Research article Special Issues

Cooperation in the face of crisis: effect of demographic noise in collective-risk social dilemmas

  • Received: 08 September 2024 Revised: 25 October 2024 Accepted: 01 November 2024 Published: 06 November 2024
  • In deciding whether to contribute to a public good, people often face a social dilemma known as the tragedy of the commons: either bear the cost of promoting the collective welfare, or free-ride on the efforts of others. Here, we study the dynamics of cooperation in the context of the threshold public goods games, in which groups must reach a cumulative target contribution to prevent a potential disaster, such as an environmental crisis or social unrest, that could result in the loss of all private wealth. The catch is that the crisis may never materialize, and the investment in the public good is lost. Overall, higher risk of loss promotes cooperation, while larger group size tends to undermine it. For most parameter settings, free-riders (defectors) cannot be eliminated from the population, leading to a coexistence equilibrium between cooperators and defectors for infinite populations. However, this equilibrium is unstable under the effect of demographic noise (finite population), since the cooperator-only and defector-only states are the only absorbing states of the stochastic dynamics. We use simulations and finite-size scaling to show that cooperators eventually die off and derive scaling laws for the transient lifetimes or half-lives of the coexistence metastable state. We find that for high risk, the half-life of cooperators increases exponentially with population size, while for low risk, it decreases exponentially with population size. At the risk threshold, where the coexistence regime appears in a discontinuous manner, the half-life increases with a power of the population size.

    Citation: José F. Fontanari. Cooperation in the face of crisis: effect of demographic noise in collective-risk social dilemmas[J]. Mathematical Biosciences and Engineering, 2024, 21(11): 7480-7500. doi: 10.3934/mbe.2024329

    Related Papers:

  • In deciding whether to contribute to a public good, people often face a social dilemma known as the tragedy of the commons: either bear the cost of promoting the collective welfare, or free-ride on the efforts of others. Here, we study the dynamics of cooperation in the context of the threshold public goods games, in which groups must reach a cumulative target contribution to prevent a potential disaster, such as an environmental crisis or social unrest, that could result in the loss of all private wealth. The catch is that the crisis may never materialize, and the investment in the public good is lost. Overall, higher risk of loss promotes cooperation, while larger group size tends to undermine it. For most parameter settings, free-riders (defectors) cannot be eliminated from the population, leading to a coexistence equilibrium between cooperators and defectors for infinite populations. However, this equilibrium is unstable under the effect of demographic noise (finite population), since the cooperator-only and defector-only states are the only absorbing states of the stochastic dynamics. We use simulations and finite-size scaling to show that cooperators eventually die off and derive scaling laws for the transient lifetimes or half-lives of the coexistence metastable state. We find that for high risk, the half-life of cooperators increases exponentially with population size, while for low risk, it decreases exponentially with population size. At the risk threshold, where the coexistence regime appears in a discontinuous manner, the half-life increases with a power of the population size.



