) has a unique positive equilibrium E∗(x∗, y∗) when one of the conditions (i)–(iv) of

Theorem 2.1 holds. We show that E∗(x∗, y∗) is globally asymptotically stable.
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Theorem 2.2. Let (2.1) hold. Then E∗(x∗, y∗) is globally asymptotically stable when one of the
following conditions holds:

(i) D ≥ D∗;
(ii) R ≥ R∗;
(iii) 0 < D < D∗ and 0 < R ≤ RD;
(iv) 0 < D < D∗, RD < R < R∗, and g(x1)g(x2) > 0,

where D∗, R∗ and RD defined in (2.7), g(x) defined in (2.2), x1 and x2 defined in (2.6).

Proof. Theorem 2.1 shows that (1.7) has a unique positive equilibrium E∗(x∗, y∗) when one of the
conditions (i)–(iv) holds. In this case, g(x) switches signs from negative in [0, x∗) to positive in (x∗,∞)
with

g(x) < 0 when 0 ≤ x < x∗, and g(x) > 0 when x∗ < x < ∞. (2.15)

For any positive constants c1 and c2 satisfying c1 < x∗ < c2, we first claim, if the initial data ϕ(t) and
ψ(t) satisfy c1 < ϕ(x) < c2 and αc1 + ρD < ψ(t) < αc2 + ρD in [t0 − τ, t0], then the solution (x(t), y(t))
of the initial value problem (1.7) and (1.8) satisfies

c1 < x(t) < c2, and αc1 + ρD < y(t) < αc2 + ρD, for t ≥ t0. (2.16)

Otherwise, let t̄ > t0 be the least time such that the solution (x(t̄), y(t̄)) reaches the boundary of
the rectangular area [c1, c2] × [αc1 + ρD, αc2 + ρD] with x(t̄) = c1 or x(t̄) = c2, c1 < x(t) < c2, and
αc1 + ρD < y(t) < αc2 + ρD for t ∈ [t0, t̄), or y(t̄) = αc1 + ρD or y(t̄) = αc2 + ρD, c1 < x(t) < c2, and
αc1 + ρD < y(t) < αc2 + ρD for t ∈ [t0, t̄). If the first case occurs with x(t̄) = c1, then

x′(t̄) = b
y(t̄ − τ1) + D

y(t̄ − τ1) + D + R
y(t̄ − τ1) + bD − x(t̄)(1 + x(t̄)) ≤ 0,

which gives

b
αc1 + (ρ + 1)D

αc1 + (ρ + 1)D + R
(αc1 + ρD) < b

y(t̄ − τ1) + D
y(t̄ − τ1) + D + R

y(t̄ − τ1) ≤ c1(1 + c1) − bD.

Hence

b(αc1 + ρD)(αc1 + (ρ + 1)D) − c1(1 + c1) − bD(αc1 + (ρ + 1)D + R)
αc1 + (ρ + 1)D + R

= −
g(c1)

αc1 + (ρ + 1)D + R
< 0,

and g(c1) > 0, which contradict to the fact c1 < x∗ and g(x) < 0 in [0, x∗) by (2.15). A similar argument
derives that the second case x(t̄) = c2 would not occur. For the third case y(t̄) = αc1 + ρD, it is easy to
derive an obvious contradiction

0 ≥ y′(t̄) =
δ

m + µ
(αx(t̄ − τ2) + ρD − y(t̄)) =

αδ

m + µ
(x(t̄ − τ2) − c1) > 0.

A similar contradiction can be obtained for the fourth case y(t̄) = αc2 +ρD. Hence, the claim (2.16)
holds, which verifies the global stability of E∗(x∗, y∗).
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By using the fluctuation lemma (Appendix A.5 in [36]), there are two increasing and divergent
sequences {sn} and {tn} along which

x(sn)→ x = lim inf
t→∞

x(t), x′(sn)→ 0, y(tn)→ y = lim inf
t→∞

y(t), and y′(tn)→ 0,

as n→ ∞. By substituting t = tn in the second equation of (1.7) leads to

αx(tn − τ2) =
m + µ
δ

y′(tn) − ρD + y(tn).

Taking the limit by letting n→ ∞ derives

αx ≤ lim
n→∞

αx(tn − τ2) = y − ρD,

and y ≥ αx + ρD. Taking the limit of (1.7) along with the sequence {sn} implies

x(1 + x) − bD = lim
n→∞

b
y(sn − τ1) + D

y(sn − τ1) + D + R
y(sn − τ1) ≥

by(y + D)

y + D + R
.

The inequality y ≥ αx + ρD leads to

−
g(x)

y + D + R
≤

by(y + D)

y + D + R
+ bD − x(1 + x) ≤ 0,

and g(x) ≥ 0. It follows from (2.15) that x ≥ x∗ and y ≥ αx∗+ρD = y∗. By repeating the same argument
for two divergent sequences, denoted by {sn} and {tn} again, along which x(sn) → x = lim supt→∞ x(t),
x′(sn) → 0, y(tn) → y = lim supt→∞ y(t), and y′(tn) → 0, as n → ∞, we can prove x ≤ x∗ and
y ≤ αx∗ + ρD = y∗. Taken together, we obtain

x = x = x∗, and y = y = y∗,

which imply that E∗(x∗, y∗) is globally asymptotically stable with limt→∞(x(t), y(t)) = E∗(x∗, y∗). □

Theorem 2.1 shows that (1.7) has three positive equilibria E∗1(x∗1, y
∗
1), E∗2(x∗2, y

∗
2) and E∗3(x∗3, y

∗
3) when

0 < D < D∗, RD < R < R∗, and g(x1)g(x2) < 0. In this case, we show that (1.7) displays bistable
dynamics with E∗1(x∗1, y

∗
1) and E∗3(x∗3, y

∗
3) being stable and E∗2(x∗2, y

∗
2) being unstable.

