An analysis of steady two-dimensional boundary layer MHD (magnetohydrodynamic) nanofluid flow with nonlinear thermal radiation across a horizontally moving thin needle was performed in this study. The flow along a thin needle is considered to be laminar and viscous. The Rosseland estimate is utilized to portray the radiation heat transition under the energy condition. Titanium dioxide (TiO$ _2 $) is applied as the nanofluid and water as the base fluid. The objective of this work was to study the effects of a magnetic field, thermal radiation, variable viscosity and thermal conductivity on MHD flow toward a porous thin needle. By using a suitable similarity transformation, the nonlinear governing PDEs are turned into a set of nonlinear ODEs which are then successfully solved by means of the homotopy analysis method using Mathematica software. The comparison result for some limited cases was achieved with earlier published data. The governing parameters were fixed values throughout the study, i.e., $ k_1 $ = 0.3, $ M $ = 0.6, $ F_r $ = 0.1, $ \delta_\mu $ = 0.3, $ \chi $ = 0.001, $ Pr $ = 0.7, $ Ec $ = 0.5, $ \theta_r $ = 0.1, $ \epsilon $ = 0.2, $ Rd $ = 0.4 and $ \delta_k $ = 0.1. After detailed analysis of the present work, it was discovered that the nanofluid flow diminishes with growth in the porosity parameter, variable viscosity parameter and magnetic parameter, while it upsurges when the rate of inertia increases. The thermal property enhances with the thermal conductivity parameter, radiation parameter, temperature ratio parameter and Eckert number, while it reduces with the Prandtl number and size of the needle. Moreover, skin friction of the nanofluid increases with corresponding growth in the magnetic parameter, porosity parameter and inertial parameter, while it reduces with growth in the velocity ratio parameter. The Nusselt number increases with increases in the values of the inertia parameter and Eckert number, while it decliens against a higher estimation of the Prandtl number and magnetic parameter. This study has a multiplicity of applications like petroleum products, nuclear waste disposal, magnetic cell separation, extrusion of a plastic sheet, cross-breed powered machines, grain storage, materials production, polymeric sheet, energy generation, drilling processes, continuous casting, submarines, wire coating, building design, geothermal power generations, lubrication, space equipment, biomedicine and cancer treatment.
Citation: Ziad Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Muhammad Jawad, Rashid Jan, Kamsing Nonlaopon. Thermal boundary layer analysis of MHD nanofluids across a thin needle using non-linear thermal radiation[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 14116-14141. doi: 10.3934/mbe.2022658
An analysis of steady two-dimensional boundary layer MHD (magnetohydrodynamic) nanofluid flow with nonlinear thermal radiation across a horizontally moving thin needle was performed in this study. The flow along a thin needle is considered to be laminar and viscous. The Rosseland estimate is utilized to portray the radiation heat transition under the energy condition. Titanium dioxide (TiO$ _2 $) is applied as the nanofluid and water as the base fluid. The objective of this work was to study the effects of a magnetic field, thermal radiation, variable viscosity and thermal conductivity on MHD flow toward a porous thin needle. By using a suitable similarity transformation, the nonlinear governing PDEs are turned into a set of nonlinear ODEs which are then successfully solved by means of the homotopy analysis method using Mathematica software. The comparison result for some limited cases was achieved with earlier published data. The governing parameters were fixed values throughout the study, i.e., $ k_1 $ = 0.3, $ M $ = 0.6, $ F_r $ = 0.1, $ \delta_\mu $ = 0.3, $ \chi $ = 0.001, $ Pr $ = 0.7, $ Ec $ = 0.5, $ \theta_r $ = 0.1, $ \epsilon $ = 0.2, $ Rd $ = 0.4 and $ \delta_k $ = 0.1. After detailed analysis of the present work, it was discovered that the nanofluid flow diminishes with growth in the porosity parameter, variable viscosity parameter and magnetic parameter, while it upsurges when the rate of inertia increases. The thermal property enhances with the thermal conductivity parameter, radiation parameter, temperature ratio parameter and Eckert number, while it reduces with the Prandtl number and size of the needle. Moreover, skin friction of the nanofluid increases with corresponding growth in the magnetic parameter, porosity parameter and inertial parameter, while it reduces with growth in the velocity ratio parameter. The Nusselt number increases with increases in the values of the inertia parameter and Eckert number, while it decliens against a higher estimation of the Prandtl number and magnetic parameter. This study has a multiplicity of applications like petroleum products, nuclear waste disposal, magnetic cell separation, extrusion of a plastic sheet, cross-breed powered machines, grain storage, materials production, polymeric sheet, energy generation, drilling processes, continuous casting, submarines, wire coating, building design, geothermal power generations, lubrication, space equipment, biomedicine and cancer treatment.
[1] | L. Prandtl, On fluid motions with very small friction, in 3rd International Congress of Mathematicians, 3 (1904), 484–491. |
[2] | D. W. Schaefer, Engineered porous materials, MRS Bull., 19 (1994), 14–19. https://doi.org/10.1557/S0883769400039452 doi: 10.1557/S0883769400039452 |
[3] | M. W. Shafer, D. D. Awschalom, J. Warnock, G. Ruben, The chemistry of and physics with porous sol‐gel glasses, J. Appl. Phys., 61 (1987), 5438–5446. https://doi.org/10.1063/1.338285 doi: 10.1063/1.338285 |
[4] | S. Bilal, M. Sohail, R. Naz, Heat transport in the convective Casson fluid flow with homogeneous-heterogeneous reactions in Darcy-Forchheimer medium, Multidiscip. Model. Mater. Struct., 15 (2019), 1170–1189. https://doi.org/10.1108/MMMS-11-2018-0202 doi: 10.1108/MMMS-11-2018-0202 |
[5] | R. Naz, S. Tariq, M. Sohail, Z. Shah, Investigation of entropy generation in stratified MHD Carreau nanofluid with gyrotactic microorganisms under Von Neumann similarity transformations, Eur. Phys. J. Plus., 135 (2020), 1–22. https://doi.org/10.1104/epjp/s13360-019-00069-0 doi: 10.1104/epjp/s13360-019-00069-0 |
[6] | R. Naz, F. Mabood, M. Sohail, I. Tlili, Thermal and species transportation of Eyring-Powell material over a rotating disk with swimming microorganisms: applications to metallurgy, J. Mater. Res. Technol., 9 (2020), 5577–5590. https://doi.org/10.1016/j.jmrt.2020.03.082 doi: 10.1016/j.jmrt.2020.03.082 |
[7] | G. Rasool, N. A. Shah, E. R. El-Zahar, A. Wakif, Numerical investigation of EMHD nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: Application of passive control strategy and generalized transfer laws, Waves Random Complex Media, (2022), 1–20. https://doi.org/10.1080/17455030.2020.2074571 doi: 10.1080/17455030.2020.2074571 |
[8] | S. K. Das, S. U. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology, John Wiley & Sons, 2007. |
[9] | A. S. Dogonchi, M. Waqas, S. M. Seyyedi, M. Hashemi-Tilehnoee, D. D. Ganji, A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity, Int. Commun. Heat Mass Transf., 111 (2020), 1–9. https://doi.org/10.1016/j.icheatmasstransfer.2019.104430 doi: 10.1016/j.icheatmasstransfer.2019.104430 |
[10] | S. S. M. Ajarostaghi, M. A. Delavar, S. Poncet, Thermal mixing, cooling and entropy generation in a micromixer with a porous zone by the lattice Boltzmann method, J. Therm. Anal. Calorim., 140 (2020), 1321–1339. https://doi.org/10.1007/s10973-019-08386-3 doi: 10.1007/s10973-019-08386-3 |
[11] | Z. Abdelmalek, T. Tayebi, A. S. Dogonchi, A. J. Chamkha, D. D. Ganji, I. Tlili, Role of various configurations of a wavy circular heater on convective heat transfer within an enclosure filled with nanofluid, Int. Commun. Heat Mass Transf., 113 (2020), 1–16. https://doi.org/10.1016/j.icheatmasstransfer.2020.104525 doi: 10.1016/j.icheatmasstransfer.2020.104525 |
[12] | L. L. Lee, Boundary layer over a thin needle, Phys. Fluids, 10 (1967), 820–822. https://doi.org/10.1063/1.1762194 doi: 10.1063/1.1762194 |
[13] | J. L. S. Chen, T. N. Smith, Forced convection heat transfer from nonisothermal thin needles, J. Heat Transf., 100 (1978), 358–362. https://doi.org/10.1115/1.3450809 doi: 10.1115/1.3450809 |
[14] | T. Grosan, I. Pop, Forced convection boundary layer flow past nonisothermal thin needles in nanofluids, J. Heat Transf., 133 (2011), 1–4. https://doi.org/10.1115/1.4003059 doi: 10.1115/1.4003059 |
[15] | C. Y. Wang, Mixed convection on a vertical needle with heated tip, Phys. Fluids, 2 (1990), 622–625. https://doi.org/10.1063/1-857709 doi: 10.1063/1-857709 |
[16] | A. Ishak, R. Nazar, I. Pop, Boundary layer flow over a continuously moving thin needle in a parallel free stream, Chin. Phys. Lett., 24 (2007), 2895–2897. https://doi.org/10.1088/0256-307X/24/10/051 doi: 10.1088/0256-307X/24/10/051 |
[17] | M. K. Nayak, A. Wakif, I. L. Animasaun, M. Alaoui, Numerical differential quadrature examination of steady mixed convection nanofluid flows over an isothermal thin needle conveying metallic and metallic oxide nanomaterials: a comparative investigation, Arab. J. Sci. Eng., 45 (2020), 5331–5346. https://doi.org/10.1007/s13369-020-04420-x doi: 10.1007/s13369-020-04420-x |
[18] | E. A. Algehyne, A. Wakif, G. Rasool, A. Saeed, Z. Ghouli, Significance of Darcy-Forchheimer and Lorentz forces on radiative alumina-water nanofluid flows over a slippery curved geometry under multiple convective constraints: a renovated Buongiorno's model with validated thermophysical correlations, Waves Random Complex Media, (2022), 1–30. https://doi.org/10.1080/17455030.2020.2074570 doi: 10.1080/17455030.2020.2074570 |
[19] | T. Hayat, M. I. Khan, M. Farooq, T. Yasmeen, A. Alsaedi, Water-carbon nanofluid flow with variable heat flux by a thin needle, J. Mol. Liq., 224 (2016), 786–791. https://doi.org/10.1016/j.molliq.2016.10.069 doi: 10.1016/j.molliq.2016.10.069 |
[20] | R. Ahmad, M. Mustafa, S. Hina, Buongiorno model for fluid flow around a moving thin needle in a flowing nanofluid: A numerical study, Chin. J. Phys., 55 (2017), 1264–1274. https://doi.org/10.1016/j.cjph.2017.07.004 doi: 10.1016/j.cjph.2017.07.004 |
[21] | J. P. Narain, M. S. Uberoi, Combined forced and free‐convection heat transfer from vertical thin needles in a uniform stream, Phys. Fluids, 15 (1972), 1879–1882. https://doi.org/10.1063/1.1693798 doi: 10.1063/1.1693798 |
[22] | S. Ahmad, N. M. Arifin, R. Nazar, I. Pop, Mixed convection boundary layer flow along vertical thin needles: Assisting and opposing flows, Int. Commun. Heat Mass Transf., 35 (2008), 157–162. https://doi.org/10.1016/j.icheatmasstransfer.2007.07.005 doi: 10.1016/j.icheatmasstransfer.2007.07.005 |
[23] | M. I. Afridi, I. Tlili, M. Qasim, I. Khan, Nonlinear Rosseland thermal radiation and energy dissipation effects on entropy generation in CNTs suspended nanofluids flow over a thin needle, Bound. Value Probl., 2018 (2018), 1–14. https://doi.org/10.1186/s13661-018-1062-3 doi: 10.1186/s13661-018-1062-3 |
[24] | C. Sulochana, S. R. Aparna, N. Sandeep, Impact of linear/nonlinear radiation on incessantly moving thin needle in MHD quiescent Al-Cu/methanol hybrid nanofluid, Int. J. Ambient Energy, 43 (2022), 2694–2700. https://doi.org/10.1080/01430750.2020.1768895 doi: 10.1080/01430750.2020.1768895 |
[25] | C. Sulochana, G. P. Ashwinkumar, N. Sandeep, Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment, Eur. Phys. J. Plus., 132 (2017), 1–14. https://doi.org/10.1140/epjp/i2017-11633-3 doi: 10.1140/epjp/i2017-11633-3 |
[26] | S. Nadeem, S. Zaheer, T. Fang, Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface, Numer. Algorithms, 57 (2011), 187–205. https://doi.org/10.1007/s11075-010-9423-8 doi: 10.1007/s11075-010-9423-8 |
[27] | S. Arulmozhi, K. Sukkiramathi, S. S. Santra, R. Edwan, U. Fernandez-Gamiz, S. Noeiaghdam, Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate, Results Eng., 14 (2022), 1–9. https://doi.org/10.1016/j.rineng.2022.100394 doi: 10.1016/j.rineng.2022.100394 |
[28] | B. Manvi, J. Tawade, M. Biradar, S. Noeiaghdam, U. Fernandez-Gamiz, V. Govindan, The effects of MHD radiating and non-uniform heat source/sink with heating on the momentum and heat transfer of Eyring-Powell fluid over a stretching, Results Eng., 14 (2022), 1–11. https://doi.org/10.1016/j.rineng.2022.100435 doi: 10.1016/j.rineng.2022.100435 |
[29] | T. Tayebi, A. S. Dogonchi, N. Karimi, H. Ge-JiLe, A. J. Chamkha, Y. Elmasry, Thermo-economic and entropy generation analyses of magnetic natural convective flow in a nanofluid-filled annular enclosure fitted with fins, Sustain. Energy Technol. Assess., 46 (2021), 1–30. https://doi.org/10.1016/j.seta.2021.101274 doi: 10.1016/j.seta.2021.101274 |
[30] | A. J. Chamkha, A. S. Dogonchi, D. D. Ganji, Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM, Appl. Sci., 8 (2018), 1–16. https://doi.org/10.3390/app8122396 doi: 10.3390/app8122396 |
[31] | S. M. Seyyedi, A. S. Dogonchi, M. Hashemi-Tilehnoee, D. D. Ganji, A. J. Chamkha, Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure, Int. J. Numer. Methods Heat Fluid Flow, 30 (2020), 4811–4836. https://doi.org/10.1108/HFF-11-2019-0845 doi: 10.1108/HFF-11-2019-0845 |
[32] | A. S. Dogonchi, M. Waqas, S. R. Afshar, S. M. Seyyedi, M. Hashemi-Tilehnoee, A. J. Chamkha, et al., Investigation of magneto-hydrodynamic fluid squeezed between two parallel disks by considering Joule heating, thermal radiation, and adding different nanoparticles, Int. J. Numer. Methods Heat Fluid Flow, 30 (2019), 659–680. https://doi.org/10.1108/HFF-05-2019-0390 doi: 10.1108/HFF-05-2019-0390 |
[33] | A. Wakif, A novel numerical procedure for simulating steady MHD convective flows of radiative Casson fluids over a horizontal stretching sheet with irregular geometry under the combined influence of temperature-dependent viscosity and thermal conductivity, Math. Probl. Eng., 2020 (2020), 1–20. https://doi.org/10.1155/2020/1675350 doi: 10.1155/2020/1675350 |
[34] | N. Sandeep, B. Ranjana, S. P. Samrat, G. P. Ashwinkumar, Impact of nonlinear radiation on magnetohydrodynamic flow of hybrid nanofluid with heat source effect, Proc. Inst. Mech. Eng. E: J. Process Mech. Eng., 236 (2022), 1616–1627. https://doi.org/10.1177/09544089211070667 doi: 10.1177/09544089211070667 |
[35] | S. N. A. Salleh, N. Bachok, N. M. Arifin, F. M. Ali, I. Pop, Magnetohydrodynamics flow past a moving vertical thin needle in a nanofluid with stability analysis, Energies, 11 (2018), 1–15. https://doi.org/10.3390/en11123297 doi: 10.3390/en11123297 |
[36] | P. M. Krishna, R. P. Sharma, N. Sandeep, Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flows, Nucl. Eng. Technol., 49 (2017), 1654–1659. https://doi.org/10.1016/j.net.2017.07.023 doi: 10.1016/j.net.2017.07.023 |
[37] | Z. Khan, M. Jawad, E. Bonyah, N. Khan, R. Jan, Magnetohydrodynamic thin film flow through a porous stretching sheet with the impact of thermal radiation and viscous dissipation, Math. Probl. Eng., 2022 (2022), 1–10. https://doi.org/10.1155/2022/1086847 doi: 10.1155/2022/1086847 |
[38] | M. Jawad, Z. Khan, E. Bonyah, R. Jan, Analysis of hybrid nanofluid stagnation point flow over a stretching surface with melting heat transfer, Math. Probl. Eng., 2022 (2022), 1–12. https://doi.org/10.1155/2022/9469164 doi: 10.1155/2022/9469164 |
[39] | M. Ramzan, H. Gul, S. Kadry, C. Lim, Y. Nam, F. Howari, Impact of nonlinear chemical reaction and melting heat transfer on an MHD nanofluid flow over a thin needle in porous media, Appl. Sci., 9 (2019), 1–14. https://doi.org/10.3390/app9245492 doi: 10.3390/app9245492 |
[40] | H. Upreti, M. Kumar, Influence of non-linear radiation, Joule heating and viscous dissipation on the boundary layer flow of MHD nanofluid flow over a thin moving needle, Multidiscip. Model. Mater. Struct., 16 (2019), 208–224. https://doi.org/10.1108/MMMS-05-2019-0097 doi: 10.1108/MMMS-05-2019-0097 |
[41] | C. Sulochana, G. P. Ashwinkumar, N. Sandeep, Boundary layer analysis of persistent moving horizontal needle in magnetohydrodynamic ferrofluid: A numerical study, Alex. Eng. J., 57 (2018), 2559–2566. https://doi.org/10.1016/j.aej.2017.08.020 doi: 10.1016/j.aej.2017.08.020 |
[42] | A. Hamid, Terrific effects of Ohmic-viscous dissipation on Casson nanofluid flow over a vertical thin needle: buoyancy assisting & opposing flow, J. Mater. Res. Technol., 9 (2020), 11220–11230. https://doi.org/10.1016/j.jmrt.2020.07.070 doi: 10.1016/j.jmrt.2020.07.070 |
[43] | S. S. Raju, K. G. Kumar, M. Rahimi-Gorji, I. Khan, Darcy-Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle in the presence of viscous dissipation, Microsyst. Technol., 25 (2019), 3399–3405. https://doi.org/10.1007/s00542-019-04340-3 doi: 10.1007/s00542-019-04340-3 |
[44] | U. Farooq, M. I. Afridi, M. Qasim, D. Lu, Transpiration and viscous dissipation effects on entropy generation in hybrid nanofluid flow over a nonlinear radially stretching disk, Entropy, 20 (2018), 1–14. https://doi.org/10.3390/e20090668 doi: 10.3390/e20090668 |
[45] | T. Nazar, M. M. Bhatti, E. E. Michaelides, Hybrid (Au-TiO2) nanofluid flow over a thin needle with magnetic field and thermal radiation: Dual solutions and stability analysis, Microfluid. Nanofluid., 26 (2022), 1–12. https://doi.org/10.1007/s10404-021-02504-0 doi: 10.1007/s10404-021-02504-0 |
[46] | A. T. Akinshilo, F. Mabood, A. O. Ilegbusi, Heat generation and nonlinear radiation effects on MHD Casson nanofluids over a thin needle embedded in porous medium, Int. Commun. Heat Mass Transf., 127 (2011), 1–13. https://doi.org/10.1016/j.icheatmasstransfer.2021.105547 doi: 10.1016/j.icheatmasstransfer.2021.105547 |
[47] | L. Noeiaghdam, S. Noeiaghdam, D. Sidorov, Dynamical control on the homotopy analysis method for solving nonlinear shallow water wave equation, J. Phys. Conf. Ser., 1847 (2021), 1–11. https://doi.org/10.1088/1742-6596/1847/1/012010 doi: 10.1088/1742-6596/1847/1/012010 |
[48] | S. Noeiaghdam, M. A. F. Araghi, S. Abbasbandy, Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic, Numer. Algorithms, 81 (2019), 237–267. https://doi.org/10.1007/s11075-018-0546-7 doi: 10.1007/s11075-018-0546-7 |
[49] | S. Noeiaghdam, E. Zarei, H. B. Kelishami, Homotopy analysis transform method for solving Abel's integral equations of the first kind, Ain Shams Eng. J., 7 (2016), 483–495. https://doi.org/10.1016/j.asej.2015.03.006 doi: 10.1016/j.asej.2015.03.006 |
[50] | S. Noeiaghdam, M. A. F. Araghi, A novel approach to find optimal parameter in the homotopy-regularization method for solving integral equations, Appl. Math. Inf. Sci., 14 (2020), 99–107. https://dx.doi.org/10.18576/amis/140114 doi: 10.18576/amis/140114 |
[51] | A. D. Fragkou, T. E. Karakasidis, I. E. Sarris, Recurrence quantification analysis of MHD turbulent channel flow, Phys A: Stat. Mech. Appl., 531 (2019), 1–14. https://doi.org/10.1016/j.physa.2019.121741 doi: 10.1016/j.physa.2019.121741 |
[52] | M. Qasim, N. Riaz, D. Lu, M. I. Afridi, Flow over a needle mving in a stream of dissipative fluid having variable viscosity and thermal conductivity, Arab. J. Sci. Eng., 46 (2021), 7295–7302. https://doi.org/10.1007/s13369-021-05352-w doi: 10.1007/s13369-021-05352-w |
[53] | I. Tlili, M. Ramzan, S. Kadry, H. W. Kim, Y. Nam, Radiative MHD nanofluid flow over a moving thin needle with entropy generation in a porous medium with dust particles and Hall current, Entropy, 22 (2020), 1–17. https://doi.org/10.3390/e22030354 doi: 10.3390/e22030354 |
[54] | O. D. Makinde, Entropy-generation analysis for variable-viscosity channel flow with non-uniform wall temperature, Appl. Energy, 85 (2008), 384–393. https://doi.org/10.1016/j.apenergy.2007.07.008 doi: 10.1016/j.apenergy.2007.07.008 |
[55] | A. Khan, W. Kumam, I. Khan, A. Saeed, T. Gul, P. Kumam et al., Chemically reactive nanofluid flow past a thin moving needle with viscous dissipation, magnetic effects and hall current, Plos One, 16 (2021), 1–18. https://doi.org/10.1371/journal.pone.0249264 doi: 10.1371/journal.pone.0249264 |
[56] | M. Bilal, Y. Urva, Analysis of non-Newtonian fluid flow over fine rotating thin needle for variable viscosity and activation energy, Arch. Appl. Mech., 91 (2021), 1079–1095. https://doi.org/10.1007/s00419-020-01811-2 doi: 10.1007/s00419-020-01811-2 |
[57] | J. R. Reddy, V. Sugunamma, N. Sandeep, C. Sulochana, Influence of chemical reaction, radiation and rotation on MHD nanofluid flow past a permeable flat plate in porous medium, J. Niger. Math., 35 (2016), 48–65. https://doi.org/10.1016/j.jnnms.2015.08.004 doi: 10.1016/j.jnnms.2015.08.004 |
[58] | S L., The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, Doctoral dissertation, PhD thesis, Shanghai Jiao Tong University, 1992. |
[59] | M. Hatami, R. Nouri, D. D. Ganji, Forced convection analysis for MHD Al2O3–water nanofluid flow over a horizontal plate, J. Mol. Liq., 187 (2013), 294–301. https://doi.org/10.1016/j.molliq.2013.08.008 doi: 10.1016/j.molliq.2013.08.008 |