    加载中


    [1] T. R. Malthus, An Essay on The Theory of Population, Oxford University Press, Oxford, 1798.
    [2] D. H. Meadows, D. L. Meadows, J. Randers, W. W. Behrens, The Limits to Growth: A Report for the Club of Rome's Project on the Predicament of Mankind, Universe Books, New York, 1972.
    [3] J. Randers, 2052: A Global Forecast for the Next Forty Years, Chelsea Green Publishing, Vermont, 2012. https://doi.org/10.1080/0969160X.2012.720407
    [4] S. Motesharrei, J. Rivas, E. Kalnay, Human and nature dynamics (HANDY): Modeling inequality and use of resources in the collapse or sustainability of societies, Ecol. Econom., 101 (2014), 90–102. https://doi.org/10.1016/j.ecolecon.2014.02.014 doi: 10.1016/j.ecolecon.2014.02.014
    [5] B. D. Smith, The ultimate ecosystem engineers, Science, 315 (2007), 1797–1798. https://doi.org/10.1126/science.113774 doi: 10.1126/science.113774
    [6] J. F. Fontanari, The Collapse of ecosystem engineer populations, Mathematics, 6 (2018), 9. https://doi.org/10.3390/math6010009 doi: 10.3390/math6010009
    [7] G. M. Lopes, J. F. Fontanari, Influence of technological progress and renewability on the sustainability of ecosystem engineers populations, Math. Biosci. Eng., 16 (2019), 3450–3464. https://doi.org/10.3934/mbe.2019173 doi: 10.3934/mbe.2019173
    [8] J. M. Smith, Evolution and the Theory of Games, Cambridge University Press, Cambridge, UK, 1982. https://doi.org/10.1017/CBO9780511806292
    [9] J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998. https://doi.org/10.1017/CBO9781139173179
    [10] J. Hardin, The tragedy of the commons, Science, 162 (1968), 1243–1248. https://doi.org/10.1126/science.162.3859.1243 doi: 10.1126/science.162.3859.1243
    [11] D. Kennedy, C. Norman, What don't we know?, Science, 309 (2005), 75. https://doi.org/10.1126/science.309.5731.75 doi: 10.1126/science.309.5731.75
    [12] A. J. C. van de Kragt, J. Orbell, R. M. Dawes, The minimal contributing set as a solution to public goods problems, Am. Polit. Sci. Rev., 77 (1982), 112–122. https://doi.org/10.2307/1956014 doi: 10.2307/1956014
    [13] M. Milinski, R. D. Sommerfeld, H. J. Krambeck, J. Marotzke, The collective-risk social dilemma and the prevention of simulated dangerous climate change, Proc. Nat. Acad. Sci. USA, 105 (2008), 2291–2294. https://doi.org/10.1073/pnas.0709546105 doi: 10.1073/pnas.0709546105
    [14] J. Fox, M. Guyer, Public choice and cooperation in n-person prisoner's dilemma, J. Conflict Resolut., 22 (1978), 469–481. https://doi.org/10.1177/002200277802200307 doi: 10.1177/002200277802200307
    [15] E. Fehr, S. Gächter, Cooperation and punishment in public goods experiments, Am. Econ. Rev., 90 (2000), 980–994. https://doi.org/10.1257/aer.90.4.980 doi: 10.1257/aer.90.4.980
    [16] J. Wang, F. Fu, T. Wu, L. Wang, Emergence of social cooperation in threshold public goods games with collective risk, Phys. Rev. E, 80 (2009), 016101. https://doi.org/10.1103/PhysRevE.80.016101 doi: 10.1103/PhysRevE.80.016101
    [17] F. C. Santos, J. M. Pacheco, Risk of collective failure provides an escape from the tragedy of the commons, Proc. Nat. Acad. Sci. USA, 108 (2011), 10421–10425. https://doi.org/10.1073/pnas.1015648108 doi: 10.1073/pnas.1015648108
    [18] J. M. Pacheco, V. V. Vasconcelos, F. C. Santos, Climate change governance, cooperation and self-organization Phys. Life Rev., 11 (2014), 573–586. https://doi.org/10.1016/j.plrev.2014.02.003 doi: 10.1016/j.plrev.2014.02.003
    [19] A. Traulsen, J. C. Claussen, C. Hauert, Coevolutionary dynamics: From finite to infinite populations, Phys. Rev. Lett., 95 (2005), 238701. https://doi.org/10.1103/PhysRevLett.95.238701 doi: 10.1103/PhysRevLett.95.238701