Theorem 2.3. Let (2.1) hold, and (x(t), y(t)) be the solution of (1.7) and (1.8). If 0 < D < D∗,
RD < R < R∗, and g(x1)g(x2) < 0, then the following conclusions hold:

(i) E∗1(x∗1, y
∗
1) is asymptotically stable, and limt→∞(x(t), y(t)) = E∗1(x∗1, y

∗
1) when 0 < ϕ(t) < x∗2 and

0 < ψ(t) < y∗2 on [t0 − τ, t0].
(ii) E∗2(x∗2, y

∗
2) is unstable.

(iii) E∗3(x∗3, y
∗
3) is asymptotically stable, and limt→∞(x(t), y(t)) = E∗3(x∗3, y

∗
3) when ϕ(t) > x∗2 and

ψ(t) > y∗2 on [t0 − τ, t0].

Proof. (i) Since x∗i for i = 1, 2, 3 are the roots of g(x) defined in (2.2), using (2.5), we have

g(x) < 0 in [0, x∗1) ∪ (x∗2, x
∗
3), and g(x) > 0 in (x∗1, x

∗
2) ∪ (x∗3,+∞). (2.17)
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By a similar argument as in the proof of Theorem 2.2, for any positive constants c1 and c2 satsifying
c1 < x∗1 < c2 < x∗2, we obtain that the claim (2.16) holds when the initial data ϕ(t) and ψ(t) satisfy
c1 < ϕ(t) < c2 and αc1 + ρD < ψ(t) < αc2 + ρD in [t0 − τ, t0]. Hence E∗1(x∗1, y

∗
1) is stable. Furthermore,

the claim (2.16) verifies that

c1 ≤ x = lim inf
t→∞

x(t) ≤ x = lim sup
t→∞

x(t) ≤ c2 < x∗2,

and

αc1 + ρD ≤ y = lim inf
t→∞

y(t) ≤ y = lim sup
t→∞

y(t) ≤ αc2 + ρD < αx∗2 + ρD = y∗2.

By using (2.17), and the same argument as in the proof of the second part in Theorem 2.2, we derive
x = x = x∗1, and y = y = y∗1, which verifies the first part (i).

(ii) The instability of E∗2(x∗2, y
∗
2) follows directly from the second part of (i).

(iii) For any positive constants c3 and c4 satisfying x∗2 < c3 < x∗3 and c4 > x∗3, if c3 < ϕ(x) < c4 and
αc3 + ρD < ψ(t) < αc4 + ρD in [t0 − τ, t0], we claim

c3 < x(t) < c4, and αc3 + ρD < y(t) < αc4 + ρD, for t ≥ t0. (2.18)

If the claim (2.18) is not true, let t̄ be the least time such that the solution (x(t̄), y(t̄)) reaches the
boundary of the rectangular area [c3, c4] × [αc3 + ρD, αc4 + ρD]. If x(t̄) = c3, then c3 < x(t) < c4 and
c3+ρD < y(t) < αc4+ρD for t ∈ [t0, t̄), and x′(t̄) ≤ 0. By substituting t = t̄ in the first equation of (1.7)
implies

c3(1 + c3) − bD ≥ b
y(t − τ1) + D

y(t − τ1) + D + R
y(t − τ1) > b

c3 + (ρ + 1)D
c3 + (ρ + 1)D + R

(c3 + ρD),

and g(c3) > 0. Since g(x) < 0 in (x∗2, x
∗
3) and x∗2 < c3 < x∗3, we derive g(c3) < 0, contradicting to the

positiveness of g(c3). A similar contradiction can be obtained for the case x(t̄) = c4. If y(t̄) = c3 + ρD,
then αc1 + ρD < y(t) < αc2 + ρD, c1 < x(t) < c2 for t ∈ [t0, t̄), and y′(t̄) ≤ 0. By letting t = t̄ in the
second equation in (1.7) gives

0 ≥ y′(t̄) =
δ

m + µ
(αx(t̄ − τ2) + ρD − y(t̄)) =

αδ

m + µ
(x(t̄ − τ2) − c3) > 0.

For the case y(t̄) = αc4 + ρD, we can derive a similar contradiction. Hence the claim (2.18) holds,
which verifies the stability of E∗3(x∗3, y

∗
3).

To complete the verification of (iii), for any x∗2 < c3 < x∗3 and c4 > x∗3, the claim (2.18) shows that

x∗2 < c3 ≤ x ≤ x ≤ c4,

and

y∗2 = αx∗2 + ρD < αc3 + ρD ≤ y ≤ y ≤ αc4 + ρD.

By using a similar argument as in the proof of the second part in Theorem 2.2, let {sn} and {tn} be
two divergent sequences along which x(sn)→ x, x′(sn)→ 0, y(tn)→ y, and y′(tn)→ 0, as n→ ∞. By
substituting t = tn in the second equation of (1.7) gives

αx ≤ lim
n→∞

αx(tn − τ2) = y − ρD.
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Hence, y ≥ αx + ρD. Taking the limit in the first equation of (1.7) along the sequence {sn} leads to

x(1 + x) − bD = lim
n→∞

b
y(sn − τ1) + D

y(sn − τ1) + D + R
y(sn − τ1)

≥
by(y + D)

y + D + R
≥

b(αx + ρD)(αx + (ρ + 1)D)
αx + (ρ + 1)D + R

.

Hence, g(x) ≥ 0, which implies x ≥ x∗3 by (2.17) and x > x∗2. Let {sn} and {tn} again be the two
divergent sequences such that x(sn)→ x, x′(sn)→ 0, y(tn)→ y, and y′(tn)→ 0, as n→ ∞. Taking the
limits along these sequences gives y ≤ αx + ρD, and

x(1 + x) − bD = lim
n→∞

b
y(sn − τ1) + D

y(sn − τ1) + D + R
y(sn − τ1)

≤
by(y + D)
y + D + R

≤
b(αx + ρD)(αx + (ρ + 1)D)

αx + (ρ + 1)D + R
,

which imply g(x) ≤ 0. The fact x > x∗2 and g(x) switching signs from negative in (x∗2, x
∗
3) to positive

in (x∗3,+∞) verify that x ≤ x∗3. The fact x∗3 ≤ x ≤ x ≤ x∗3 implies x = x = x∗3. By using the following
inequality

αx∗3 + ρD = αx + ρD ≤ y ≤ y ≤ αx + ρD = αx∗3 + ρD,

we obtain y = y = αx∗3 + ρD, which verifies (iii). □

3. Implications in mosquito population suppression

3.1. Interpreting the theorems in original system parameters

By reversing the change of variables defined in (1.4) with

L(t) =
(m + µ)KL

m
x(s), A(t) =

µKL

m
y(s), D =

µKL

2m
D, R =

µKL

2m
R, (3.1)

and s = (m+µ)t, the system (1.7) converts back to the original system (1.3). The initial conditions (1.8)
change to

L(t) =
(m + µ)KL

m
ϕ((m + µ)t), and A(t) =

µKL

m
ψ((m + µ)t), (3.2)

for t ∈ [(t0 − τ)/(m + µ), t0/(m + µ)], where τ = max{τ1, τ2}. The parameters D
∗
, RD, and R

∗
defined

in (2.7) are converted to

D∗ =
µKL

2m
D
∗
=
αβµ − 2δ(m + µ)

4mβ
(m + µ)KL, RD =

µKL

2m
RD =

αβµ − (m + µ)δ
(m + µ)δ2 D, (3.3)

and

R∗ =
αµKL(αβµ + δ(m + µ))

4mδ2 −
D
δ
−
αµKL(m + µ)

4mδ

√
3(

2β(αµKL(m + µ) − 4mD)
δKL(m + µ)2 − 1). (3.4)
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If D ≥ D∗, Theorems 2.1 and 2.2 show that the unique positive equilibrium point E∗(L∗, A∗) of (1.3)
is globally asymptotically stable. Otherwise, if 0 < D < D∗, Theorem 2.1 identifies two threshold
release numbers R∗ and RD. When R ≥ R∗, or 0 < D < D∗ and 0 < R ≤ RD, (1.3) has a globally
asymptotically stable equilibrium point E∗(L∗, A∗). For the last case 0 < D < D∗ and RD < R < R∗,
Theorem 2.1 shows that (1.3) may has one or three positive equilibria, depending on the signs of
the extremums g(x1) and g(x2), which displays globally asymptotically stable or bistable dynamics
behaviour. Specifically, if 0 < D < D∗, RD < R < D∗, and g(x2) < 0 < g(x1), then (1.3) has three
positive equilibria E∗1(L∗1, A

∗
1), E∗2(L∗2, A

∗
2) and E∗3(L∗3, A

∗
3), satisfying

0 < L∗1 < L∗2 < L∗3, and A∗i = αµL∗i + 2(1 − δ)D, i = 1, 2, 3.

In this case, (1.3) displays bistable dynamics, with E∗1 and E∗3 being asymptotically stable and E∗2
being unstable.

For a population in an isolated area with D = 0, (1.3) degenerates to system (6) in [22]. As proved
in [22], there is a threshold release number R0, over which the complete suppression equilibrium
E0(0, 0) is globally asymptotically stable, which suggests that the native mosquito populations in
control area can be completely eliminated by releasing many Wolbachia-infected males. Specially, if
the mosquito population has not been interfered by releasing with R = D = 0, the Theorem 2.2 in [22]
obtained the carrying capacities of larvae and adults in target area

L∗0 =
KL

2mδ
(αβµ − 2δ(m + µ)), and A∗0 =

αµ

δ
L∗0 =

αµKL

2mδ2 (αβµ − 2δ(m + µ)). (3.5)

If D > 0, then E0(0, 0) is no longer an equilibrium of (1.3), which indicates that the immigration
of fertilized females from surrounding areas into the control area rules out the possibility of complete
eradication. Under this case, to prevent and control dengue fever effectively, we should reduce the wild
mosquitoes to a low level below which dengue fever could not cause an outbreak.

In this section, we use Aedes albopictus populations as an example to further discuss the impact
of wild mosquito immigration on the suppression efficiency. Based on laboratory data and field data,
we have estimated the life table parameters of Aedes albopictus population in Guangzhou [12, 22],
which are listed in Table 1. Note that the life table parameters are sensitive to climatic conditions such
as temperature and precipitation. The hot and rainy summer in Guangzhou is very suitable for the
breeding of Aedes albopictus mosquitoes. After the hatching of diapause eggs from early March, the
mosquito density peaks in late September and early October, which overlaps with the high-risk period
of dengue fever [27, 29, 30].

To display our discussion more specific and transparent, we fix the system parameters in our
simulations as follows:

β = 2, m = 0.1, µ = 0.1, α = 0.95, δ = 0.1, KL = 20000, τ1 = 12, τ2 = 8. (3.6)

Note that KL scales the size of control area and is determined mainly by environmental conditions,
such as the availability of breeding sites, and resource competition [43, 44]. We take KL = 20000 as
an example, since KL has little impact on the suppression dynamics. All other parameter values are
within the range of parameter values listed in Table 1. By substituting the parameters specified in (3.6)
into (3.3) and (3.5), we derive

L∗0 = 150000, A∗0 = 142500, and D∗ = 750.
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Table 1. The life table of Aedes albopictus in Guangzhou. The laboratory temperature ranges
from 20 to 30◦C. The field data are collected from early March to late October, when the
temperature ranges from 20 to 35◦C.

