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Abstract: The sterile insect technique (SIT) is an effective weapon to prevent transmission of
mosquito-borne diseases, in which sterile mosquitoes are released to reduce or eradicate the wild
mosquito population. To study the impact of the sterile insect technique on the disease transmission,
we formulate stage-structured discrete-time models for the interactive dynamics of the wild and sterile
mosquitoes using Beverton-Holt type of survivability, based on difference equations. We incorporate
different strategies for releasing sterile mosquitoes, and investigate the model dynamics. Numerical
simulations are also provided to demonstrate dynamical features of the models.
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1. Introduction

To prevent mosquito-borne diseases, the sterile insect technique (SIT) has been applied to reduce
or eradicate the wild mosquitoes and has shown promising results in laboratory studies [1, 8, 38], but
predicting the impact of releasing sterile mosquitoes into the field of wild mosquito populations is still
challenging. Mathematical models have proven useful in gaining insights into interactive dynamics of
wild and sterile mosquito populations, and there are models in the literature for such studies [4, 5, 6,
7, 13, 17, 18, 28, 29]. However, most of them assume homogeneous mosquito populations without
distinguishing the metamorphic stages of mosquitoes.

Mosquitoes undergo complete metamorphosis, going through four distinct stages of development
during a lifetime, egg, pupae, larva, and adult. After a female mosquito drinking blood, she can lay
from 100 to 300 eggs at a time in standing water or very slow-moving water. In her lifetime, she
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can produce from 1000 to 3000 eggs [34]. Within a week, the eggs hatch into larvae, which will use
their tubes to breathe air by poking above the surface of the water. Larvae eat a bit of floating organic
matter and each other. Larvae molt four times totally as they grow and after the fourth molt, they are
called pupae. Pupae also live near the surface of water and breathe through two horn-like tubes (called
siphons) on their back. But pupae do not eat. When the skin splits after a few days from a pupae, an
adult mosquito emerges. The adults live for only a few weeks and a full life-cycle of a mosquito takes
about a month [2, 9].

To have more realistic modeling of mosquitoes, we need to include stage structure since the different
stages have different responses to environment and regulating factors to the population [36]. While
the interspecific competition and predation are rare events and could be discounted as major causes
of larval mortality, the intraspecific competition could represent a major density dependent source.
Thus the effect of crowding could be an important factor in the population dynamics of mosquitoes
[15, 19, 35].

Moreover, since the first three stages in a mosquito’s life time are aquatic and the major density
dependent source comes from the larval stage, following the line in [24, 26], we group the three aquatic
stages of mosquitoes into one class and divide the whole mosquito population into only two classes to
keep our mathematical modeling as simple as possible. We call the class consisting of the first three
stages larvae and the other class adult. We assume that the density dependence is based on larvae not
the adults. We still simplify our models such that no male and female individuals are distinguished.

For the density-dependent mortality, most existing works in the literature, including our previous
studies, have assumed the Ricker-type nonlinearity [24, 25, 27, 29, 31]. The dynamics of the Ricker-
type nonlinearity are complex, causing, e.g. period-doubling bifurcations even without any other in-
teractions. As the sterile mosquitoes are included, the model dynamics become more complex and it
is not clear whether the complexity is from the baseline model without interaction already or from the
interaction. Thus, we assume that the mosquito population follow the nonlinearity of Beverton-Holt
type [11, 12] in this paper.

We first investigate the dynamics of the general stage-structured model with no releases of sterile
mosquitoes in Section 2. We then introduce sterile mosquitoes into the model and formulate the in-
teractive stage-structured models in Section 3. Similar to those in [4, 5, 13, 29], we consider three
strategies of releases. The case of constant releases is studied in Section 3.1. Complete mathematical
analysis for the model dynamics is given. We then formulate a model for the case where the number
of sterile mosquito releases is proportional to the wild mosquito population size in Section 3.2. Math-
ematical analysis and numerical simulations are provided to demonstrate the complexity of the model
dynamics. Considering different sizes of wild mosquito population, we consider a different releasing
strategy as in [30, 31] in Section 3.3, where the releases of sterile mosquitoes are proportional to the
wild mosquitoes size when the wild mosquitoes size is small but is saturated and approaches a constant
as the wild mosquitoes size is sufficiently large. We provide complete mathematical analysis for the
model dynamics. We finally provide a brief discussion on our findings, particularly on the impact of
the three different strategies on the mosquito control measures in Section 4.
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2. Stage-structured model basis without the presence of sterile mosquitoes

We first consider a stage-structured model of wild mosquitoes in the absence of sterile mosquitoes.
Let xn and yn be the numbers of mosquito larvae and adults at generation n, respectively, and assume
that population dynamics of the mosquitoes are described by the following system:

xn+1 = f (xn, yn)yns1(xn, yn),
yn+1 = g(xn, yn)xns2(xn, yn),

where f is the number of the offspring produced per adult, s1 is the survival probability of larvae or the
fraction of larvae who survive, g is the progression rate of larvae or the adults emergence rate, and s2

is the survival probability of adults.
We assume a constant birth rate and denote it as f := a. Since the intraspecific competition mainly

takes place within the aquatic stages of mosquitoes, we assume that the death and the progression rates
of larvae are density-dependent only on the larvae size, with the Beverton-Holt type of nonlinearity,

such that s1(xn, yn) =
k1

1 + η1xn
and g(xn, yn) =

γ

1 + η2xn
, where k1 is the maximum survival probability,

η1 and η2 are density-dependent factors, and γ is the maximum progression rate.
We assume that food is abundant for mosquito adults so that the adults survival rate is constant,

denoted as s2(xn, yn) := s2. Then the model equations become

xn+1 =
ayn

1 + η1xn
,

yn+1 =
γxn

1 + η2xn
,

(2.1)

where we merge k1 and s2 into a and γ, respectively, but we still use a and γ for those parameters
without confusion.

The origin (0, 0) is a trivial fixed point of system (2.1). Define the intrinsic growth rate of the
stage-structured mosquito population r0 := aγ. The trivial fixed point is locally asymptotically stable
if r0 < 1 and is unstable if r0 > 1.

2.1. Existence and stability of positive fixed points

The x component of a positive fixed point of system (2.1) satisfies

η1η2x2 + (η1 + η2)x + 1 − r0 = 0. (2.2)

Clearly, the quadratic equation (2.2) has no positive root and hence system (2.1) has no positive fixed
point if r0 ≤ 1. Equation (2.2) has a unique positive root and hence system (2.1) has a unique positive
fixed point E := (x̄, ȳ) if r0 > 1, with

x̄ =
−(η1 + η2) +

√
∆

2η1η2
, ȳ =

γ(−(η1 + η2) +
√

∆)

2η1η2 + η2(−(η1 + η2) +
√

∆)
, (2.3)

where ∆ = (η1 − η2)2 + 4η1η2aγ.
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The Jacobian matrix of system (2.1) at E has the form

J1 :=


−

η1 x̄
1 + η1 x̄

a
1 + η1 x̄

γ

(1 + η2 x̄)2 0

 . (2.4)

Fixed point E is locally asymptotically stable if

|trJ1| < 1 + det J1 < 2

[22, 33], that is,
η1 x̄

1 + η1 x̄
< 1 −

1
1 + η2 x̄

< 2.

Thus fixed point E is locally asymptotically stable if

η1 < η2,

and is unstable if
η1 > η2.

2.2. Existence and stability of synchronous 2-cycles

System (2.1) may have periodic cycles of different periods. We first consider 2-cycles with xn+2 =

xn , 0 and yn+2 = yn , 0, for all n ≥ 0.
It follows from system (2.1) that

xn+2 =
ayn+1

1 + η1xn+1
=

aγxn

(1 + η2xn)(1 + η1xn+1)
,

yn+2 =
γxn+1

1 + η2xn+1
=

aγyn

(1 + η1xn)(1 + η2xn+1)
.

(2.5)

Then there exists a positive nontrivial 2-cycle if and only if

(1 + η2xn)(1 + η1xn+1) = (1 + η1xn)(1 + η2xn+1) = aγ,

which implies
(η2 − η1)(xn − xn+1) = 0,

for all n ≥ 0.
If η1 , η2, there exist no positive 2-cycles. If η1 = η2 := η, there may exist positive nontrivial

2-cycles. Before we investigate their existence and dynamics, we consider nonnegative synchronous
2-cycles which are not strictly positive, but are non-negative with alternating zero and positive com-
ponents [14]. In such a situation, the mosquito larvae and adults are synchronized in such a way as to
appear and vanish alternately in one time unit.

Synchronous 2-cycles can be found by looking for nontrivial equilibria of system (2.5) which have
one component equal to zero. It follows from

xn+2 =
aγxn

(1 + η2xn)(1 + η1xn+1)
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that
x∗ =

aγx∗
(1 + η2x∗)(1 + η1 · 0)

,

which yields

x∗ =
r0 − 1
η2

. (2.6)

Then it follows from
xn+2 =

ayn+1

1 + η1xn+1
,

that
x∗ =

ay∗
1 + η1 · 0

,

which leads to

y∗ =
x∗
a

=
aγ − 1

aη2
. (2.7)

Thus the system will undergo a unique synchronous 2-cycle as(
x∗
0

)
→

(
0
y∗

)
→

(
x∗
0

)
→

(
0
y∗

)
→ · · · ,

where x∗ is given in (2.6) and y∗ is given in (2.7), for r0 > 1.
At the synchronous 2-cycle, the Jacobian matrix is

J2 :=


aγ

(1 + η2x∗)2 −
aη1x∗

1 + η1x∗
0

aγ
1 + η1x∗

 =


1
r0
−

aη1x∗
1 + η1x∗

0
r0

1 + η1x∗

 .
Then, it follows from

trJ2 =
1
r0

+
r0

1 + η1x∗
, det J2 =

1
1 + η1x∗

,

that the unique synchronous 2-cycle is locally asymptotically stable if

1
r0

+
r0

1 + η1x∗
< 1 +

1
1 + η1x∗

,

that is,
η1 > η2.

2.3. Existence and stability of positive 2-cycles

We now assume η1 = η2 := η to analyze the case of positive 2-cycles. Then the unique positive
fixed point has the components

x̄0 =

√
r0 − 1
η

, ȳ0 =

√
γ(
√

r0 − 1)
√

aη
, (2.8)
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whose stability is determined by the eigenvalues of the Jacobian matrix in (2.4). The eigenvalues are

λ1 = −1, λ2 =
1
√

r0
< 1,

which implies the possibility of bifurcated 2-cycles. We now explore the existence of such 2-cycles.
It follows from system (2.1) that

xn+2 =
aγxn

(1 + ηxn)(1 + ηxn+1)
=

r0xn

1 + ηxn + aηyn
,

yn+2 =
aγyn

(1 + ηxn)(1 + ηxn+1)
=

r0yn

1 + ηxn + aηyn
.

(2.9)

For a positive 2-cycle with initial values (x0, y0), it follows from (2.9) that the two components
satisfy the following linear equation:

1 + ηx0 + aηy0 = r0. (2.10)

Thus, if we let x0 ∈
(
0, r0−1

η

)
and y0 =

r0−1−ηx0
aη , then a solution of (2.1) with such initial values is a

positive 2-cycle.
Any positive 2-cycle has the form(

x1

y1

)
→

(
x2

y2

)
→

(
x1

y1

)
→

(
x2

y2

)
→ · · ·

with (x1, y1) and (x2, y2) on the straight line given in (2.10). Hence there exists a continuum of positive
2-cycles of system (2.1). To determine the asymptotic behavior of these 2-cycles, we first show that
for any initial point (x0 > 0, y0 > 0), the distance between the point (xk, yk) and the straight line given
in (2.10) after k ≥ 1 steps is smaller and smaller until converges to zero.

If the initial point (x0, y0) is above the line given in (2.10), the distance between the line and the
point (xk, yk) after k steps is

dk =
ηxk + aηyk + 1 − r0√

η2 + (aη)2
.

Thus
dk+1 − dk =

η(xk+1 − xk) + aη(yk+1 − yk)√
η2 + (aη)2

,

where
xk+1 − xk =

ayk − xk(1 + ηxk)
1 + ηxk

, yk+1 − yk =
γxk − yk(1 + ηxk)

1 + ηxk
.

Therefore,

dk+1 − dk =
ηxk

(1 + ηxk)
√
η2 + (aη)2

(r0 − (1 + ηxk + aηyk)) , (2.11)

where r0 < 1 + ηxk + aηyk since the point (xk, yk) is above the straight line 1 + ηx + aηy = r0 for any
positive k.
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We use mathematical induction method to prove that (xk, yk) is above the straight line 1+ηx+aηy =

r0 given that (x0, y0) is above the same line. If the point (xm, ym) is above the line, then 1+ηxm +aηym >

r0. For the point (xm+1, ym+1), we have

1 + ηxm+1 + aηym+1 − r0 = 1 + η
aym

1 + ηxm
+ aη

γxm

1 + ηxm
− r0

=
1 + ηxm + aηym − r0

1 + ηxm
> 0,

which implies that the point (xm+1, ym+1) is also above the same line. Thus, for any positive k, the point
(xk, yk) is always above the straight line 1 + ηx + aηy = r0.

Then we have
dk+1 − dk < 0,

which indicates that the distance {dk} is a nonnegative strictly decreasing sequence bounded below by
zero. Thus, lim

k→∞
dk := d exists. Taking the limit in (2.11), we then have lim

k→∞
(1 + ηxk + aηyk) = r0, that

is, (xk, yk) approaches the line given in (2.10) and thus d = 0.
Similarly, if the initial point is below the line, we can show that the distance {dk} is also a nonnegative

strictly decreasing sequence with a limit equal to zero and (xk, yk) approaches the line given in (2.10)
as well. Therefore, the line given in (2.10) is a global attractor and a continuum of positive 2-cycles
of system (2.1) occurs, where each of the positive 2-cycle is locally stable. We give an example to
demonstrate the existence of a positive 2-cycle in Example 1.

Example 1. Given parameters
a = 5, γ = 0.4, η2 = 0.3, (2.12)

there exists a continuum of positive 2-cycles of system (2.1) if η1 = 0.3. The line given in (2.10) is
a global attractor. With initial values on the line, the solutions of (2.1) are positive 2-cycles, which
are locally stable. Initial value (x0, y0) = (0.9524, 0.4762) is on the line given in (2.10) and creates a
positive 2-cycle as shown in the left figure in Figure 1. If η1 = 0.5, there exists a unique synchronous 2-
cycle with components x∗ = 3.3333 and y∗ = 0.6667 which is globally asymptotically stable as shown
in the right figure in Figure 1.

We would like to point out that if we define parameter Γ :=
η1

η2
, it can be used as a bifurcation

parameter. As Γ < 1, that is η1 < η2, there exists a unique positive fixed point which is globally
asymptotically stable. It loses its stability when Γ ≥ 1, that is η1 ≥ η2. At Γ = 1, a continuum
of positive 2-cycles is bifurcated and for Γ > 1, a unique asymptotically stable synchronous 2-cycle
appears. A simple bifurcation diagram is given in Figure 2.

We further prove, in Appendix 4, that other k−cycles, for k ≥ 3, do not exist, which indicates the
chaotic phenomenon cannot occur [16]. We summarize our results as follows.

Theorem 2.1. The trivial fixed point (0, 0) for (2.1) is globally asymptotically stable if the intrinsic
growth rate r0 < 1 and unstable if r0 > 1. System (2.1) has a unique positive fixed point E = (x̄, ȳ) given
in (2.3) and a unique synchronous 2-cycle if r0 > 1. The positive fixed point is globally asymptotically
stable when η1 < η2 and is unstable when η1 > η2. The unique synchronous 2-cycle is globally
asymptotically stable if η1 > η2 and unstable if η1 < η2. A continuum of positive 2-cycles with initial
values on the straight line given in (2.10) appears when η1 = η2. The straight line is globally attractive
and every positive 2-cycle with an initial value on the straight line in (2.10) is locally stable.
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Figure 1. The parameters are given in (2.12). The line given in (2.10) is globally attractive
if η1 = 0.3. Initial value (x0, y0) = (0.9524, 0.4762) is on the line and creates a positive 2-
cycle as shown in the left figure. If η1 = 0.5, there exists a unique synchronous 2-cycle with
components x∗ = 3.3333 and y∗ = 0.6667 which is globally asymptotically stable as shown
in the right figure.

Figure 2. When η1 < η2, that is Γ < 1, there exists a unique positive fixed point which
is globally asymptotically stable. At Γ = 1, a continuum of positive 2-cycles is bifurcated
which is shown as the vertical line. When Γ > 1, that is, η1 > η2, the positive fixed point
becomes unstable, and a unique asymptotically stable synchronous 2-cycle appears.

3. Stage-structured interactive model with sterile mosquitoes

Now suppose sterile mosquitoes are released into the field of wild mosquitoes. Since sterile
mosquitoes do not reproduce, the birth input term will be their releases rate. Let Bn be the number
of sterile mosquitoes released at generation n. After the sterile mosquitoes are released, the mating
interaction between wild and sterile mosquitoes takes place. We assume harmonic means for matings
such that the per capita birth rate is given by

bn = C(Nn)
ayn

yn + Bn
= C(Nn)

ayn

Nn
,
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where C(Nn) is the number of matings per mosquito, per unit of time, with Nn = yn + Bn and a is
the number of wild larvae produced per wild mosquito. The interactive dynamics of wild and sterile
mosquitoes are then described by the following system:

xn+1 = C(Nn)
ayn

yn + Bn

yn

1 + η1xn
,

yn+1 =
γxn

1 + η2xn
.

(3.1)

3.1. Constant releases

We first consider the case where Bn := b is a constant which means sterile mosquitoes are constantly
released for each generation, and assume that the number of matings C(Nn) is a constant and is merged
into the birth rate a with the same notation for convenience. Then the system (3.1) becomes

xn+1 =
ayn

yn + b
yn

1 + η1xn
=

ay2
n

(yn + b)(1 + η1xn)
,

yn+1 =
γxn

1 + η2xn
.

(3.2)

Clearly, the origin (0, 0) is a fixed point and is always locally asymptotically stable. Let (x, y) be a
positive fixed point. It satisfies the following equations:

x =
ay2

(y + b)(1 + η1x)
,

y =
γx

1 + η2x
,

which lead to ay
(y + b)(1 + η1x)

γ

1 + η2x
= 1.

Solving for b then yields

b =
aγy

(1 + η1x)(1 + η2x)
− y

=
γx

(1 + η1x)(1 + η2x)2
(r0 − (1 + η1x)(1 + η2x)) := γH(x),

(3.3)

for (1 + η1x)(1 + η2x) ≤ r0, i.e. x ≤ x̄, where x̄ is given in (2.3).
Clearly, there exists no positive fixed point if r0 ≤ 1. For the existence of positive fixed point,

function H(x) first needs to satisfy H(x) > 0 for r0 > 1. We then only consider x ∈ Ω where set Ω is
defined by

Ω := {x : 0 < x < x̄}. (3.4)

Since

H′(x) =
1

(1 + η1x)(1 + η2x)3

(
r0(1 − η2x −

η1x(1 + η2x)
1 + η1x

) − (1 + η1x)(1 + η2x)
)
, (3.5)
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we define L(x) := r0

(
1 − η2x −

η1x(1 + η2x)
1 + η1x

)
and F(x) := (1+η1x)(1+η2x). Then H′(x) = 0 for x ≥ 0

if and only if L(x) = F(x) for x ≥ 0.
Since

L′(x) = r0

(
−η2 −

η1 + 2η1η2x + η2
1η2x2

(1 + η1x)2

)
< 0,

L(x) is decreasing in the set Ω and L(0) = r0 > 1. Notice that F(x) is increasing in Ω and F(0) = 1.
Then there exists a unique intersection point between the curves of F(x) and L(x), denoted by xc, with
0 < xc ≤ x̄ since F(xc) = L(xc) < r0.

With this unique xc, we have H′(x)|x=xc = 0. Clearly, L(x) > F(x) for 0 < x < xc, and L(x) < F(x)
for xc < x < x̄. Thus  H′(x) > 0 0 < x < xc,

H′(x) < 0 xc < x < x̄.

We define
bc := γH(xc). (3.6)

Then bc determines the threshold value for releases of sterile mosquitoes such that system (3.2) has no
positive fixed point, one positive fixed point (x, y), or two positive fixed points (xi, yi), i = 1, 2 with
x1 < xc < x2, if b > bc, b = bc, or b < bc, respectively.

To investigate the existence of synchronous 2-cycles, we have such a form(
x∗
0

)
→

(
0
y∗

)
→

(
x∗
0

)
→

(
0
y∗

)
→ · · · ,

where

x∗ =
ay∗2

b + y∗
, y∗ =

γx∗
1 + η2x∗

. (3.7)

To solve for x∗ and y∗, we have
aη2y∗2 + (1 − r0)y∗ + b = 0. (3.8)

Since r0 > 1, the existence of positive solutions of (3.8) depends on the discriminant ∆ = (r0 − 1)2 −

4aη2b. Define the threshold value

b1 :=
(r0 − 1)2

4aη2
. (3.9)

Then there exists no, one synchronous 2-cycle with

y∗ =
r0 − 1
2aη2

,

or two synchronous 2-cycles with

y{1}∗ =
r0 − 1 −

√
(r0 − 1)2 − 4aη2b
2aη2

, y{2}∗ =
r0 − 1 +

√
(r0 − 1)2 − 4aη2b
2aη2

, (3.10)

if b > b1, b = b1, or b < b1, respectively.

Mathematical Biosciences and Engineering Volume 16, Issue 2, 572–602.



582

Now we claim bc < b1. Thus, if b > b1, there exists neither synchronous 2-cycle nor positive fixed
point thus no positive 2-cycles, which makes the trivial fixed point globally asymptotically stable. To
this end, we define a function

P(x) := γH(x) − b1 =
Q(x)

4aη2(1 + η1x)(1 + η2x)2 ,

where
Q(x) := −Ax3 − Bx2 + Cx − (r0 − 1)2

with

A = 4r0η1η
2
2 + η1η

2
2(r0 − 1)2 > 0,

B = 4r0η2(η1 + η2) + η2
2(r0 − 1)2 + 2η1η2(r0 − 1)2 > 0,

C = 4r0η2(r0 − 1) − 2η2(r0 − 1)2 − η1(r0 − 1)2.

(3.11)

Then the function P(x) has the same sign as Q(x). If C < 0, then the function Q(x) is negative for
all x ∈ Ω since all of the coefficients are negative. Thus the function P(x) is negative for all x ∈ Ω,
which implies bc < b1.

Assume C > 0. It follows from

Q′(x) = −3Ax2 − 2Bx + C

that Q(x) has a maximum value

Q(x0) = −Ax3
0 − Bx2

0 + Cx0 − (r0 − 1)2,

at

x0 =

√
B2 + 3AC − B

3A
> 0,

where, A, B and C are given in (3.11).
Using η1 as a variable, we have

Q(x0) := q(η1) = −A(η1) · x3
0(η1) − B(η1) · x2

0(η1) + C(η1) · x0(η1) − (r0 − 1)2,

where η1 ∈ (0, 1].
Taking the derivative of q(η1) with respect to η1, we have

q′(η1) =(−3A(η1)x2
0(η1) − 2B(η1)x0(η1) + C(η1)) · x′0(η1)

+ (−A′(η1)x3
0(η1) − B′(η1)x2

0(η1) + C′(η1)x0(η1))
= − A′(η1)x3

0(η1) − B′(η1)x2
0(η1) + C′(η1)x0(η1)

since
−3Ax2

0 − 2Bx0 + C = Q′(x0) = 0.

Notice that

A′(η1) = 4r0η
2
2 + η2

2(r0 − 1)2 > 0,
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B′(η1) = 4r0η2 + 2η2(r0 − 1)2 > 0,
C′(η1) = −(r0 − 1)2 < 0.

Thus q′(η1) < 0 for η1 ∈ (0, 1], and then q(η1) is monotone decreasing.
Moreover, it follows from A(0) = 0, B(0) = η2

2(r0 + 1)2, and C(0) = 2η2(r2
0 − 1) that

x0(η1)|η1→0 = lim
η1→0

x0(η1) =
C(0)
2B(0)

,

and thus

lim
η1→0

q(η1) = −B(0)x2
0(0) + C(0)x0(0) − (r0 − 1)2

= −B(0)
C2(0)
4B2(0)

+ C(0)
C(0)
2B(0)

− (r0 − 1)2

=
C2(0)
4B(0)

− (r0 − 1)2 =
1

4B(0)
(C2(0) − 4B(0)(r0 − 1)2) = 0.

Hence q(η1) < 0 for η1 ∈ (0, 1], that is, Q(x0) < 0, and then P(x) < 0 for all x ∈ Ω. Therefore bc < b1.
We next investigate the stability of the positive fixed points and the synchronous 2-cycles.
The Jacobian matrix evaluated at a positive fixed point has the form

J :=


−

η1x
1 + η1x

x
y

y + 2b
y + b

y
x

1
1 + η2x

0

 .
Since

trJ = −
η1x

1 + η1x
, det J = −

y + 2b
(y + b)(1 + η2x)

,

a positive fixed point (x, y) is locally asymptotically stable if

η1x
1 + η1x

+
y + 2b

(y + b)(1 + η2x)
< 1,

which is equivalent to
b(1 + 2η1x − η2x) − (η2 − η1)xy < 0. (3.12)

If η2 < η1, then b(1 + 2η1x− η2x)− (η2 − η1)xy = b(1 + (2η1 − η2)x + (η1 − η2)xy > 0, which implies
that all positive points are unstable if they exist.

We then assume η2 > η1 such that the wild mosquitoes maintain a locally steady state before the
sterile mosquitoes are released. Since the component x of a positive fixed point (x, y) is a solution of
b = γH(x) in (3.3), condition (3.12) is equivalent to

γH(x) · (1 + 2η1x − η2x) − (η2 − η1)x
γx

1 + η2x

=
γx

(1 + η1x)(1 + η2x)
(r0(1 + 2η1x − η2x) − (1 + η1x)2(1 + η2x)) < 0.
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Define the following function h(x) to determine the stability of positive fixed points

h(x) := r0(1 + 2η1x − η2x) − (1 + η1x)2(1 + η2x).

Thus, the positive fixed point (x, y) is locally asymptotically stable if h(x) < 0 and unstable if h(x) > 0.
For b = bc, there exists a unique positive fixed point (xc, yc) where H′(xc) = 0 from (3.5) and hence

(1 + η1xc)(1 + η2xc) = r0

(
1 − η2xc −

η1xc(1 + η2xc)
1 + η1xc

)
.

Then we have

h(xc) = r0(1 + 2η1xc − η2xc) − (1 + η1xc)r0

(
1 − η2xc −

η1xc(1 + η2xc)
1 + η1xc

)
= r0(1 + 2η1xc − η2xc) − r0 ((1 + η1xc) − η2xc(1 + η1xc) − η1xc(1 + η2xc))

= r0(2η1xc + 2η1η2x2
c) = 2r0η1xc(1 + η2xc) > 0,

and thus this unique positive fixed point (xc, yc) is unstable.
For b < bc, there exist two positive fixed points (xi, yi), i = 1, 2, with x1 < x2, where H′(x1) > 0 and

H′(x2) < 0.
We first consider the positive fixed point (x1, y1), with H′(x1) > 0 which is equivalent to

(1 + η1x1)(1 + η2x1) < r0

(
1 − η2x1 −

η1x1(1 + η2x1)
1 + η1x1

)
.

Then we have

h(x1) > r0(1 + 2η1x1 − η2x1) − (1 + η1x1)r0

(
1 − η2x1 −

η1x1(1 + η2x1)
1 + η1x1

)
= r0(1 + 2η1x1 − η2x1) − r0((1 + η1x1) − η2x1(1 + η1x1) − η1x1(1 + η2x1))
= r0(2η1x1 + 2η1η2x2

1) = 2r0η1x1(1 + η2x1) > 0,

and thus fixed point (x1, y1) is unstable.
Next we consider the positive fixed point (x2, y2) with H′(x2) < 0. Simple calculation shows that

h(x2) can be negative or positive. We then define a threshold value xs satisfying h(xs) = 0, that is,

h(xs) = −η2
1η2x3

s − (η2
1 + 2η1η2)x2

s + (r0(2η1 − η2) − 2η1 − η2)xs + (r0 − 1) = 0.

Notice that h(x) = 0 is a cubic equation and r0 − 1 > 0. Then it follows from Descartes’ rule of sign
that there exists a unique positive solution to h(x) = 0. Moreover, since

h(x̄) = r0(η1 − η2)x̄ < 0

and h(x1) > 0, the threshold value xs satisfies x1 < xs < x̄, and h(x) > 0 for x1 < x < xs and h(x) < 0
for xs < x < x̄.

Then, the positive fixed point (x2, y2) is locally asymptotically stable if x2 > xs with h(x2) < 0 and
unstable if x2 < xs with h(x2) > 0. We define the corresponding threshold value of releases for the
stability of (x2, y2) as

bs := γH(xs), (3.13)
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where H(x) is defined in (3.3). Then positive fixed point (x2, y2) is locally asymptotically stable if
b < bs and unstable if b > bs. Notice that bs < bc since bc is the maximum value of the function γH(x).

For the stability of the synchronous 2-cycles with components x∗ and y∗ given in (3.7), the corre-
sponding Jacobian matrix has the form (

λ 0
0 0

)
,

where

λ =
2r0y∗

(1 + η2x∗)(b + y∗)
−

2aη2y∗2

(1 + η2x∗)(b + y∗)
−

r0y∗2

(1 + η2x∗)2(b + y∗)2 .

Since r0y∗ = (1 + η2x∗)(b + y∗) at the synchronous 2-cycles,

λ =
2r0y∗
r0y∗

−
2aη2y∗2

r0y∗
−

r0y∗2

r2
0y∗2

= 2 −
2η2

γ
y∗ −

1
r0
.

If b < b1, there exist two synchronous 2-cycles with components x{1}∗ < x{2}∗ and y{1}∗ < y{2}∗ in (3.10).
The corresponding eigenvalues are

λ{1} = 2 −
r0 −

√
(r0 − 1)2 − 4baη2

r0
=

r0 +
√

(r0 − 1)2 − 4baη2

r0
> 1,

at
(
x{1}∗ , y

{1}
∗

)
, and

λ{2} = 2 −
r0 +

√
(r0 − 1)2 − 4baη2

r0
=

r0 −
√

(r0 − 1)2 − 4baη2

r0
< 1,

at
(
x{2}∗ , y

{2}
∗

)
, respectively. Thus synchronous 2-cycle

(
x{1}∗ , y

{1}
∗

)
is unstable and synchronous 2-cycle(

x{2}∗ , y
{2}
∗

)
is locally asymptotically stable.

We summarize our results in the following theorem and Table 1.

Theorem 3.1. The trivial fixed point (0, 0) is always locally asymptotically stable for system (3.2).
Suppose the intrinsic growth rate of the stage-structured mosquito population r0 > 1. We define the
threshold values for the releases of the sterile mosquitoes bc in (3.6), b1 in (3.9), and bs in (3.13),
respectively, with bs < bc < b1. System (3.2) has no, one, or two positive fixed points if b > bc, b = bc,
or b < bc, and has no, one, or two synchronous 2-cycles if b > b1, b = b1, or b < b1 respectively. If
b > b1, the trivial fixed point is globally asymptotically stable, which makes the population of the wild
mosquitoes to go extinct when sufficient sterile mosquitoes are released. If bc < b < b1, there exist no
positive fixed points and two synchronous 2-cycles, where the one with larger components is locally
asymptotically stable and the other is unstable. If b < bc, it depends on the relation of η1 and η2. If
η2 < η1, there exist two positive fixed points, where both of them are unstable, and two synchronous 2-
cycles, where the one with larger components is locally asymptotically stable and the other is unstable.
Suppose η1 < η2. If bs < b < bc, there exist two positive fixed points, but both are unstable, and two
synchronous 2-cycles, where the one with larger components is locally asymptotically stable and the
other is unstable. If 0 < b < bs, there exist two positive fixed points and two synchronous 2-cycles. The
positive fixed point with larger components and the synchronous 2-cycle with larger components are
both locally asymptotically stable, and the other positive fixed point and the other synchronous 2-cycle
are both unstable.
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Table 1. Summary table for the existence of positive fixed points and synchronous 2-cycles
with r0 > 1.

(PFP stands for positive fixed point and STC stands for synchronous 2-cycle.)

b < bs bs < b < bc bc < b < b1 b1 < b
Two PFP Two PFP

One stable both unstable No PFP
η1 < η2 One unstable

Two STC
One stable No STC

One unstable
Two PFP

No PFP
both unstable

η2 < η1 Two STC
One stable No STC

One unstable

We then give the following example to demonstrate the results in Theorem 3.1, but only address the
case of η1 < η2.

Example 2. Choosing the following parameters

a = 25, γ = 0.8, η1 = 0.2, η2 = 0.7, (3.14)

we have r0 = aγ = 20 > 1 and η1 < η2 . The threshold values of releases are bc = 4.1523, b1 =

5.1571 and bs = 2.9252. For b = 1, there exist two positive fixed points E1 = (0.0741, 0.0564) and
E2 = (5.1949, 0.8964), where E1 is unstable and E2 is locally asymptotically stable since b < bs. For
the same release value b = 1, there also exist two synchronous 2-cycles with components

(
x{1}∗ , 0

)
→(

0, y{1}∗
)

and
(
x{2}∗ , 0

)
→

(
0, y{2}∗

)
, where the synchronous 2-cycle with bigger components x{2}∗ = 13.0700

and y{2}∗ = 1.0302 is locally asymptotically stable while the one with smaller components x{1}∗ = 0.0728
and y{1}∗ = 0.0554 is unstable. Notice that the origin (0, 0) is always locally asymptotically stable.
Therefore, for b = 1, solutions approach the origin, positive fixed point E2, or synchronous 2-cycle
with components x{2}∗ and y{2}∗ , depending on their initial values, as shown in the upper left, upper right,
or the lower figure in Figure 3, respectively.

3.2. Releases proportional to the wild mosquito population size

Instead of constant releases of sterile mosquitoes, we assume that the releases are proportional to
the population size of the wild mosquitoes such that the number of releases is B(·) := by where b is a
constant [13].

We assume that there is no mating difficulty for mosquitoes. Then the model dynamics are governed
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Figure 3. With the parameters given in (3.14), the threshold values of releases are bc =

4.1523, b1 = 5.1571, and bs = 2.9252. For b = 1, there exist two positive fixed points
E1 = (0.0741, 0.0564) and E2 = (5.1949, 0.8964), where E1 is unstable and E2 is locally
asymptotically stable since b < bs. For the same release value b = 1, there also exist two
synchronous 2-cycles with components

(
x{1}∗ , 0

)
→

(
0, y{1}∗

)
and

(
x{2}∗ , 0

)
→

(
0, y{2}∗

)
, where

the synchronous 2-cycle with bigger components x{2}∗ = 13.0700 and y{2}∗ = 1.0302 is locally
asymptotically stable while the one with smaller components x{1}∗ = 0.0728 and y{1}∗ = 0.0554
is unstable. Notice that the origin (0, 0) is always locally asymptotically stable. Solutions
approach the origin, positive fixed point E2, or synchronous 2-cycle (x{2}∗ , 0) → (0, y{2}∗ ),
depending on their initial values, as shown in upper left, upper right, or the lower figure,
respectively.
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by the following system:

xn+1 =
ayn

yn + byn
·

yn

1 + η1xn
=

ayn

(1 + b)(1 + η1xn)
=

āyn

1 + η1xn
,

yn+1 =
γxn

1 + η2xn
,

(3.15)

where ā = a
1+b .

Mathematically, the system is the same as system (2.1). It follows from Theorem 2.1 that if r̄0 =

āγ > 1, the trivial fixed point is globally asymptotically stable. We define the sterile mosquitoes release
threshold value by

bc := aγ − 1 = r0 − 1.

Then the trivial fixed point is globally asymptotically stable if b > bc and unstable if b < bc.
If b < bc, there exists a unique positive fixed point E∗ := (x∗, y∗) with

x∗ =
−(η1 + η2) +

√
∆

2η1η2
,

y∗ =
γx∗

1 + η2x∗
=

γ(−(η1 + η2) +
√

∆)

2η1η2 + η2(−(η1 + η2) +
√

∆)
,

(3.16)

where ∆ = (η1 − η2)2 +
4η1η2r0

1 + b
, and a unique synchronous 2-cycle

(
x∗
0

)
→

(
0
y∗

)
→

(
x∗
0

)
→

(
0
y∗

)
→ · · · (3.17)

with x∗ =
r0−(1+b)
η2(1+b) > 0 and y∗ =

r0−(1+b)
r0η2

> 0. It follows from Theorem 2.1 that the positive fixed point
E∗ is globally asymptotically stable if η1 < η2 and the synchronous 2-cycle is globally asymptotically
stable if η1 > η2. In summary, we have the following theorem.

Theorem 3.2. The trivial fixed point (0, 0) for system (3.15) is globally asymptotically stable if b > bc

and is unstable if b < bc where the sterile mosquito release threshold bc := r0−1. If b < bc, there exist a
unique positive fixed point and a unique synchronous 2-cycle. The unique positive fixed point E∗, given
in (3.16), is globally asymptotically stable if η1 < η2 and unstable if η1 > η2. The synchronous 2-cycle,
given in (3.17), is globally asymptotically stable if η1 > η2 and unstable if η1 < η2. A continuum of
locally stable positive 2-cycles exists if and only if η1 = η2.

It follows from Theorem 3.2 that if b > bc such that sufficient sterile mosquitoes are released, wild
mosquitoes can be wiped out. On the other hand, if b < bc such that not enough sterile mosquitoes are
released, the two types of mosquitoes coexist. In such a case, although the stability condition remains
the same as in system (2.1) even we have released sterile mosquitoes, it follows from (3.16) that x∗

becomes smaller for larger b. Moreover, since y∗ is a strictly increasing function of x∗, y∗ becomes
smaller with smaller x∗. That is to say, increasing the releases of sterile mosquitoes can reduce the
population size of the wild mosquitoes. We demonstrate our findings in Example 3.
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Example 3. Given the parameters
a = 5, γ = 0.8, (3.18)

we have threshold value bc = 3. For b = 4 > 3, the trivial fixed point is globally asymptotically
stable as shown in the upper left figure in Figure 4. For b = 0.5 < bc = 3, the trivial fixed point is
unstable and there exist a unique positive fixed point E∗ = (2.5519, 1.1563) and a unique synchronous
2-cycle with components x∗ = 5.5556 and y∗ = 1.1111. The synchronous 2-cycle is unstable and the
positive fixed point E∗ is globally asymptotically stable when η1 = 0.2 < η2 = 0.3 as shown in the
upper right figure in Figure 4. With the same values η1 and η2, as the threshold value of releases of
sterile mosquitoes is increased to b = 1.5, the unique positive fixed point E∗ = (1.0642, 0.6453) is still
globally asymptotically stable but has smaller magnitudes of x and y compared to those for b = 0.5 as
shown in the lower left figure in Figure 4. If we change the parameter values to η1 = 0.5 > η2 = 0.3,
the unique positive fixed point E∗ = (0.6667, 0.4444) is unstable and the unique synchronous 2-cycle
with x∗ = 2 and y∗ = 1.25 becomes globally asymptotically stable as shown in the lower right figure in
Figure 4.

3.3. Proportional releases with saturation

Compared to the case of constant releases, the proportional releases may be a good strategy when
the size of the wild mosquito population is small since the size of releases is also small. However, if
the wild mosquito population size is significantly large, the release size would be large as well, which
may exceed our affordability. Then, as in [13], we consider a different strategy where the number of
releases is proportional to the wild adult mosquito population size when it is small, but it is saturated
and approaches a constant when the wild adult mosquito population size is sufficiently large. To this
end, we let the releases be of Holling-II type [21] such that B(·) := by

1+y . Then we consider the following
system of equations:

xn+1 =
ayn

yn +
byn

1 + yn

·
yn

1 + η1xn
=

ayn(1 + yn)
(1 + b + yn)(1 + η1xn)

,

yn+1 =
γxn

1 + η2xn
.

(3.19)

We assume r0 = aγ > 1 and define an initial sterile mosquitoes release threshold value b0 := r0 − 1
such that the origin (0, 0) is locally asymptotically stable if b > b0 and unstable if b < b0.

A positive fixed point E = (x, y) satisfies

a(1 + y)
(1 + b + y)(1 + η1x)

·
γ

1 + η2x
= 1,

that is,

b =

(
1 +

γx
1 + η2x

) (
r0

(1 + η1x)(1 + η2x)
− 1

)
=: G(x). (3.20)

Let x ∈ Ω where set Ω is defined in (3.4). It follows from

G′(x) =
A1x3 + A2x2 + A3x + A4

(1 + η1x)2(1 + η2x)3 , (3.21)
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Figure 4. The parameters are given in (3.18). We have threshold value bc = 3. For b = 4,
the origin is globally asymptotically stable as shown in the upper left figure. For b = 0.5, we
choose η1 = 0.2 < η2 = 0.3, the unique positive fixed point E∗ = (2.5519, 1.1563) is globally
asymptotically stable as shown in the upper right figure. For b = 1.5, the unique positive fixed
point E∗ = (1.0642, 0.6453) is still globally asymptotically stable but has smaller magnitudes
of x and y compared to those for b = 0.5 as shown in the lower left figure. When η1 and η2

are changed to η1 = 0.5 > η2 = 0.3, the unique positive fixed point E∗ = (0.6667, 0.4444) is
unstable and the unique synchronous 2-cycle with x∗ = 2 and y∗ = 1.25 is globally asymp-
totically stable as shown in the lower right figure.

where

A1 = −η2
1η2γ < 0,

A2 = −2η1η
2
2r0 − 2η1η2γr0 − η

2
1γ − 2η1η2γ < 0,

A3 = −3η1η2r0 − η
2
2r0 − η2γr0 − 2η1γ − η2γ < 0,

A4 = γ((aγ − aη2) − (1 + aη1)),

that if A4 < 0, that is, aγ − aη2 < 1 + aη1, then G′(x) < 0 for all x ∈ Ω. Thus G(x) is decreasing with
the maximum value G(0) = b0 = r0 − 1, and hence there exists no, or one positive fixed point if b > b0,
or b < b0.

Next we assume A4 > 0, that is, aγ − aη2 > 1 + aη1. Then G′(0) = A4 > 0 and function G(x)
is increasing for x positive and near 0. It is clear that the numerator of G′(x) has only one positive
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root, denoted by xc, according to Descartes rule of sign [3, 20]. Since the denominator of G′(x) is
positive, G′(x) = 0 has a unique positive solution at xc, and hence G(x) has a unique maximum value
at x = xc. We write bc := G(xc). Then function G(x) is increasing for x ∈ (0, xc), starting with the point
(0, b0), and decreasing for x ∈ (xc, x̄), ending with the point (x̄, 0) where G(x̄) = 0 as above. Write
x1 = G−1(b0) > 0. Then for each b ∈ (0, b0), there exists a unique x ∈ (x1, x̄) such that G(x) = b. On the
other hand, for each b ∈ (b0, bc), there exist two x ∈ (0, x1) such that G(x) = b. Therefore, with these
two threshold values b0 < bc, there exists no positive fixed point if b > bc, one positive fixed point if
b = bc or 0 ≤ b ≤ b0, or two positive fixed points if b0 < b < bc.

The existence of the positive fixed points, based on the release value of the sterile mosquitoes b, is
illustrated in Figure 5 where the x−axis is b.
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Figure 5. In the left figure, we have a = 2.25, γ = .8, η1 = .1, and η2 = .3 such that
A4 = −0.08 < 0. Thus there exists no positive fixed point, or one positive fixed point if
b > b0, or b < b0, respectively. In the right figure, we have a = 2.25, γ = .8, η1 = .01, and
η2 = .1 such that A4 = 0.44 > 0. Then there exists no positive fixed point if b > bc, one
positive fixed point if b = bc or 0 ≤ b ≤ b0, or two positive fixed points if b0 < b < bc.

The system may also have positive cycles of different periods. We only consider synchronous 2-
cycles with components (x∗, 0) and (0, y∗). It follows from(

x∗
0

)
→

(
0
y∗

)
→

(
x∗
0

)
→

(
0
y∗

)
→ · · ·

that

x∗ =
ay∗(1 + y∗)
1 + b + y∗

,

y∗ =
γx∗

1 + η2x∗
,

where
aη2y∗2 − (b0 − aη2)y∗ + b − b0 = 0. (3.22)

If b0 − aη2 < 0, that is, aγ − aη2 < 1, there exists no or one synchronous 2-cycle if b ≥ b0 or b < b0.
If b0 − aη2 > 0, that is, aγ − aη2 > 1, the existence of positive solutions depends on the discriminant of
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the quadratic equation (3.22). We define the threshold value

b1 :=
(b0 + aη2)2

4aη2
≥ b0.

Then there exists no synchronous 2-cycle if b > b1, one synchronous 2-cycle if b = b1 or 0 ≤ b ≤ b0,
or two synchronous 2-cycles if b0 < b < b1, respectively. Similarly as in Section 3.1, the two threshold
values bc and b1 have bc < b1.

We illustrate our results in Table 2.

Table 2. Summary table for the existence of positive fixed points and synchronous 2-cycles.
(PFP stands for positive fixed point and STC stands for synchronous 2-cycle.)

b < b0 b0 < b < bc bc < b < b1 b1 < b
a(γ − η2) < 1 One PFP No PFP

One STC No STC
1 < a(γ − η2) < 1 + aη1 One PFP No PFP

One STC Two STC No STC
1 + aη1 < a(γ − η2) One PFP Two PFP No PFP

One STC Two STC No STC

We next investigate the stability of the positive fixed points. The Jacobian matrix at a positive fixed
point E = (x, y) has the form

J̄ :=


−

η1x
1 + η1x

(
b(1 + 2y) + (y + 1)2

)
(1 + η2x)

γ(1 + y)(1 + y + b)
γ

(1 + η2x)2 0

 .
Since

trJ̄ = −
η1x

1 + η1x
, det J̄ = −

b(1 + 2y) + (y + 1)2

(1 + η2x)(1 + y + b)(1 + y)
,

E is locally asymptotically stable if

b(1 + 2y) + (y + 1)2

(1 + η2x)(1 + y + b)(1 + y)
< 1 −

η1x
1 + η1x

,

that is, [
(1 + η1x)(1 + 2y) − (1 + η2x)(1 + y)

]
b < (η2 − η1)x(1 + y)2. (3.23)

Substituting y =
γx

1 + η2x
for y in (3.23), we then define function

Φ(x) :=
[
(1 + η1x)(1 + 2y) − (1 + η2x)(1 + y)

]
b − (η2 − η1)x(1 + y)2

=
γx(η2x + γx + 1)

(1 + η1x)(1 + η2x)3 · φ(x),
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where

φ(x) = −η2
1η2x3 − (η2

1 + 2η1η2)x2 + (η1(2b0 + aη2) − η2(r0 + 1 + aη2))x + b0 − aη2 + aη1.

Thus the positive fixed point is locally asymptotically stable if φ(x) < 0 and unstable if φ(x) > 0.
It is clear from (3.23) that if η2 < η1, a positive fixed point is unstable. We then assume η1 < η2. If

b0 − aη2 + aη1 < 0, that is, aγ − aη2 < 1 − aη1, the coefficient of the linear term in φ(x) becomes

η1(2b0 + aη2) − η2(r0 + 1 + aη2) < η1(2b0 + aη2) − η2(r0 + 1 + b0 + aη1)
= 2b0η1 − 2(b0 + 1)η2

= 2b0(η1 − η2) − 2η2 < 0,

which implies that φ(x) < 0, for all x ∈ Ω, and there exists a unique positive fixed point for b < b0.
Hence this unique positive fixed point is always locally asymptotically stable.

If b0 − aη2 + aη1 > 0, that is, aγ − aη2 > 1 − aη1, there exists a unique positive solution to φ(x) = 0
from Descartes’ rule of sign. Denote it as xs such that φ(xs) = 0, and define

bs := G(xs),

where G(x) is defined in (3.20). Then a positive fixed point (x, y) is locally asymptotically stable if
x > xs and unstable if x < xs.

For the case of 1 − aη1 < aγ − aη2 < 1 + aη1, it follows from table 2 that there exists a unique
positive fixed point if b < b0, where b0 is the maximum value of function G(x) and bs < b0. Then this
positive fixed point is locally asymptotically stable if b < bs and unstable if b > bs.

For the case of aγ−aη2 > 1+aη1 with bs < b0, there exists one or two positive fixed points if b < b0

or b0 < b < bc, respectively. Then the unique positive fixed point is locally asymptotically stable if
b < bs and unstable if bs < b < b0. The two positive fixed points are unstable if b0 < b < bc.

For the case of aγ − aη2 > 1 + aη1 with bs > b0. If b < b0, the unique positive fixed point is always
locally asymptotically stable. If b0 < b < bs, there exist two positive fixed points (xi, yi), i = 1, 2, with
x1 < xs < x2. Thus the positive fixed point with larger components, (x2, y2), is locally asymptotically
stable while the one with smaller components, (x1, y1), is unstable. If bs < b < bc, we claim xc < xs.
Then the two positive fixed points (xi, yi), i = 1, 2, are both unstable since x1 < xc < x2 < xs.

To prove xc < xs we denote the numerator of G′(x) in (3.21) by

dG(x) := A1x3 + A2x2 + A3x + A4,

where dG(xc) = 0 since G′(xc) = 0. It follows from

γφ(x) − dG(x)
=(2η1η

2
2r0 + 2η1η2γr0)x2 + (4η1η2r0 + 2η1γr0)x + 2r0η1 > 0,

for all x ∈ Ω, that γφ(xc) > dG(xc) = 0, which implies φ(xc) > 0. Thus xc < xs since φ(x) is monotone
decreasing for positive x and φ(xs) = 0.

We use Table 3 to summarize our results, and give Example 4 to demonstrate the existence and
stability results for the positive fixed point of system (3.19).
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Table 3. Summary table for the stability of positive fixed points.
(PFP stands for positive fixed point and L.A.S stands for locally asymptotically stable.)

b < b0 b0 < b
a(γ − η2) < 1 − aη1 One PFP No PFP

L.A.S. -
b < bs bs < b < b0 b0 < b

1 − aη1 < a(γ − η2) < 1 + aη1 One PFP One PFP No PFP
L.A.S. unstable -
b < bs bs < b < b0 b0 < b < bc bc < b

1 + aη1 < a(γ − η2) with bs < b0 One PFP One PFP Two PFP No PFP
L.A.S. unstable both unstable -
b < b0 b0 < b < bs bs < b < bc bc < b

1 + aη1 < a(γ − η2) with b0 < bs One PFP Two PFP Two PFP No PFP
L.A.S. larger one L.A.S. both unstable -

Example 4. With the following parameters,

a = 2.25, γ = 0.8, η1 = 0.1, η2 = 0.3, (3.24)

we have b0 = 0.8, bs = 0.6957 and 1 − aη1 = 0.775 < a(γ − η2) = 1.125 < 1 + aη1 = 1.225.
There exists no positive fixed point and no synchronous 2-cycles if b > b0, which implies that the
trivial fixed point is globally asymptotically stable. For b = 1 > b0, the trivial fixed point is globally
asymptotically stable as shown in the upper left figure in Figure 6. For b = 0.79 < b0, there exists a
unique positive fixed point (0.0822, 0.0641), which is unstable since b > bs and a unique synchronous
2-cycle with components x∗ = 0.3380 and y∗ = 0.2455, which is locally asymptotically stable, as
shown in the upper right figure in Figure 6. For b = 0.5 < bs, there exists a unique positive fixed point
(0.8428, 0.5382), which is locally asymptotically stable as shown in the lower figure in Figure 6.

Example 5. Given the following parameters,

a = 2.25, γ = 0.8, η1 = 0.1, η2 = 0.2, (3.25)

we have the threshold values b1 = 0.8681, bs = 0.5505 < b0 = 0.8000, bc = 0.8061 and a(γ − η2) =

1.350 > 1 + aη1 = 1.225. For b = 0.3 < bs, there exists a unique positive fixed point (1.6967, 1.0135),
which is locally asymptotically stable as shown in the upper left figure in Figure 7. For b = 0.7 < b0,
there exists a unique positive fixed point (0.7306, 0.5100), which is unstable since b > bs and a unique
synchronous 2-cycle with x∗ = 1.6667 and y∗ = 1.0000, which is locally asymptotically stable as shown
in the upper right figure in Figure 7. For b0 < b = 0.803 < bc, there exist two positive fixed points
(0.0353, 0.0281) and (0.2176, 0.1668), which are both unstable, and two synchronous 2-cycles, where
the one with larger components x∗ = 1.1902 and y∗ = 0.7691 is locally asymptotically stable as shown
in the lower figure in Figure 7.

Example 6. With the following parameters,

a = 2.25, γ = 0.8, η1 = 0.02, η2 = 0.1, (3.26)
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Figure 6. With the parameters given in (3.24), we have b0 = 0.8, bs = 0.6957 and 1 − aη1 =

0.775 < a(γ − η2) = 1.125 < 1 + aη1 = 1.225. For b = 1 > b0, the trivial fixed point is
globally asymptotically stable as shown in the upper left figure. For b = 0.79 < b0, there
exists a unique positive fixed point (0.0822, 0.0641), which is unstable since b > bs and a
unique synchronous 2-cycle with components x∗ = 0.3380 and y∗ = 0.2455, which is locally
asymptotically stable as shown in the upper right figure. For b = 0.5 < bs, there exists a
unique positive fixed point (0.8428, 0.5382), which is locally asymptotically stable as shown
in the lower figure.

we have the threshold values b1 = 1.1674, bs = 1.0034 > b0 = 0.8 , bc = 1.0625 and a(γ − η2) =

1.575 > 1 + aη1 = 1.045. For b = 0.6 < b0, there exists a unique positive fixed point (4.0936, 2.3237),
which is locally asymptotically stable as shown in the upper left figure in Figure 8. For b = 0.9 >

b0, there exist two positive fixed points (0.2713, 0.2113) and (2.8617, 1.7800), where smaller one is
unstable while the larger one (2.8617, 1.7800) is locally asymptotically stable since b < bs as shown
in the upper right figure in Figure 8. For b = 1.03 > bs, the two positive fixed points (0.8742, 0.6431)
and (2.0203, 1.3446) are both unstable and there are two synchronous 2-cycles exist, where the one
with larger components x∗ = 3.4660 and y∗ = 2.0591 is locally asymptotically stable as shown in the
lower figure in Figure 8.
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Figure 7. With the parameters given in (3.25), we have b1 = 0.8681, bs = 0.5505 < b0 =

0.8000, bc = 0.8061 and a(γ − η2) = 1.350 > 1 + aη1 = 1.225. For b = 0.3 < bs, there
exists a unique positive fixed point (1.6967, 1.0135), which is locally asymptotically stable
as shown in the upper left figure. For b = 0.7 < b0, there exists a unique positive fixed point
(0.7306, 0.5100), which is unstable since b > bs and a unique synchronous 2-cycle with
x∗ = 1.6667 and y∗ = 1.0000, which is locally asymptotically stable as shown in the upper
right figure. For b0 < b = 0.803 < bc, there exist two positive fixed points (0.0353, 0.0281)
and (0.2176, 0.1668), which are both unstable, and two synchronous 2-cycles, where the one
with larger components x∗ = 1.1902 and y∗ = 0.7691 is locally asymptotically stable as
shown in the lower figure.

4. Concluding remarks

In this paper, we first formulated a discrete-time stage-structured mosquito model where the
mosquito population is divided into two groups, the larvae and the adults. We assume that the sur-
vivability and progression of larvae are both of Beverton-Holt type nonlinearity. We determined the
existence and stability for the positive fixed points and the synchronous 2-cycles, respectively. When
the intrinsic growth rate of the population r0 < 1, the trivial fixed point is the only nonnegative fixed
point and is globally asymptotically stable. If r0 > 1, the trivial fixed point is unstable, and the model
dynamics depend also on parameters η1 and η2. If η1 < η2, there exists a unique positive fixed point,
which is globally asymptotically stable; if η1 = η2, there exists a continuum of positive 2-cycles, each
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Figure 8. With the parameters given in (3.26), we have b1 = 1.1674, bs = 1.0034 > b0 = 0.8
, bc = 1.0625 and a(γ−η2) = 1.575 > 1+aη1 = 1.045. For b = 0.6 < b0, there exists a unique
positive fixed point (4.0936, 2.3237), which is locally asymptotically stable as shown in the
upper left figure. For b = 0.9 > b0, there exist two positive fixed points (0.2713, 0.2113)
and (2.8617, 1.7800), where the one with smaller components is unstable and the one with
larger components (2.8617, 1.7800) is locally asymptotically stable since b < bs as shown
in the upper right figure. For b = 1.03 > bs, the two positive fixed points (0.8742, 0.6431)
and (2.0203, 1.3446) are both unstable, and there are two synchronous 2-cycles, where the
one with larger components x∗ = 3.4660 and y∗ = 2.0591 is locally asymptotically stable as
shown in the lower figure.

of which is locally stable; and if η1 > η2, the positive fixed point becomes unstable, and there exists a
unique synchronous 2-cycle, which is globally asymptotically stable.

We then introduced sterile mosquitoes in the stage-structured wild mosquito population and con-
sidered three different strategies for the releases of sterile mosquitoes in model system (3.2) where the
sterile mosquitoes are released constantly, (3.15) where the releases are proportional to the size of the
wild mosquitoes, and (3.19) where the releases are of Holling-II type, respectively. We established
threshold value bc and b1 for the existence of the positive fixed points or synchronous 2-cycles, and
threshold value bs for the stability of the positive fixed points or synchronous 2-cycles for each of the
model systems. If b > bc, there exists no positive fixed point for all of the three model systems. If
b < bc, there exist two positive fixed points for system (3.2) and (3.19), and a unique positive fixed
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point for system (3.15). A positive fixed point is locally asymptotically stable if b < bs, and unstable
if b > bs. We also defined threshold value b1 for the existence of synchronous 2-cycle with b1 > bc

for system (3.2) and (3.19). If b < b1, there exist two synchronous 2-cycles, where the one with big-
ger components is locally asymptotically stable and the one with smaller components is unstable. If
b > b1, there exist no synchronous 2-cycles and no positive fixed points. Thus the trivial fixed point is
globally asymptotically stable. Details can be found in Theorems 3.1 and 3.2 and Tables 1, 2, and 3.

We note that, in the absence of sterile mosquitoes, if the density-dependent death has less effect
than the density-dependent progression from the larvae, that is, η1xn < η2xn, the structured population
tends to be more stable in the sense that the positive fixed point is globally asymptotically stable while
the unique synchronous 2-cycle is unstable. On the other hand, if the density-dependent death has
more effect than the density-dependent progression from the larvae, that is, η1xn > η2xn, the structured
population tends to be less stable such that the positive fixed point becomes unstable and it tends
asymptotically to the oscillatory state, that is, the synchronous 2-cycle.

Such dynamical features are similarly carried out when the sterile mosquitoes are released con-
stantly or proportionally. More specifically, with the constant release rate and in the case of b < bs,
there are two positive fixed points. When the density-dependent death has less effect than the density-
dependent progression from the larvae such that η1xn < η2xn, one of the two positive fixed points
is asymptotically stable, whereas the two positive fixed points are both unstable when the density-
dependent death has more effect than the density-dependent progression from the larvae such that
η1xn > η2xn. The picture for the proportional releases with saturation is not as clear as for the other
two release strategies. Other parameters play a role as well.

For any of the three release strategies, it is not surprising that the amount of releases changes the
model dynamics. As small amounts of sterile mosquitoes are released, there exist stable positive fixed
points or synchronous 2-cycles. When the release amount is gradually increasing greater than the
stability thresholds, first positive fixed points or synchronous 2-cycles become unstable, and then all
disappear leading to the extinction of wild mosquitoes.

We would also like to point out that the outcomes from the models studied in this paper seem to be
similar to those with the Ricker-type nonlinearity in [27]. However, it is well known that the Beverton-
Holt nonlinearity excludes the possibility of the period doubling bifurcation and chaotic feature for
the models without stage structure. When stage structure is included, the relatively simple dynamics
with no period doubling bifurcation and chaotic feature are carried out, which makes the analysis more
tractable. Such model structure has been applied to the discrete-time malaria transmission models
incorporating releases of sterile mosquitoes in [32].
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appendix

The proof of non-existence of k−cycles for k ≥ 3

Proof. To prove that there exist no positive k− cycles for system (2.9), we consider k = 3 first. The
model (2.9) then becomes

xn+3 =
a2γyn

1 + aηyn + η(r0 + 1)xn
,

yn+3 =
aγ2xn

1 + aηyn + η(r0 + 1)xn
.

(4.1)

Any point (x, y) on a 3-cycle should satisfy x ,
√

r0 − 1
η

, 1+ηx+aηy , r0 and y =

√
γ

a
x. According

to the first equation of (4.1), we have

1 + aηy + η(r0 + 1)x = a2γ
y
x
.

Plugging y =

√
γ

a
x into it, we have

x =

√
r0 − 1
η

,

which is exactly the fixed point from (2.8). Thus 3-cycles do not exist and as a consequence, any
(2n + 1)-cycles do not exist with integer n > 0.

We next check for 4-cycles. If k = 4, the model (2.9) becomes

xn+4 =
r2

0 xn

1 + η(r0 + 1)xn + aη(r0 + 1)yn
,

yn+4 =
r2

0yn

1 + η(r0 + 1)xn + aη(r0 + 1)yn
.

(4.2)

For a point (x, y) on 4-cycle, it satisfies

r2
0 = 1 + η(r0 + 1)x + aη(r0 + 1)y.

Equivalently, we can write it in this form

r2
0 − 1 = (r0 + 1)(ηx + aηy),

that is,
r0 = 1 + ηx + aηy.
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It is exactly the positive 2-cycle from (2.10). Thus there exist no 4-cycles, and as a consequence, there
exist no 2n-cycles for integer n > 1.

Therefore, there exist no positive k−cycles for k ≥ 3. �
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