    [20] V. Privman, Finite-size scaling and numerical simulations of statistical systems, World Scientific, Singapore, 1990. https://doi.org/10.1142/1011
    [21] J. F. Fontanari, Imitation dynamics and the replicator equation, Europhys. Lett., 146 (2024), 47001. https://doi.org/10.1209/0295-5075/ad473e doi: 10.1209/0295-5075/ad473e
    [22] H. Ohtsuki, M. A. Nowak, The Replicator Equation on Graphs, J. Theor. Biol., 243 (2006), 86–97. https://doi.org/10.1016/j.jtbi.2006.06.004 doi: 10.1016/j.jtbi.2006.06.004
    [23] S. M. Garcia, A. Tor, T. M. Schiff, The psychology of competition: A social comparison perspective, Perspect. Psychol. Sci., 8 (2013), 634–650. https://doi.org/10.1177/1745691613504114 doi: 10.1177/1745691613504114
    [24] P. Kanngiesser, J. Sunderarajan, S. Hafenbrädl, J. K. Woike, Children sustain cooperation in a threshold public-goods game even when seeing others' outcomes, Psychol. Sci., (2024). https://doi.org/10.1177/09567976241267854
    [25] J. C. Harsanyi, On the rationality postulates underlying the theory of cooperative games, J. Confl. Resolut., 5 (1961), 179–196. https://doi.org/10.1177/002200276100500205 doi: 10.1177/002200276100500205
    [26] J. Wang, F. Fu, L. Wang, Effects of heterogeneous wealth distribution on public cooperation with collective risk, Phys. Rev. E, 82 (2010), 016102. https://doi.org/10.1103/PhysRevE.82.016102 doi: 10.1103/PhysRevE.82.016102
    [27] A. Tavoni, A. Dannenberg, G. Kallis, A. Löschel, Inequality, communication, and the avoidance of disastrous climate change in a public goods game, Proc. Nat. Acad. Sci. USA, 108 (2011), 11825–11829. https://doi.org/10.1073/pnas.1102493108 doi: 10.1073/pnas.1102493108
    [28] J. Black, M. Levi, D. De Meza, Creating a good atmosphere: minimum participation for tackling the 'greenhouse effect', Economica, 60 (1993), 281–293. https://doi.org/10.2307/2554852 doi: 10.2307/2554852
    [29] X. Chen, A. Szolnoki, M. Perc, Risk-driven migration and the collective-risk social dilemma, Phys. Rev. E, 86 (2012), 036101.
    [30] J. M. Pacheco, F. C. Santos, M. O. Souza, B. Skyrms, Evolutionary dynamics of collective action in N-person stag hunt dilemmas, Proc. R. Soc. B., 276 (2009), 315–321. https://doi.org/10.1098/rspb.2008.1126 doi: 10.1098/rspb.2008.1126
    [31] W. Toyokawa, A. Whalen, K. N. Laland, Social learning strategies regulate the wisdom and madness of interactive crowds, Nat. Hum. Behav., 3 (2019), 183–193. https://doi.org/10.1038/s41562-018-0518-x doi: 10.1038/s41562-018-0518-x
    [32] M. Perc, A. Szolnoki, Coevolutionary games–a mini review, BioSystems, 99 (2010), 109–125. https://doi.org/10.1016/j.biosystems.2009.10.003 doi: 10.1016/j.biosystems.2009.10.003
    [33] N. F. Britton, Essential Mathematical Biology, Springer, London, 2003. https://doi.org/10.1007/978-1-4471-0049-2
    [34] J. Castro-Santa, L. Moros, F. Exadaktylos, C. Mantilla, Early climate mitigation as a social dilemma, J. Econ. Behav. Organ., 224 (2024), 810–824. https://doi.org/10.1016/j.jebo.2024.06.030 doi: 10.1016/j.jebo.2024.06.030
    [35] J. M. Darley, B. Latané, Bystander intervention in emergencies: Diffusion of responsibility, J. Pers. Soc. Psychol., 8 (1968), 377–383. https://doi.org/10.1037/h0025589 doi: 10.1037/h0025589
    [36] D. F. Zheng, H. P. Yin, C. H. Chan, P. M. Hui, Cooperative behavior in a model of evolutionary snowdrift games with $N$-person interactions, Europhys. Lett., 80 (2007), 18002. https://doi.org/10.1209/0295-5075/80/18002 doi: 10.1209/0295-5075/80/18002
