Research article

An enhanced whale optimization algorithm for DNA storage encoding


  • Received: 16 August 2022 Revised: 06 September 2022 Accepted: 12 September 2022 Published: 26 September 2022
  • Metaheuristic algorithms have the drawback that local optimal solutions are prone to precocious convergence. In order to overcome the disadvantages of the whale optimization algorithm, we propose an improved selective opposition whale optimization algorithm (ISOWOA) in this paper. Firstly, the enhanced quasi-opposition learning (EQOBL) is applied to selectively update the position of the predator, calculate the fitness of the population before and after, and retain optimal individuals as the food source position; Secondly, an improved time-varying update strategy for inertia weight predator position is proposed, and the position update of the food source is completed by this strategy. The performance of the algorithm is analyzed by 23 benchmark functions of CEC 2005 and 15 benchmark functions of CEC 2015 in various dimensions. The superior results are further shown by Wilcoxon's rank sum test and Friedman's nonparametric rank test. Finally, its applicability is demonstrated through applications to the field of biological computing. In this paper, our aim is to achieve access to DNA files and designs high-quantity DNA code sets by ISOWOA. The experimental results show that the lower bounds of the multi-constraint storage coding sets implemented in this paper equals or surpasses that of previous optimal constructions. The data show that the amount of the DNA storage cods filtered by ISOWOA increased 2–18%, which demonstrates the algorithm's reliability in practical optimization tasks.

    Citation: Sijie Wang, Shihua Zhou, Weiqi Yan. An enhanced whale optimization algorithm for DNA storage encoding[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 14142-14172. doi: 10.3934/mbe.2022659

    Related Papers:

  • Metaheuristic algorithms have the drawback that local optimal solutions are prone to precocious convergence. In order to overcome the disadvantages of the whale optimization algorithm, we propose an improved selective opposition whale optimization algorithm (ISOWOA) in this paper. Firstly, the enhanced quasi-opposition learning (EQOBL) is applied to selectively update the position of the predator, calculate the fitness of the population before and after, and retain optimal individuals as the food source position; Secondly, an improved time-varying update strategy for inertia weight predator position is proposed, and the position update of the food source is completed by this strategy. The performance of the algorithm is analyzed by 23 benchmark functions of CEC 2005 and 15 benchmark functions of CEC 2015 in various dimensions. The superior results are further shown by Wilcoxon's rank sum test and Friedman's nonparametric rank test. Finally, its applicability is demonstrated through applications to the field of biological computing. In this paper, our aim is to achieve access to DNA files and designs high-quantity DNA code sets by ISOWOA. The experimental results show that the lower bounds of the multi-constraint storage coding sets implemented in this paper equals or surpasses that of previous optimal constructions. The data show that the amount of the DNA storage cods filtered by ISOWOA increased 2–18%, which demonstrates the algorithm's reliability in practical optimization tasks.



    加载中


    [1] S. Zhou, L. Xing, X. Zheng, N. Du, L. Wang, Q. Zhang, A self-adaptive differential evolution algorithm for scheduling a single batch-processing machine with arbitrary job sizes and release times, IEEE Trans. Cybern., 51 (2021), 1430–1442. https://doi.org/10.1109/TCYB.2019.2939219 doi: 10.1109/TCYB.2019.2939219
    [2] W. Deng, J. Xu, Y. Song, H. Zhao, Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem, Appl. Soft Comput., 100 (2021), 1568–4946. https://doi.org/10.1016/j.asoc.2020.106724 doi: 10.1016/j.asoc.2020.106724
    [3] F. Zhao, X. He, L. Wang, A two-stage cooperative evolutionary algorithm with problem-specific knowledge for energy-efficient scheduling of no-wait flow-shop problem, IEEE Trans. Cybern., 51 (2020), 5291–5303. https://doi.org/10.1109/TCYB.2020.3025662 doi: 10.1109/TCYB.2020.3025662
    [4] A. Kaveh, A. D. Eslamlou, Water strider algorithm: A new metaheuristic and applications, Structures, 25 (2020), 520–541. https://doi.org/10.1016/j.istruc.2020.03.033 doi: 10.1016/j.istruc.2020.03.033
    [5] F. Zhao, L. Zhang, J. Cao, A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem, Comput. Ind. Eng., 153 (2021), 107082. https://doi.org/10.1016/j.cie.2020.107082 doi: 10.1016/j.cie.2020.107082
    [6] H. Yapici, N. Cetinkaya, A new meta-heuristic optimizer: Pathfinder algorithm, Appl. Soft Comput., 78 (2019), 545–568. https://doi.org/10.1016/j.asoc.2019.03.012 doi: 10.1016/j.asoc.2019.03.012
    [7] S. H. S. Moosavi, V. K. Bardsiri, Poor and rich optimization algorithm: A new human-based and multi populations algorithm, Eng. Appl. Artif. Intell., 86 (2019), 165–181. https://doi.org/10.1016/j.engappai.2019.08.025 doi: 10.1016/j.engappai.2019.08.025
    [8] A.W. Mohamed, A. A. Hadi, A. K. Mohamed, Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm, Int. J. Mach. Learn. Cybern., 11 (2020), 1501–1529. https://doi.org/10.1007/s13042-019-01053-x doi: 10.1007/s13042-019-01053-x
    [9] Y. Liu, R. Li, PSA: A photon search algorithm. J. Inf. Process. Syst., 16 (2020), 478–493. https://doi.org/10.3745/JIPS.04.0168 doi: 10.3745/JIPS.04.0168
    [10] L. Pflug, N. Bernhardt, M. Grieshammer, CSG: A new stochastic gradient method for the efficient solution of structural optimization problems with infinitely many states, Struct. Multidisc. Optim., 61 (2020), 2595–2611. https://doi.org/10.1007/s00158-020-02571-x doi: 10.1007/s00158-020-02571-x
    [11] Y. Yang, Y. Gao, S. Tan, An opposition learning and spiral modelling based arithmetic optimization algorithm for global continuous optimization problems, Eng. Appl. Artif. Intell., 113 (2022), 104981. https://doi.org/10.1016/j.engappai.2022.104981 doi: 10.1016/j.engappai.2022.104981
    [12] A. T. Khan, X. Cao, S. Li, Dual beetle antennae search system for optimal planning and robust control of 5-link biped robots, J. Comput. Sci., 60 (2022), 1877–7503. https://doi.org/10.1016/j.jocs.2022.101556 doi: 10.1016/j.jocs.2022.101556
    [13] W. L. Liu, Y. J. Gong, W. N. Chen, Z. Liu, H. Wang, J. Zhang, Coordinated charging scheduling of electric vehicles: a mixed-variable differential evolution approach, IEEE Trans. Intell. Transp., 21 (2020), 5094–5109. https://doi.org/10.1109/TITS.2019.2948596 doi: 10.1109/TITS.2019.2948596
    [14] F. Zhao, R. Ma, L. Wang, A self-learning discrete jaya algorithm for multi-objective energy-efficient distributed no-idle flow-shop scheduling problem in heterogeneous factory system, IEEE Trans. Cybern., 247 (2021), 1–12. https://doi.org/10.1109/TCYB.2021.3086181 doi: 10.1109/TCYB.2021.3086181
    [15] L. Pflug, N. Bernhardt, M. Grieshammer, CSG: A new stochastic gradient method for the efficient solution of structural optimization problems with infinitely many states, Struct. Multidisc. Optim., 61 (2020), 2595–2611. https://doi.org/10.1007/s00158-020-02571-x doi: 10.1007/s00158-020-02571-x
    [16] G. Dhiman, M. Garg, MoSSE: A novel hybrid multi-objective meta-heuristic algorithm for engineering design problems, Soft Comput., 24 (2020), 18379–18398. https://doi.org/10.1007/s00500-020-05046-9 doi: 10.1007/s00500-020-05046-9
    [17] F. Zhao, S. Di, J. Cao, J. Tang, Jonrinaldi, A Novel Cooperative Multi-Stage Hyper-Heuristic for Combination Optimization Problems, Complex Syst. Model. Simul., 1 (2021), 91-108. https://doi.org/10.23919/CSMS.2021.0010 doi: 10.23919/CSMS.2021.0010
    [18] Y. Yang, C. Qian, H. Li, An efficient DBSCAN optimized by arithmetic optimization algorithm with opposition-based learning, J. Supercomput., 440 (2022). https://doi.org/10.1007/s11227-022-04634-w doi: 10.1007/s11227-022-04634-w
    [19] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [20] S. Chakraborty, A. K. Saha, S. Sharma, S. Mirjalili, R. Chakraborty, A novel enhanced whale optimization algorithm for global optimization, Comput. Ind. Eng., 153 (2021), 107086. https://doi.org/10.1016/j.cie.2020.107086 doi: 10.1016/j.cie.2020.107086