Para. Definition Lab. Field Reference
δe Egg mortality rate (day−1) (0.03, 0.14) (0.03, 0.14) [29, 39]
N Number of eggs laid by a female (230, 409) (29, 225) [27, 30]
τa Mean longevity of female (25.5, 40.9) (4.8, 36.7) [29, 30, 40]
β Hatching rate (day−1) (2.42, 7.78) (0.28, 4.23) β = N(1−δe)

2τa

m Natural larva mortality rate (day−1) (0.03, 0.1) (0.03, 0.1) [34, 39, 41]
µ Pupation rate (day−1) (0.32, 0.68) (0.05, 0.15) [29, 39, 41]
α Pupa survival rate (day−1) (0.92,0.97) (0.90,0.97) [34, 39, 41, 42]
δ Adult female mortality rate (day−1) (0.03, 0.1) (0.05, 0.15) [29, 34, 39, 41]
τe Development period of egg (3.7, 5.1) (8.3, 18.3) [29, 30, 40]
τl Development period of larva (5.2, 7.6) (12.0, 27.7) [29, 30, 40]
τp Development period of pupa (2.2, 3.4) (2.3, 8.6) [29, 30, 40]
τ1 τe + τa/2 (16.5, 25.6) (10.7, 36.7)
τ2 τl + τp (7.4, 11) (14.3, 36.3)

To display the rich dynamics of the system (1.3), we take D = 100 < D∗ as an example. By using
the definition in (3.3) and (3.4), and the estimated parameters in (3.6), we obtain

RD = 8500, and R∗ = 32932.

In Figure 2A, the curves correspond to the number A(t) of wild adult mosquitoes for different
release numbers and initial data. As we expected, the curves with identical R and differential initial
data verify the global asymptotical stability of the unique positive equilibrium E∗(L∗, A∗). For the
case R = 40, 000 > R∗, the system (1.3) has a unique positive equilibrium E∗(1650, 3368). For both
initial data ϕ(t) = ψ(t) = 1000 (red dotted curve) and ϕ(t) = ψ(t) = 220, 000 (black dotted curve) on
t ∈ [−12, 0], the correspond number A(t) of adults converge quickly to the equilibrium A∗(R) = 3368,
about 2.4% of the carrying capacity A∗0 of adults. The suppression dynamics for the case R < RD is
similar to the above case R > R∗. For instance, if R = 8000 < RD, our simulations show that (1.3)
has a unique positive equilibrium E∗(131460, 126, 679). Both of the adult mosquito numbers converge
steeply to A∗ = 126, 679 for ϕ(t) = ψ(t) = 1000 (greet dotted curve) and ϕ(t) = ψ(t) = 220, 000 (blue
dotted curve) on t ∈ [−12, 0]. Furthermore, for the case RD < R < R∗, the system (1.3) may has one
or three positive equilibria. For instance, for a relatively small release number R = 20, 000 ∈ (RD,R∗),
we simulations show that x1 = 0.123, x2 = 1.6401, g(x1) = −0.006, and g(x2) = −3.3234, satisfying
g(x1)g(x2) > 0. In this case, (1.3) has a unique positive equilibrium E∗(95966, 92975). Both of the
curves corresponding to the number A(t) of wild adults for ϕ(t) = ψ(t) = 1000 (cyan) and ϕ(t) = ψ(t) =
220, 000 (pink) on t ∈ [−12, 0] converge to A∗ = 92, 975.

On the other hand, for a relatively large release number R = 27, 000 ∈ (RD,R∗), our simulations
show that x1 = 0.2576, x2 = 1.2599, g(x1) = 0.1295, and g(x2) = −0.8272, which satisfy
g(x2) < 0 < g(x1). Theorems 2.1 and 2.3 verify that (1.3) has three positive equilibria E∗1(2301, 3987),
E∗2(20512, 20150), and E∗3(69191, 67520), which display bistability dynamics with E∗1 and E∗3 being
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Figure 2. The global stability and bistability of system (1.3). The parameters are specified in
(3.6), and D = 100 < D∗ = 750. (A) For the case R = 40000 > R∗ = 32932, or R = 20000 ∈
(RD,R∗) = (8500, 32932), or R = 8000 < RD, the unique positive equilibrium E∗(L∗, A∗) is
globally asymptotically stable under different initial data. (B) For R = 27000 ∈ (RD,R∗),
system (1.3) displays bistable dynamics behavior.

asymptotically stable. Moreover, E∗2 is unstable. In Figure 2B, the curves correspond to the number
A(t) of wild adults for the identical initial number of larvae and adult on t ∈ [−12, 0] with
ϕ(t) = ψ(t) = 100 (red), 20, 000 (blue), 22, 000 (green), and 120, 000 (black), respectively. As we
expected, all the four curves show that the number A(t) of wild adults converges to A∗3 = 67, 520 for
the initial data (ϕ(t), ψ(t)) on t ∈ [−12, 0] above the instable equilibrium E∗2(20512, 20150), while A(t)
converges to A∗1 = 3987 for (ϕ(t), ψ(t)) below E∗2. Our simulations show that a moderate release
number R with small immigration number D can lead to bistable dynamics in adult abundance. The
separate increase of release number R or immigration number D, or concurrent decrease of R and D
can change the bistable dynamics to globally asymptotically stable dynamics, by reducing the positive
equilibria from three to one.

3.2. Maximum possible suppression efficiency

We consider the maximum possible suppression efficiency due to the release of
Wolbachia-infected male mosquitoes, which is obtained formally by letting R → ∞ [25]. In this case,
the native females in the control area are rendered sterile. For the case D > 0, we use L∗(R) and A∗(R)
to denote the dependence of the unique positive equilibrium states of larval and adult mosquitoes on
R ≥ 0, respectively. In Figure 3A, the curves correspond to the unique positive equilibrium number
A∗(R) of adults for D = 400 (black), 700 (red), and 900 (blue), as R increases from 0 to 80, 000. It is
seen that, as we expected, A∗(R) decreases strictly in the release number R for fixed D. For the case
D = 900, about 0.63% of A∗0, our simulations show that A∗(R) decreases almost linearly in R. For
instance, A∗(R) reduces to 1.035 × 105 (about 72.63% of A∗0) when R = 4 × 104, and reduces to
7.299 × 104 (about 51.22% of A∗0) when R = 6 × 104. A similar simulation shows that L∗(R) also
decreases strictly in R for fixed D. On the other hand, the immigration of fertilized females
contributes to rapid population recovery and hinders control efforts. It is seen that both of L∗(R) and
A∗(R) increases strictly in the immigration number D of fertilized females for fixed R, as shown in
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Figure 3B. We take R = 1.2 × 105, about 84.2% of A∗0, as an example. Our simulations show that
A∗(R) = 6098 (about 4.3% of A∗0) when D = 200, which increases to 13576 (about 9.5% of A∗0) when
D = 400, and increases to 17867 (about 12.5% of A∗0) when D = 600.
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Figure 3. The dependence of the positive equilibrium A∗(R) on R and D. The parameters are
specified in (3.6). (A) For fixed D = 400, 700, and 900, A∗(R) decreases strictly in R. (B)
For fixed R = 8 × 104, R = 1.2 × 105, and R = 1.4 × 105, A∗(R) increases strictly in D.

Since both of L∗(R) and A∗(R) have lower bounds for fixed D > 0, by monotone and boundedness
theorem, their infima L∗ and A∗ are the limits of L∗(R) and A∗(R) as R→ +∞, respectively, with

lim
R→+∞

lim
t→+∞

(L(t), A(t)) = lim
R→+∞

(L∗(R), A∗(R)) = (L∗, A∗). (3.7)

In fact, if the release number R is much greater than A(t) + 2D, then the solution (L(t), A(t)) of
system (1.3) can be approximated by the following simple system

dL(t)
dt = βD − m

(
1 + L(t)

KL

)
L(t) − µL(t),

dA(t)
dt = αµL(t − τ2) + 2D − δ(A(t) + 2D),

(3.8)

with the same initial data (3.2). Note that the limit system (3.8) has a unique positive equilibrium
E∗∞(L∗∞, A

∗
∞) with

L∗∞ =
(m + µ)KL

2m


√

4mβD
KL(m + µ)2 + 1 − 1

 , and A∗∞ =
αµ

δ
L∗∞ +

2D(1 − δ)
δ

. (3.9)

It is easy to show that E∗∞(L∗∞, A
∗
∞) is globally asymptotically stable by a similar argument as in

the proof of Theorem 2.2. Denote the solutions of (1.3) and (3.8) by (L(t), A(t)) and (L∞(t), A∞(t)) for
t ≥ t0, respectively. Hence

lim
t→+∞

lim
R→+∞

(L(t), A(t)) = lim
t→+∞

(L∞(t), A∞(t)) = (L∗∞, A
∗
∞). (3.10)

Combining (3.7) and (3.10) gives (L∗, A∗) = (L∗∞, A
∗
∞), and

lim
R→+∞

(L∗(R), A∗(R)) = (L∗∞, A
∗
∞). (3.11)
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Hence, L∗∞ and A∗∞ define the maximum possible suppression efficiencies of larval and adult
mosquitoes, respectively. The limit in (3.11) allows us use L∗∞ and A∗∞ to approximate the sizes of
L∗(R) and A∗(R) for large R. The above analysis shows that it is impossible to bring down the number
of wild adults in the peak season to a level below the maximum possible suppression efficiency A∗∞.
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Figure 4. The estimation of A∗(R) by A∗∞. The parameters are specified in (3.6), R = 106,
5 × 106, and 107, respectively.

Figure 4 displays the estimation of (L∗(R), A∗(R)) by (L∗∞, A
∗
∞). The curves in Figure 4 correspond to

the maximum possible suppression efficiency A∗∞ (black), and the equilibrium number A∗(R) of native
adult mosquitoes for R = 107 (red), 5 × 106 (blue), and 106 (pink), as D increases from 0 to 5000. It
is seen that A∗(R) can be approximated perfectly by A∗∞ for fixed D > 0, and a better estimation is
obtained under larger value of the release number R. Let the parameters are specified in (3.6). We
take D = 500, about 0.35% of the carrying capacity A∗0, as an example. Our simulations show that
A∗∞ = 13, 270 and A∗(R) = 13, 650 when R = 106, about 6.7 times of A∗0. If the release number R
increases 5 times, then the relative error of A∗(R) decreases from 2.78% to 0.56% compared with the
theoretical value A∗∞. Furthermore, as R increases 10 times to 107, the relative error decreases to 0.29%.
Similarly, the positive equilibrium number L∗(R) of larvae can be estimated perfectly by L∗∞ defined in
(3.9) for a sufficiently large release number R.

3.3. Further quantification of the hindrance by immigration

To further quantify the hindrance of mosquito immigration on suppression efficiency, we define
the suppression rate p(t) as the ratio of the wild adult number A(t) of suppressed population with
immigration over the carrying capacity A∗0 of adults in an isolated area

p(t) =
A(t)
A∗0
=

2mδ2A(t)
αµKL(αβµ − 2δ(m + µ))

, for t ≥ t0. (3.12)

If D = 0, The Theorem 2.5 in [22] showed that there is a threshold release number

R0 =
αµ(m + µ)KL

2mδ


√

αβµ

2δ(m + µ)
− 1


2

,
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such that

lim
t→∞

(L(t), A(t)) = (0, 0), and lim
t→∞

p(t) = 0,

when R ≥ R0. By using Theorems 2.2 and 2.3, we derive that p(t) > 0 when D > 0. Furthermore, the
limits in (3.7) and (3.11) derive

p∗ = lim
R→+∞

lim
t→∞

p(t) = lim
R→+∞

A∗(R)
A∗0
=

A∗∞
A∗0
, for D ≥ 0. (3.13)

The decrease of A∗(R) in R indicates that p∗ is the infimum of the suppression rate p(t). Note that
p∗ increases strictly in D and

lim
D→0

p∗ = 0, and lim
D→+∞

p∗ = +∞.

For a given suppression rate target p0 ∈ (0, 1], there is a unique threshold immigration number,
denoted by Dp0 , such that A∗∞/A

∗
0 ≤ p0 if and only if D ≤ Dp0 . We call Dp0 the permitted most

immigration number D such that A∗∞ ≤ p0A∗0.
We take p0 = 0.1 as an example. By the parameters specified in (3.6), our simulations derive D0.1 =

537, about 0.377% of the carrying capacity A∗0 of wild adults in target area. If the immigration number
D of wild females is larger than the permitted most immigration number 537, the wild adults can not
be reduced to a level less than A∗0/10 = 14, 250. In Figure 5A, the curves correspond to the number
A(t) of wild adult mosquitoes for D = 550 and R = 1010, under the initial data ϕ(t) = ψ(t) = 12, 000
(blue) and ϕ(t) = ψ(t) = 20, 000 (red) on [−12, 0]. It is seen that, for both cases with the initial data
less than and larger than the suppression target 14, 250, the number of wild adults are always larger
than this target ultimately, even though the release number is as large as R = 1010. For instance, under
the initial values ϕ(t) = ψ(t) = 12, 000 of larvae and adults, the number of wild adults raise quickly,
and stabilize around A∗(1010) = 1.456 × 104 in 60 days, about 10.2% of A∗0, which is larger than the
suppression target of up to 90% reduction in wild adults in the peak season. Our analysis suggests that
the immigration number D of wild females hinder largely the population suppression, and restricts the
most suppression efficiency. To reduce the wild adult mosquitoes up to 90% in the peak season, the
total immigration number of the fertile males and females from surrounding areas should be less than
2D0.1 = 1074 per day, about 0.754% of A∗0.

A desirable and feasible dengue control strategy is to reduce rapidly the number of wild adult
mosquitoes to a low level within finite time to prevent disease transmission. For a given suppression
rate target p0 = 0.1 and immigration number 0 < D < D0.1, we further estimate the required least
release number, denoted by Rm(D), to reduce the number of wild adults at peak season to a level
A∗0/10 within 60 days. Let the parameters be specified in (3.6). The high-incidence season of dengue
fever in Guangzhou coinciding with the peak season of Aedes albopictus populations promotes us
to consider the mosquito peak season as the beginning of suppression such that the wild mosquitoes
stabilize around these carrying capacities [4, 27]. We take the initial data ϕ(t) = L∗0 = 150, 000 and
ψ(t) = A∗0 = 142, 500 on [−12, 0]. In Figure 5B, the curves correspond to the number of wild adult
mosquitoes A(t) for D = 0 (blue), 150 (green), 300 (red), and 500 (black), and estimated least release
number Rm(D) = 499, 424, Rm(D) = 723, 397, Rm(D) = 1, 276, 938, and Rm(D) = 108, 999, 526,
respectively. It is interesting to see that the four curves display similar suppression dynamics. The

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7454–7479.



7473

0 10 20 30 40 50 60 70 80

Time (days)

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

T
he

 n
um

be
r 

of
 w

ild
 a

du
lt 

m
os

qu
ito

es
 A

(t
)

104 A

(t)= (t)=12000, R=1010

(t)= (t)=20000, R=1010

A
target

=10%*A*
0
=14250

0 10 20 30 40 50 60
0

5

10

15
x 10

4

Time (days)

T
he

 n
um

be
r 

of
 w

ild
 a

du
lt 

m
os

qu
ito

es
 A

(t
)

B

 

 
D=0, R

m
(D)=499424

D=150, R
m

(D)=723397

D=300, R
m

(D)=1276938

D=500, R
m

(D)=108999526

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5
x 10

7 C

The immigration number of fertilized female adult mosquitoes D

T
he

 le
as

t r
el

ea
se

 n
um

be
r 

R
m

(D
)

Figure 5. Suppression dynamics of wild mosquitoes within finite time, and the dependence
of the least release number Rm(D) on D. The parameters are specified in (3.6). (A) It is
impossible to reduce the number of wild adult mosquitoes up to 90% when D = 550 >

D0.1 = 537 for the initial data ϕ(t) = ψ(t) = 12, 000, and ϕ(t) = ψ(t) = 20, 000 on [−12, 0].
(B) With ϕ(t) = L∗0 = 150, 000 and ψ(t) = A∗0 = 142, 500 on [−12, 0], to suppress at least
90% of wild adult mosquitoes within 60 days, the least release number Rm(D) increases in
the immigration number D. (C) The least release number Rm(D), required to reduce up to
90% of adults within 60 days, increases almost linearly in D ≤ D0.1/2, but increases sharply
when D approaches D0.1.

number of wild adults A(t) decreases sharply to the target level of 10% of A∗0 after increasing to its
peak larger than A∗0 in about 10 days when D > 0. For instance, if D = 300, our simulations show that
the estimated least release number is Rm(D) = 1, 276, 938, about 9 times of A∗0. The number of wild
adults firstly increases to its peak 145, 500 in 8 days, about 102% of A∗0, then decreases steeply to the
target of 14, 250 in the rest of 52 days. Furthermore, the least release number Rm(D) increases strictly
in the immigration number D. The dependence of Rm(D) on D is characterized by the curve in Figure
5C. The moderate increase of Rm(D) in D is almost linear when D ≤ D0.1/2. For instance, the least
release number Rm(D) = 584, 990, about 4.1 times of A∗0, when D = 70, which increases about 1.2
times to 702, 814 when D = 140, and increases about 2 times to 1, 160, 186 when D = 280. However,
Rm(D) increases sharply when D > D0.1/2, and increases near-vertically as D approaches to the most
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immigration number D0.1 = 537. For instance, Rm(D) = 6, 731, 344, about 47.2 times of A∗0, when
D = 462, which increases about 1.5 times to 10, 321, 783 when D = 476, and increases about 3.3 times
to 22, 360, 512 when D = 490, about 156.9 times of A∗0. To reduce up to 90% of wild adults in the
peak season within two months, an economically viable strategy is to reduce the immigration number
of wild females less than 300, about 0.21% of the carrying capacity of adults A∗ in the control area.
Setting buffer zones around the control area may be a viable strategy to reduce the immigration number
into the control area, and raise the suppression efficiency.

3.4. Discussion

The incompatible insect technique based on the endosymbiotic bacterium Wolbachia has been
proved to be a promising avenue to control mosquitoes, the vectors for mosquito-borne diseases, such
as dengue fever, malaria, and Zika. However, both of theoretical studies and field experiments verify
that the immigration of fertilized females from surrounding areas rules out the possibility of complete
mosquito eradication, and compromises the suppression efficiency [4, 23–25]. It has been observed
that the density induced intra-specific competition occurs mostly in the larval stage, which is found to
be the major determinant for the mosquito population growth that elevates mortality rates, delays
development period, and influences the female size and fecundity [29–33]. Stage-structured models
including the aquatic and terrestrial stages with their corresponding development periods are
considered to be more suitable to model the mosquito dynamics. In this paper, we modestly attempt to
discuss the joint impacts of the release of Wolbachia-infected male adults and the immigration of
fertile females and males on the suppression efficiency using a framework of delay differential
equations integrated larval density-dependent competition. We classify the release number of infected
males and immigration number of fertilized females, to ensure that the system of delay equations
display globally asymptotically stable or bistable dynamics.

Our theoretical results show that the suppression efficiency is more susceptible to the immigration of
fertilized females than the release of infected males. The immigration of fertilized females makes the
complete eradication becomes impossible, since the immigration of fertilized females are immune to
the releases of Wolbachia-infected males. The suppression efficiency, characterized by the equilibrium
state A∗(R) of wild adults, decreases strictly in the release number R, and increases strictly in the
immigration number D. The immigration of fertile females restricts the maximum possible suppression
efficiency such that the wild adult mosquitoes in target area can not be reduced to a level below A∗∞
defined in (3.9). Furthermore, our theoretical results show that a small number of immigration and
moderate release can lead to bistable dynamics with one of the three positive equilibria E1(L∗1, A

∗
1)

being asymptotically stable and A∗1 being near A = 0. An economically viable suppression strategy is
to set buffer zones around the control area to minimize the entry of external fertile adults, and treat first
the target mosquito populations by combining other control tools, including insecticide spraying, to
bring down the number of wild mosquitoes to a lower level below A∗1. In the buffer zones, the sustained
release of Wolbachia-infected males may be a viable approach to reduce the immigration number D
of fertile adult mosquitoes into the control area. To bring down the wild adults in the target area up
to 90% in the peak season within two months, our simulations show that the immigration number of
fertilized females should be less than 0.38% of the carrying capacity of wild adults A∗0. To reach the
above suppression target in two months, the required least release number increases near-vertically as
D approaches to the permitted most immigration number 0.38%A∗0.
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The mathematical modeling framework presented in this paper is based on a series of simplifying
assumptions by ignoring the impact of environment factors such as temperature and precipitation, and
the heterogeneity of mosquito spatial distribution. In most previous studies, the authors considered
the impact of immigration fertilized females on suppression dynamics by ignoring the immigration of
fertile males [23, 25]. In our model (1.3), we consider the joint impact of the immigration of fertile
females and males from surrounding areas with one-to-one sex ratio on the suppression dynamics. The
mathematical framework to model the larval density dependence, which is important in characterizing
the population dynamics by limiting the carrying capacity of a population in the target area, relies on
the accuracy of the data set and fitting methods [25, 34]. The development period and survival rate of
the aquatic and terrestrial stages are sensitive to climatic factors, especially temperature [27, 29, 30].
In this paper, different from [23, 25], we follow the idea of the classical logistic model to describe the
density-dependent mortality of larvae [35, 36]. Although the larval density-dependent competition is
considered to primarily prolong the larval development period, theoretical analyses have proved that
both of the development periods of the aquatic and terrestrial stages have little impacts on the mosquito
suppression dynamics [12,15,22,37]. Furthermore, to make the model mathematically analyzable, we
ignore the impact of climatic factors such as temperature on the life-table parameters and simplify them
as constants, which could partly give an instructive insights on population suppression. To deeply
understand the mosquito suppression dynamics, experimental and theoretical research are required
to further understand the density dependence mechanism and the impact of climatic factors on the
life-table parameters of mosquito populations. Furthermore, experiment studies on Aedes albopictus
populations have showed that some Wolbachia strains may cause incomplete CI [4, 33]. Researchers
should focus on the joint impact of incomplete CI and immigration of fertile females and males from
surrounding areas on the suppression dynamics by utilising the present framework.

Our estimation for the least release number Rm(D) increases strictly in the immigration number D
of fertile females in nonlinear form to reduce up to 90% of wild adult mosquitoes in the peak season
within two months. It is important in the practice of mosquito suppression to estimate exactly the
immigration number of wild females from surrounding areas into the target area, which may not be
straightforward. The immigration number is impacted by environmental factors and human activities
such as frequent traffic and the flow of people [4]. Our model framework provides useful suggestions
in deciding the least release number of infected males to obtain a given suppression target within finite
time period, by reducing the migration number to a lower level. Setting buffer zones around the control
area and releasing infected males in the buffer zones may be a viable strategy. Our model focuses on
the impact of the immigration of wild mosquitoes from surrounding areas and ignores the migration
of wild mosquitoes from the target area to surrounding areas. Further studies should focus on the joint
impact of the immigration and migration of wild mosquitoes on the suppression dynamics, since the
migration of wild mosquitoes from the target area may impact the suppression dynamics, especially in
the early stage of suppression.
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28. A. Tr’ajer, T. Hammer, I. Kacsala, B. Tánczos, N. Bagi, J. Padisák, Decoupling of active
and passive reasons for the invasion dynamics of Aedes albopictus Skuse (Diptera: Culicidae):
Comparisons of dispersal history in the Apennine and Florida peninsulas, J. Vect. Ecol., 42 (2017),
233–242. https://doi.org/10.1111/jvec.12263

29. Y. Li, F. Kamara, G. Zhou, S. Puthiyakunnon, C. Li, Y. Liu, et al., Urbanization increases Aedes
albopictus larval habitats and accelerates mosquito development and survivorship, PLoS Negl.
Trop. Dis., 8 (2014), e3301. https://doi.org/10.1371/journal.pntd.0003301

30. F. Liu, C. Yao, P. Lin, C. Zhou, Studies on life table of the natural population of Aedes albopictus,
Acta Sci. Natur. Universitatis Sunyatseni, 31 (1992), 84–93.

31. P. A. Ross, N. M. Endersby, H. L. Yeap, A. A. Hoffmann, Larval competition extends
developmental time and decreases adult size of wMelPop Wolbachia infected Aedes aegypti, Am.
J. Trop. Med. Hyg., 9 (2014), 198–205. https://doi.org/10.4269/ajtmh.13-0576

32. R. K. Walsh, L. Facchinelli, J. M. Ramsey, J. G. Bond, F. Gould, Assessing the impact of
density dependence in field populations of Aedes aegypti, J. Vector Ecol., 36 (2011), 300–307.
https://doi.org/10.1111/j.1948-7134.2011.00170.x

33. D. Zhang, X. Zheng, Z. Xi, K. Bourtzis, J. R. L. Gilles, Combining the sterile insect technique
with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of
triple- and double-infected strains of Aedes albopictus, PLoS One, 10 (2015), e0121126.
https://doi.org/10.1371/journal.pone.0121126

34. P. Cailly, A. Tran, T. Balenghien, G. L’Ambert, C. Toty, P. Ezanno, A climate driven
abundance model to assess mosquito control strategies, Ecol. Model., 227 (2012), 7–17.
https://doi.org/10.1016/j.ecolmodel.2011.10.027

35. H. I. Freedman, Deterministic mathematical models in population ecology, 2nd edition, HIFR
Consulting LTD, Edmonton, 1987.

36. H. L. Smith, An introduction to delay differential equations with applications to the life sciences,
Springer, New York, 2011.

37. J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J.
Appl. Math., 78 (2018), 3168–3187. https://doi.org/10.1137/18M1204917

38. D.R. Curtiss, Recent extensions of Descartes’ Rule of signs, Annals of Math., 19 (1918), 251–278.
https://doi.org/10.2307/1967494

39. J. Waldock, N. L. Chandra, J. Lelieveld, Y. Proestos, E. Michael, G. Christophides, et al., The role
of environment variables on Aedes albopictus biology and Chikungunya epidemiology, Pathog.
Glob. Health. , 107 (2013), 224–240. https://doi.org/10.1179/2047773213Y.0000000100

40. Z. Zhong, G. He, The life table of laboratory Aedes albopictus under various temperatures,
Academic J. Sun Yat-sen Univ. Med. Sci., 9 (1988), 35–39.

41. A. Tran, G. L’Ambert, G. Lacour, R. Benoı̂t, M. Demarchi, M. Cros, et al., A rainfall and
temperature driven abundance model for Aedes albopictus populations, Int. J. Environ. Res. Public
Health, 10 (2013), 1698–1719. https://doi.org/10.3390/ijerph10051698

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7454–7479.

http://dx.doi.org/https://doi.org/10.1111/jvec.12263
http://dx.doi.org/https://doi.org/10.1371/journal.pntd.0003301
http://dx.doi.org/https://doi.org/10.4269/ajtmh.13-0576
http://dx.doi.org/https://doi.org/10.1111/j.1948-7134.2011.00170.x
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0121126
http://dx.doi.org/https://doi.org/10.1016/j.ecolmodel.2011.10.027
http://dx.doi.org/https://doi.org/10.1137/18M1204917
http://dx.doi.org/https://doi.org/10.2307/1967494
http://dx.doi.org/https://doi.org/10.1179/2047773213Y.0000000100
http://dx.doi.org/https://doi.org/10.3390/ijerph10051698


7479

42. P. A. Hancock, V. L. White, A. G. Callahan, C. H. J. Godfray, A. A. Hoffmann, S. A. Ritchie,
Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia, J.
Appl. Ecol., 53 (2016), 785–793. https://doi.org/10.1111/1365-2664.12620

43. P. J. Huxley, K. A. Murray, S. Pawar, L. J. Cator, Competition and resource depletion shape
the thermal response of population fitness in Aedes aegypti, Commun. Biol., 5 (2022), 66.
https://doi.org/10.1038/s42003-022-03030-7

44. P. E. Parham, E. Michael, Modeling the effects of weather and climate change
on malaria transmission, Environ. Health Perspect., 118 (2010), 620–626.
https://doi.org/10.1289/ehp.0901256

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7454–7479.

http://dx.doi.org/https://doi.org/10.1111/1365-2664.12620
http://dx.doi.org/https://doi.org/10.1038/s42003-022-03030-7
http://dx.doi.org/https://doi.org/10.1289/ehp.0901256
http://creativecommons.org/licenses/by/4.0

	Introduction
	Stability analysis of system (1.7)
	The enumeration of the equilibria

	Implications in mosquito population suppression
	Interpreting the theorems in original system parameters
	Maximum possible suppression efficiency
	Further quantification of the hindrance by immigration
	Discussion