    [37] M. D. Santos, F. L. Pinheiro, F. C. Santos, J. M. Pacheco, Dynamics of N-person snowdrift games in structured populations, J. Theor. Biol., 315 (2012), 81–86. https://doi.org/10.1016/j.jtbi.2012.09.001 doi: 10.1016/j.jtbi.2012.09.001
    [38] M. Archetti, I. Scheuring, Review: Game theory of public goods in one-shot social dilemmas without assortment, J. Theor. Biol., 299 (2012), 9–20. https://doi.org/10.1016/j.jtbi.2011.06.018 doi: 10.1016/j.jtbi.2011.06.018
    [39] J. F. Fontanari, M. Santos, The dynamics of casual groups can keep free-riders at bay, Math. Biosci., 372 (2024), 109188. https://doi.org/10.1016/j.mbs.2024.109188 doi: 10.1016/j.mbs.2024.109188
    [40] J. F. Fontanari, M. Santos Solving the prisoner's dilemma trap in Hamilton's model of temporarily formed random groups, J. Theor. Biol., 595 (2024), 111946. https://doi.org/10.1016/j.jtbi.2024.111946 doi: 10.1016/j.jtbi.2024.111946
    [41] M. Archetti, The volunteer's dilemma and the optimal size of a social group J. Theor. Biol., 261 (2009), 475–480. https://doi.org/10.1016/j.jtbi.2009.08.018 doi: 10.1016/j.jtbi.2009.08.018
    [42] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, Oxford, UK, 1987.
    [43] T. Antal, I. Scheuring, Fixation of strategies for an evolutionary game in finite populations, Bull. Math. Biol., 68 (2006), 1923–1944. https://doi.org/10.1007/s11538-006-9061-4 doi: 10.1007/s11538-006-9061-4
    [44] J. F. Crow, M. Kimura, An Introduction to Population Genetics Theory, Harper and Row, New York, 1970.
    [45] P. R. A. Campos, J. F. Fontanari, Finite-size scaling of the error threshold transition in finite populations, J. Phys. A Math. Gen., 32 (1999), L1–L7. https://doi.org/10.1088/0305-4470/32/1/001 doi: 10.1088/0305-4470/32/1/001
    [46] R. Boyd, R. J. Richerson, Punishment allows the evolution of cooperation (and anything else), in sizable group, Ethol. Sociobiol., 13 (1992), 171–195. https://doi.org/10.1016/0162-3095(92)90032-Y doi: 10.1016/0162-3095(92)90032-Y
    [47] J. H. Fowler, Altruistic punishment and the origin of cooperation, Proc. Natl Acad. Sci. USA, 102 (2005), 7047–7049. https://doi.org/10.1073/pnas.0500938102 doi: 10.1073/pnas.0500938102
    [48] M. Perc, Sustainable institutionalized punishment requires elimination of second-order free-riders, Sci. Rep., 2 (2012), 344. https://doi.org/10.1038/srep00344 doi: 10.1038/srep00344
    [49] F. Dercole, M. De Carli, F. Della Rossa, A.V. Papadopoulos, Overpunishing is not necessary to fix cooperation in voluntary public goods games, J. Theor. Biol., 326 (2013), 70–81. https://doi.org/10.1016/j.jtbi.2012.11.034 doi: 10.1016/j.jtbi.2012.11.034
    [50] B. Y. Ishikawa, J. F Fontanari, Revisiting institutional punishment in the $n$-person prisoner's dilemma, preprint, arXiv: 2406.05884v2. https://doi.org/10.48550/arXiv.2406.05884
    [51] C. Xia, J. Wang, M. Perc, Z. Wang, Reputation and reciprocity, Phys. Life Rev., 46 (2023), 8–45. https://doi.org/10.1016/j.plrev.2023.05.002 doi: 10.1016/j.plrev.2023.05.002
    [52] S. A. West, A. Gardner, Altruism, Spite, and Greenbeards, Science, 327 (2010), 1341–1344. https://doi.org/10.1126/science.1178332 doi: 10.1126/science.1178332
    [53] A. Morozov, K. Abbott, K. Cuddington, T. Francis, G. Gellner, A. Hastings, et al., Long transients in ecology: Theory and applications, Phys. Life Rev., 32 (2020), 1–40. https://doi.org/10.1016/j.plrev.2019.09.004 doi: 10.1016/j.plrev.2019.09.004
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(155) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog