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Abstract: In order to understand the interaction between magnetic field and biological tissues in
a physiological system, we present a mathematical model of flow-induced deformation in absorbing
porous tissues in the presence of a uniform magnetic field. The tissue is modeled as a deformable
porous material in which high cavity pressure drives fluid through the tissue where it is absorbed by
capillaries and lymphatics. A biphasic mixture theory is used to develop the model under the assump-
tions of small solid deformation and strain-dependent linear permeability. A spherical cavity formed
during injection of fluid in the tissue is used to find fluid pressure and solid displacement as a function
of radial distance and time. The governing nonlinear PDE for fluid pressure is solved numerically us-
ing method of lines whereas tissue solid displacement is computed by employing trapezoidal rule. The
effect of magnetic parameter on fluid pressure, solid displacement and tissue permeability is illustrated
graphically.
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1. Introduction

When fluid flows through a rigid porous material, the dynamics is adequately described either by
Darcy’s law [1] for low speed flow or by nonlinear Forcheimer’s law [2] for high speed flow. On the
other hand, for flow through a deformable porous material a more sophisticated model is required to
study the interaction between elastic solid and fluid. In fact, the properties such as permeability and
porosity of these materials alter due to the forces associated with the flow, which in turn, affect the
passage of fluid through these materials. The pioneering work on deformation of a porous material
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coupled with fluid flow dates back to Terzaghi [3] in 1925. Later on, it was extended by Biot to study
the soil consolidation [4] and soil culmination [5] and these works have been used extensively in soil
mechanics.

Following the pioneering work of Fick [6] on mixture theory, Truesdell [7] put forth the modern
theory by proposing balance equations appropriate to mixtures irrespective of their constitution. This
theory was then comprehensively reviewed and applied to study chemically inert mixture of two ideal
gases by Atkin and Craine [8] along with applications [9]. Later on, Rajagopal and Tao [10] authored
an excellent book on mechanics of mixtures in which conservation laws were derived and several
example problems were discussed from mixture theory viewpoint. In addition to these, a review of
mixture theory for deformable porous media along with applications in different scientific fields was
presented very recently by Siddique et al. [11].

The application of mixture theory to soft biological tissues essentially started with the work of
Kenyon [12, 13], who discussed radial flux of fluid through a porous cylinder replicating a model
of flow through arterial tissue. Following this, Jayaraman [14] studied the problem of flow through
an artery wall with constant permeability, and Jain and Jayaraman [15] also investigated the same
problem but considered two layers in the artery wall each with different permeabilities. Similarly,
Klanchar and Tarbell [16] studied the water flow through arterial tissue by considering a linear form of
the strain-dependent permeability. Apart from arterial tissue, the theory was extended further by Mow
et al. [17, 18, 19] by considering the articular cartilage as a deformable porous material saturated with
synovial fluid. The main application, however, was the lubrication properties of synovial joints such
as knee. Due to compression of articular cartilage, the synovial fluid moves through the pores of the
tissue to form a surface lubricating layer. Very recently, Ahmed et al. [20] developed a mathematical
model of non-Newtonian flow-induced deformation in absorbing porous tissues using mixture theory.
Other biological tissues that have been modeled in this way include the skin [21], the lung [22] and the
cornea [23], etc.

In clinical medicine the prediction of absorption rate of a substance from an injection site is a prob-
lem of fundamental and great importance. Therefore, understanding the mechanical process involved
in this mechanism may help resolve many unclear and unresolved issues. Although, we consider here
a model with certain simplifying assumptions, nevertheless, this model can be used as a precursor to
models of a number of other clinically important problems. The problem of fluid absorption from an
injection site into the brain tissue was investigated by Nicholson [24] by considering two possibilities
for fluid flow through the tissue. Firstly, that the injected fluid saturates a region of the tissue and
then perfuses to the remaining tissue and secondly that a small cavity of injected fluid forms initially
followed by the fluid flow through rest of the tissue. We consider here the second possibility to model
the growth of a spherical cavity with time under a time dependent pressure applied within the cavity.

In magnetohydrodynamic (MHD) processes, the motions of an electrically conducting fluid induce
and maintain a finite magnetic field. In particular, these MHD processes have become relevant to many
applications in medical science such as cell isolation, drug targeting, tissue activation and magnetiza-
tion, magnetic hyperthermia and magnetic resonance imaging. In the past few years, a magnetohydro-
dynamic theory for deformable porous media has gained a considerable attention of many researchers.
Eldabe et al. [25] investigated the magnetohydrodynamic flow of a bi-viscosity fluid through a porous
medium in a layer of deformable material. In particular, the authors used a mixture theory approach to
develop a model for flow through a symmetrical channel. Following this idea, several authors [26, 27]
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studied the problem of infiltration of MHD liquid into a deformable porous material. Sreenadh et
al. [28] investigated MHD Couette flow of a Jeffrey fluid over a deformable porous layer in a channel
bounded below by a finite deformable porous layer and by a moving rigid plate using a two component
mixture theory. The applications of magnetic field to biological systems has also attracted the attention
of many authors in the last few decades. To this end, application of magnetic fields in artificial human
joints were developed through the models incorporating bone-in growth in porous implants [29, 30].
Moreover, the externally applied magnetic field stimulates the functions of biological tissues along
with their regeneration [31]. Apart from these studies, the effect of magnetic field on synovial joints
was investigated by Tandon et al. [32] using lubrication theory. Specifically, the authors considered the
knee joint as two approaching porous cartilageous surfaces and the synovial fluid in the cartilage was
represented by an Oldroyd model. It was reported that a suitably designed magnetic field improves the
performance of synovial joints along with a better articulation in a diseased state.

The aim of this study is to develop a mathematical model of flow-induced deformation from pres-
surized cavities in absorbing porous tissues subject to a uniform applied magnetic field. In particular,
a model with a spherical cavity embedded in a porous medium of infinite extent is used to find fluid
pressure and solid displacement of the tissue as a function of radial distance and time. The govern-
ing set of equations are nondimensionalized using suitable dimensionless quantities which are then
solved numerically to assess the influence of magnetic parameter. The arrangement of this article is as
follows: in section 2, we present mathematical formulation of the problem. Section 3 deals with the
solution methodology for the governing set of equations followed by results and discussion in section
4. Finally, concluding remarks are presented in section 5.

2. Mathematical formulation

In order to develop the model, we use a biphasic mixture theory to describe the fluid flow and solid
deformation in a biological tissue under the influence of a uniform magnetic field as shown in Figure 1.
The main underlying idea of mixture theory is that each constituent of the mixture is continuous and
occupies every point in space at each instant of time [8]. The orientation of the applied magnetic field
is taken in such a way that it only produces the radial flow in the tissue from the injection site.
We assume that injected fluid in the porous tissue is conducting and viscous while the organic solid ma-
trix is isotropic, homogeneous and linearly elastic. The gravitational and osmotic forces are neglected.
It is also assumed that shear stresses are negligible on account of one dimensional radial flow and the
constituents of the mixture are intrinsically incompressible. Under these assumptions, equations of
motion for solid and fluid phase in the radial direction are written as (see Appendix for details).

∂φs

∂t
+

1
r2

∂

∂r
(
r2φsvs) = 0, (2.1)

∂φ`

∂t
+

1
r2

∂

∂r
(
r2φ`v`

)
= −

β

ρ`T
p, (2.2)

vs − v` =
φ`

K
∂p
∂r
−
σ0B2

0

K
vs, (2.3)

∂σrr

∂r
+ 2

σrr − σθθ

r
=
∂p
∂r
, (2.4)
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where φs and φ` represent solid and fluid volume fractions and vs and v` are velocities of solid and fluid
phase, respectively, ρ`T is the intrinsic density of fluid phase, β is the proportionality constant which
depends upon the concentration of capillaries and lymphatics in the tissue and permeability of their
walls, p is the fluid pressure, K the drag coefficient of relative motion, σ0 the electric conductivity of
the fluid, B0 the uniform magnetic flux. It is important to note that the last term on right hand side
of equation (2.3) is the contribution of MHD and left hand side of equation (2.4) is the divergence
of solid stress in the radial direction where σrr and σθθ = σφφ are defined as components of solid
stress [33]. Note that equations (2.1) and (2.2) represent the mass balance relations for solid and fluid
phase, respectively, whereas equations (2.3) and (2.4) are derived from solid and fluid momentum
balances [25, 26]. The term appearing on right hand side of equation (2.2) is due to loss of fluid mass
at a rate proportional to fluid pressure while it passes through capillaries and lymphatics. Adding
equations (2.1) and (2.2), we obtain

∂

∂t
(
φs + φ`

)
+

1
r2

∂

∂r

(
r2(φsvs + φ`v`

))
= −

β

ρ`T
p, (2.5)

which on denoting the macroscopic medium velocity in the radial direction, vr = φsvs +φ`v`, and using
the relation, φs + φ` = 1, reduces to

1
r2

∂

∂r
(
r2vr

)
= −

β

ρ`T
p. (2.6)

Using equation (2.4) into (2.3) and simplifying, yields

∂σrr

∂r
+ 2

σrr − σθθ

r
=

K
φ`

(vs − v`) +
σ0B2

0

φ`
vs. (2.7)

Denoting vs = ∂u
∂t , where u is a component of solid displacement and using an expression for v` from

macroscopic medium velocity vr into the relation (2.7) and keeping in view equation (2.4), we have

∂p
∂r

=
∂σrr
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+ 2

σrr − σθθ

r
=

1
κ(φ)

(
∂u
∂t
− vr) +

σ0B2
0

φ`
∂u
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, (2.8)

where

κ(φ) =
(φ`)2

K
, (2.9)

is defined to be the permeability of the medium [33]. Equation (2.8) can be explained physically
by taking into account the Darcy’s law and considering the solid stress as being governed by the
standard equilibrium equation of the theory of linear elasticity. As suggested by the relation (2.9),
the permeability κ of the porous medium decreases as a consequence of solid compression. Taking
into account equation (2.4) and the relation ∂σrr

∂r + 2σrr−σθθ
r = Ha

∂φ

∂r where Ha = λ + 2µ is the aggregate
modulus and (λ, µ) are Lamé constants (see Appendix for details), the governing equation (2.8) can be
written as

∂p
∂r

= Ha
∂φ

∂r
=

1
κ(φ)

(∂u
∂t
− vr

)
+
σ0B2

0

φ`
∂u
∂t
, (2.10)

which on equating the first two expressions and then integrating gives the relationship between p and
φ as

p(r, t) = Haφ(r, t), (2.11)
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where both p and φ tend to zero as r → ∞. From equations (2.10) and (2.11), a relation for vr in terms
of fluid pressure p and solid displacement u may be obtained as

vr(r, t) =
∂u
∂t
−

(
κ
( p
Ha

)∂p
∂r

)
+
κ
( p

Ha

)
σ0B2

0
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∂u
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. (2.12)

Combining equations (2.6) and (2.12), we obtain
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As the porous tissue is compressed, consequently its permeability would reduce due to a decrease in
porosity. The relationship between porosity and displacement of the medium is given by [33]

1 − φ` =
φs

0
√

detG
, (2.14)

where G is the left Cauchy-Green deformation tensor and φs
0 is the initial solid volume fraction. For

infinitesimal solid deformations this can be approximated as [33, 34]

φ` = φ`0 + φs
0∇ · u = φ`0(1 + α0φ), (2.15)

where φ = ∇ · u is the one-dimensional dilatation and α0 =
φs

0

φ`0
. The permeability as a function of

porosity can then be expressed as κ = κ(φ) which is related to fluid pressure via equation (2.11).
Recognizing the first term on left hand side of equation (2.13) as the time derivative of φ = 1

r2
∂
∂r (r2u)

and keeping in view the relation (2.11), we obtain
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This equation is expressed in terms of fluid pressure p except the third term on left hand side which still
involves a component of solid displacement u in the parenthesis. In order to eliminate this component,
we in view of relations (2.11) and (2.15) assume a linear permeability of the form

κ(φ) = k0(1 + nφ), (2.17)

where k0 and n are material constants. Note that this simple form of permeability, which is a general
approximation to any κ(φ) for small φ, is valid for infinitesimal solid deformations and various au-
thors [16, 35] have considered a similar form to study the water flow through arterial tissue and radial
flow through deformable porous shells. Using the relations (2.11), (2.15) and (2.17) into the governing
equation (2.16), we obtain
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Assuming initial fluid volume fraction φ`0 to be constant and n = α0, this equation can be reduced to a
more convenient form as

1
Ha

(
1 +

k0σ0B2
0

φ`0

)
∂p
∂t
−

k0

r2

∂

∂r

{
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(
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p
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)∂p
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}
= −

β

ρ`T
p. (2.19)

This equation may be non-dimensionalized using the following dimensionless quantities

t =
t
t0
, r =

r
r0
, p =

p
p0
, u =

u
u0
, (2.20)

where t0, r0, p0 and u0 are typical time, radius, pressure and deformation scales, respectively. After
introducing these choices, equation (2.19) on dropping the bars takes the following form

∂p
∂t

=
α

1 + M
1
r2

∂

∂r

{
r2(1 + nδp

)∂p
∂r

}
−

ω
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where various dimensionless parameters are defined as

α =
Hat0k0

r2
0

, δ =
p0

Ha
, ω =

βHat0

ρ`T
, M =

k0σ0B2
0

φ`0
. (2.22)

Note that values of various parameters appearing in this equation may differ considerably among bio-
logical tissues [33]. The equation (2.21) is required governing equation in terms of non-dimensional
fluid pressure p(r, t) under the action of a uniform applied magnetic field and is related to porosity φ
via equation (2.11). This parabolic PDE is nonlinear which makes it difficult to solve analytically. We
thus use a numerical method for its solution which will be described in the next section. It is worth
mentioning that setting the magnetic parameter M = 0 in equation (2.21) and assuming a linear per-
meability of the form (2.17), we recover the Newtonian fluid case [33]. A natural time scale t0 for the
current problem may be obtained by setting α

1+M = 1 as

t0 =
r2

0

Hak0

(
1 +

k0σ0B2
0

φ`0

)
, (2.23)

which reduces the parameter ω in equation (2.22) to

ω =
βr2

0

ρ`T k0

(
1 +

k0σ0B2
0

φ`0

)
. (2.24)

The non-dimensional boundary conditions for fluid pressure p(r, t) and solid displacement u(r, t) are
written as

p(r, 0) = f (r), p(a, t) = g(t), p(r, t)→ 0 as r → ∞, (2.25)

and [∂u
∂r

+ 2L
u
r

]
r=a

= 0, u(r, t)→ 0 as r → ∞, (2.26)

where f (r) and g(t) are some specified functions of their arguments and L = λ
λ+2µ . Note that the given

displacement boundary condition for infinitesimal deformation was derived from a general boundary
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condition between a fluid and a porous material [36]. Since the governing equation (2.21) is solved for
fluid pressure, therefore an equation is required that relates solid displacement to fluid pressure. This
is accomplished by combining the relations φ = 1

r2
∂
∂r (r2u) and p(r, t) = Haφ(r, t) with equation (2.20)

to give

p(r, t) =
1
γr2

∂

∂r
(r2u), (2.27)

where γ =
p0r0
Hau0

is a dimensionless parameter. Integrating this equation and applying the boundary
conditions (2.26) for solid displacement, yields

u(r, t) =
γ

r2

{∫ r

a(t)
s2 p(s, t)ds +

a3(t)g(t)
2(1 − L)

}
, (2.28)

which gives displacement of solid as a function of non-dimensional radial distance r and time t. Note
that the effect of magnetic parameter on steady-state solutions is absent as suggested by equation (2.21).
In order to carry out numerical computations for the nonlinear problem, we assume that a(t) = 1, g(t) =

1, f (r) = 0, α = 1, γ = 1, L = 0.5 and δ = 1, which are consistent with the values considered by Barry
and Aldis [33].

Figure 1. Schematic of MHD flow from an injection site into a porous tissue. Growth of the
cavity from radius 1 to a(t) is indicated.

3. Solution methodology

In this section, we briefly outline the procedure for the solution of governing set of equations. To
begin with, we first give an exact solution of equation (2.21) in terms of MHD fluid pressure p(r, t)
subject to boundary conditions (2.25) for the constant permeability case (i.e. when n = 0) and compare
the result with method of lines (MOL) as a validation of numerical scheme to be employed for the
solution of nonlinear problem. Following the method adopted by Barry and Aldis [33] for linearized
problem, the solution for fluid pressure for the choice of applied pressure, g(t) = e

−ω
1+M tt

m
2 , is given as

p(r, t) =
a
r

e
−ω

1+M t(4t)
m
2 imerfc

(
r − a

2
√

αt
1+M

)
Γ
(
1 +

m
2

)
, (3.1)
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where m is a non-negative integer, Γ(·) is the gamma function and ierfc represents integration of the
error function [37]. As stated earlier, for the nonlinear problem we use method of lines whose main
idea is to discretize the space variable and its derivatives and leaving the time variable continuous [38].
This space discretization results into a system of coupled ODEs which may then be solved using
Matlab’s well established and efficient solvers as an initial value problem. For completeness, we now
show a brief calculation of the MOL by discretizing the governing equation (2.21) using central finite
difference formulas for the first and the second space derivatives as

dpi

dt
=

α

1 + M

[
2(1 + nδpi)

a + (i − 1)dr

( pi+1 − pi−1

2dr

)
+ nδ

( pi+1 − pi−1

2dr

)2
+

(1 + nδpi)
( pi+1 − 2pi + pi−1

(dr)2

)]
−

ω

1 + M
pi,

(3.2)

where

i = 1, 2, 3, · · · ,N, pi = p(ri, t), ri = a + (i − 1)dr, dr =
b − a

N
, p0 = g(t), pN+1 = 0. (3.3)

Here p0 represents the left boundary condition and pN+1 denotes the right boundary condition of fluid
pressure. From the initial condition for fluid pressure, we have

p(ri, 0) = f (ri). (3.4)

Figure 2. Left: A comparison between the exact and numerical solution for the fluid pres-
sure.; Right: Mesh convergence study and grid independence test for fluid pressure.

We thus have an initial value problem consisting of N ODEs in equation (3.2) and corresponding
initial conditions outlined in equation (3.4) which may now be solved using the efficient solver such
as ode23s. It is important to note that in order to carry out numerical simulations, we truncate the
spatial domain for fluid pressure at r = 13 due to satisfaction of the far field boundary condition and
the temporal domain at t = 7 because after this value there is no significant change in the fluid pressure
and hence the long time behavior of the solution may be obtained. Moreover, solid displacement u(r, t)
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in equation (2.28) is computed using trapezoidal rule by solving a definite integral involving fluid
pressure. It is also important to note that in the implementation of numerical method for the nonlinear
problem the left boundary condition was applied at non-dimensional radius r = 1 corresponding to
initial radius.

In Figure 2 on the left, we present a comparison between the exact (i.e. equation (3.1)) and numer-
ical (i.e. equation (3.2)) solution for the non-dimensional fluid pressure in the presence of magnetic
field for the constant permeability case. An excellent agreement between the two solutions can be
observed validating the proposed numerical scheme. On the other hand, the graph on the right presents
the mesh convergence study for the fluid pressure profile along with the grid independence test. It can
be seen that the solution converges rapidly as the number of spatial nodes N increases and after N = 80
the solution is not affected by changing the mesh size.

4. Results and discussion

This section contains the outcome of our numerical simulations for fluid pressure and solid dis-
placement for various values of magnetic parameter. Methods described in the previous section are
used and the results are illustrated graphically.
In Figure 3, non-dimensional fluid pressure p(r, t) is plotted against time t for the choice of four dif-
ferent applied pressure profiles g(t) in the presence of magnetic effects. The solid curve on the graph
indicates that fluid pressure in the tissue drops off exponentially with time whereas the dashed curve
suggests that there is an initial increase in the pressure to a local maximum followed by an exponen-
tial decay. Moreover, the dashed-dotted curve on this graph representing a periodic form of applied
pressure shows that fluid pressure in the porous tissue rises initially to a maximum value followed by
a periodic decrease while the dotted curve representing a quadratic type of applied pressure indicates
that pressure of fluid in the tissue is increasing from the center of the cavity. It is to be noted that a
similar form of periodic and quadratic pressure was also considered in [39].

Figure 3. Fluid pressure vs time for various g(t). Solid line: g(t) = e−2t, Dashed line:
g(t) = t

1
2 e−2t, Dashed-dotted line: g(t) = 0.5(1 − cos(0.75πt)), Dotted line: g(t) = 0.15t2.

Figure 4 describes the influence of magnetic parameter M on fluid pressure p(r, t) at t = 0.5, 7.0
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for a given distance from center of the cavity. This graph shows that fluid pressure in the tissue drops
off more rapidly as strength of the magnetic field increases. The Lorentz force associated with applied
magnetic field boosts the fluid flow in the tissue which consequently reduces fluid pressure in the
porous material. Thus, application of a suitably designed magnetic field may possibly assist to control
the fluid flow in deformable porous tissues for practical purposes. On the other hand, for fixed M,
fluid pressure in the tissue rises with time and there is not much difference in pressure distribution after
t ≥ 7 explaining the long time behavior of the solution. Since fluid pressure and porosity of the tissue
are related directly via equation (2.11), so this plot also illustrates the porosity as a function of radial
distance and time.

The effect of magnetic parameter M on solid displacement u(r, t) at t = 0.5, 7.0 is presented in Figure
5. The relation for solid displacement (2.28) suggests that higher fluid pressure in the tissue should
induce greater solid deformation, and vice versa. Accordingly, due to a reduction in fluid pressure with
magnetic parameter, the tissue solid displacement also decays with magnetic parameter as shown in
Figure 5. This means that a properly applied high magnetic field can prevent large solid deformation
of the material. Additionally, this graph also illustrates that deformation of the solid increases with
time, and that after t ≥ 7, there is not significant change in the displacement distribution of the tissue.
Moreover, in the absence of magnetic effects (i.e. M = 0) and for large n, it is expected that solid
displacement u would exhibit greater inflection due to nonlinearities in the system, particularly, for
large time.

Finally, non-dimensional pressure-dependent permeability, κ(p) = 1 + nδp, is plotted against radial
distance r in Figure 6 for different values of magnetic parameter M when n = 0.25 and δ = 1. The
tissue permeability reduces as strength of magnetic field increases validating the direct relation with
fluid pressure. This fact indicates that a high magnetic field would allow less fluid to seep through the
porous tissue.

Figure 4. Fluid pressure vs radial distance for various M at t = 0.5, 7.0.
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Figure 5. Solid displacement vs radial distance for various M at t = 0.5, 7.0.

Figure 6. Pressure-dependent permeability κ(p) = 1 + nδp vs radial distance for various M
when n = 0.25 and δ = 1.

5. Concluding remarks

In this study we analyzed a one-dimensional model of flow-induced deformation from pressurized
cavities in absorbing porous biological tissues under an applied magnetic field. The tissue was assumed
to be isotropic, homogeneous and linearly elastic. We used a biphasic mixture theory to develop
the model with an assumption of infinitesimal solid deformation. A linear permeability relation was
considered which allowed the governing equation to be written explicitly in terms of fluid pressure. A
method of lines approach was adopted to solve the nonlinear parabolic PDE in terms of fluid pressure
which was then used to find tissue displacement by employing the trapezoidal rule.

We noticed a reasonable reduction in fluid pressure, solid displacement and permeability of the tis-
sue due to the presence of magnetic effects. Thus, a properly designed magnetic field may help achieve
the required fluid flow and solid deformation in the tissue for certain physiological applications. The
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solid deformation enhances fluid absorption in the tissue and alters the porosity and permeability of
the material. Although, we assumed that the absorption rate and tissue pressure are related linearly,
however, more sophisticated forms of the absorption process may be considered to enhance the under-
standing of these complex systems.

This work is relevant to the interpretation of experimental studies on neuropharmacology and in situ
electrochemistry especially with MHD effects. Other applications include the activation and magneti-
zation of a variety of soft tissues for clinical purposes.

This research serves as a starting point in MHD modeling of flow-induced deformation in absorbing
porous tissues and we hope that this simple mathematical model can be further extended in different
directions. These directions include consideration of nonlinear stress-strain relation, different perme-
ability relations, variable magnetic field and more realistic geometries. Moreover, incorporation of
material isotropy and chemical effects are the topics of further research.
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Appendix

We consider a deformable porous tissue as a continuous binary mixture of intrinsic incompressible
solid and fluid, where each point in the mixture is occupied by both fluid and isotropic solid. The
balance of mass for solid and fluid phase can be written as [33]

∂ρs

∂t
+ ∇ · (ρsvs) = 0, (A.1)

∂ρ`

∂t
+ ∇ · (ρ`v`) = −βp, (A.2)

where vs and v` are velocities and ρs and ρ` are densities of the solid and fluid phase, respectively, p is
the fluid pressure and β is a proportionality constant. The conservation of linear momentum for the η
phase in the absence of body forces except the Lorentz force is written as [25]

ρη
(∂vη

∂t
+ (vη · ∇)vη

)
= ∇ · Tη + πη + J × B, (A.3)

where η = s, ` represents either the solid or the fluid phase, Tη is the stress tensor for the η phase, πη is
the friction force between the mixture constituents which satisfies the relation πs + π` = 0. Note that
J×B represents the Lorentz force due to applied magnetic field in which J designates the current density
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and B denotes the magnetic flux density. The stress tensor Tη and the drag force πη in equation (A.3)
is defined as [33]

Tη = −φηpI + ση, (A.4)
− πs = π` = K

(
vs − v`

)
− p∇φs, (A.5)

where I is the identity tensor, K the drag coefficient of relative motion, and φη and ση represent the vol-
ume fraction and the stress for the η phase, respectively. The Maxwell’s equations of electromagnetism
along with the Ohm’s law are written as [25, 26]

∇ × B = µcJ, ∇ · B = 0, ∇ × E = −
∂B
∂t
, J = σ0(E + vη × B), (A.6)

where µc is the permeability of free space, E the electric field and σ0 the electric conductivity of the
fluid. The term J × B in the momentum equation (A.3) can be written in view of Ohm’s law as

J × B = σ0(E + vη × B) × B, (A.7)

where the total magnetic field B may be decomposed as, B = B0 + b, in which B0 is the imposed
magnetic field and b is the induced magnetic field which may be ignored on account of low magnetic
field Reynolds number approximation. Thus, equation (A.7) when induced magnetic and electric fields
are negligible, takes the form

J × B = σ0(vη × B0) × B0. (A.8)

Application of the vector identity (X × Y) × Z = Y(X · Z) − X(Y · Z) reduces equation (A.8) to the
following form

J × B = σ0

(
B0(vη · B0) − vη(B0 · B0)

)
, (A.9)

which on assuming vη · B0 = 0 leads to

J × B = −σ0B2
0vη, (A.10)

where B0 is the strength of the applied magnetic field B0. Thus, the momentum equation (A.3) after
neglecting the inertial terms and taking into account the relation (A.10) takes the following form

∇ · Tη + πη − σ0B2
0vη = 0. (A.11)

In order to derive the equations (2.3) and (2.4), we proceed as follows. Using the relation (A.4) into
equation (A.11) and adding both phase equations, yields

∇ · (−pI + σ) + (πs + π`) − σ0B2
0(vs + v`) = 0, (A.12)

where the relation φs + φ` = 1 has been used. Note that while deriving equation (A.12), the viscous
stress σ` is assumed negligible on account of one-dimensional radial flow and σs = σ is considered
for the rest of the derivation [20]. Equation (A.12) under the assumptions πs + π` = 0 and vs + v` = 0
enables us to write

∇ · σ = ∇p, (A.13)
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which yields equation (2.4) in the scalar form upon using the definition of the divergence in the ra-
dial direction. Substituting the relations (A.4) and (A.5) into equation (A.11) and performing some
mathematical manipulation, we have respectively for the solid and fluid phase

∇ · σ = K
(
vs − v`

)
+ φs∇p + σ0B2

0vs, (A.14)
0 = −K

(
vs − v`

)
+ φ`∇p + σ0B2

0v`. (A.15)

Eliminating the pressure p from these equations and using the formula φs + φ` = 1, we obtain

∇ · σ =
K
φ`

(
vs − v`

)
+
σ0B2

0

φ`

{
vs − φs

(
vs + v`

)}
, (A.16)

which on using again the assumption vs + v` = 0, yields

vs − v` =
φ`

K
∇ · σ −

σ0B2
0

K
vs. (A.17)

This equation in combination with the relation (A.13) gives equation (2.3) in component form.
We now turn our attention to the motion of the solid phase. Under the assumptions of infinitesimal
deformations and one-dimensional radial flow, the components of stress for the solid phase are defined
as [33]

σrr = (λ + 2µ)
∂u
∂r

+ 2λ
u
r
, (A.18)

σθθ = (λ + 2µ)
u
r

+ λ
∂u
∂r

+ λ
u
r

= σφφ, (A.19)

where λ and µ are Lamé stress constants and due to spherical symmetry of the problem all other stress
components are assumed to be zero. The divergence of stress in the radial direction is given by

(
∇ · σ

)
r =

∂σrr

∂r
+ 2

σrr − σθθ

r
. (A.20)

Substituting equations (A.18) and (A.19) into equation (A.20) and simplifying, we obtain

(
∇ · σ

)
r = Ha

∂φ

∂r
, (A.21)

where
φ =

1
r2

∂

∂r
(r2u), (A.22)

is the local change in porosity and Ha = λ + 2µ is the aggregate modulus.
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