    [21] Q. Jin, Z. Xu, W. Cai, An improved whale optimization algorithm with random evolution and special reinforcement dual-operation strategy collaboration, Symmetry, 13 (2021), 238–256. https://doi.org/10.3390/sym13020238 doi: 10.3390/sym13020238
    [22] J. Luo, H. Chen, A. A. Heidari, Y. Xu, Q. Zhang, C. Li, Multi-strategy boosted mutative whale-inspired optimization approaches, Appl. Math. Modell., 73 (2019), 109–123. https://doi.org/10.1016/j.apm.2019.03.046 doi: 10.1016/j.apm.2019.03.046
    [23] Y. Yang, Z. Tao, C. Qian, A hybrid robust system considering outliers for electric load series forecasting, Appl. Intell., 52 (2022), 1630–1652. https://doi.org/10.1007/s10489-021-02473-5 doi: 10.1007/s10489-021-02473-5
    [24] Q. Fan, Z. Chen, W. Zhang, ESSAWOA: Enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization, Eng. Comput., 20 (2020). https://doi.org/10.1007/s00366-020-01189-3 doi: 10.1007/s00366-020-01189-3
    [25] M. Nguyen, T. Tran, T. Nguyen, G. Nguyen, Hybridization of galactic swarm and evolution whale optimization for global search problem, IEEE Access, 8 (2020), 74991–75010. https://doi.org/10.1109/ACCESS.2020.2988717 doi: 10.1109/ACCESS.2020.2988717
    [26] M. Abdel-Basset, V. Chang, R. Mohamed, HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images, Appl. Soft Comput., 95 (2020), 1568–4946. https://doi.org/10.1016/j.asoc.2020.106642 doi: 10.1016/j.asoc.2020.106642
    [27] J. Zhang, L. Hong, Q. Liu, An improved whale optimization algorithm for the traveling salesman problem, Symmetry, 13 (2020), 48–56. https://doi.org/10.3390/sym13010048 doi: 10.3390/sym13010048
    [28] M. Wang, H. Chen, Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis, Appl. Soft Comput., 88 (2020), 105946. https://doi.org/10.1016/j.asoc.2019.105946 doi: 10.1016/j.asoc.2019.105946
    [29] V. Hemmelmayr, K. F. Doerner, R. F. Hartl, S. Rath, A heuristic solution method for node routing based solid waste collection problems, J. Heuristics, 19 (2013), 129–156. https://doi.org/10.1177/0734242X18801186 doi: 10.1177/0734242X18801186
    [30] F. Kılıç, Y. Kaya, S. Yildirim, A novel multi population based particle swarm optimization for feature selection, Knowl.-Based. Syst., 219 (2021), 126–140. https://doi.org/10.1016/j.knosys.2021.106894 doi: 10.1016/j.knosys.2021.106894
    [31] H. R. Tizhoosh, Opposition-based learning: A new scheme for machine intelligence, in International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06), 1 (2005), 695–701. https://doi.org/10.1109/CIMCA.2005.1631345
    [32] S. Dhargupta, M. Ghosh, S. Mirjalili, R. Sarkar, Selective opposition based grey wolf optimization, Expert. Syst. Appl., 151 (2020), 113389. https://doi.org/10.1016/j.eswa.2020.113389 doi: 10.1016/j.eswa.2020.113389
    [33] M. H. Qais, H. M. Hasanien, S. Alghuwainem, Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators, Appl. Soft Comput., 86 (2020), 105937. https://doi.org/10.1016/j.asoc.2019.105937 doi: 10.1016/j.asoc.2019.105937
    [34] S. P. Adam, S. N. Alexandropoulos, P. M. Pardalos, M. N. Vrahatis, No free lunch theorem: A review, Optim. Appl., 145 (2019), 57–82. https://doi.org/10.1007/978-3-030-12767-1_5 doi: 10.1007/978-3-030-12767-1_5
    [35] Q. Fan, Z. Chen, Z. Li, A new improved whale optimization algorithm with joint search mechanisms for high-dimensional global optimization problems, Eng. Comput., 34 (2020), 1851–1878. https://doi.org/10.1007/s00366-019-00917-8 doi: 10.1007/s00366-019-00917-8
    [36] S. Mirjalili, SCA: A sine cosine algorithm for solving optimization problems, Knowl.-Based. Syst., 96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [37] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [38] S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based. Syst., 89 (2015), 228–249. https://doi.org/10.1016/j.knosys.2015.07.006 doi: 10.1016/j.knosys.2015.07.006
    [39] H. Chen, W. Li, X. Yang, A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems, Expert. Syst. Appl., 158 (2020), 23–46. https://doi.org/10.1016/j.eswa.2020.113612 doi: 10.1016/j.eswa.2020.113612
    [40] W. Qiao, Z. Yang, Z. Kang, Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm, Eng. Appl. Artif. Intell., 87 (2020), 103323. https://doi.org/10.1016/j.engappai.2019.103323 doi: 10.1016/j.engappai.2019.103323
    [41] T. Tiwari, M. Saraswat, A new firefly algorithm-based superpixel clustering method for vehicle segmentation, Appl. Soft Comput., 278 (2022), 1–14. https://doi.org/10.1007/s00500-022-07206-5 doi: 10.1007/s00500-022-07206-5
    [42] A. Darwish, Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications, Future Comput. Inf. J., 3 (2018), 231–246, https://doi.org/10.1016/j.fcij.2018.06.001 doi: 10.1016/j.fcij.2018.06.001
    [43] S. Zhou, A quantum image encryption method based on DNACNot, IEEE Access, 8 (2020), 178336–178344. https://doi.org/10.1109/ACCESS.2020.3027964 doi: 10.1109/ACCESS.2020.3027964
    [44] H. Hong, L. Wang, H. Ahmad, J. Li, Y. Yang, C. Wu, Construction of DNA codes by using algebraic number theory, Finite Fields Appl., 37 (2016), 328–343. https://doi.org/10.1016/j.ffa.2015.10.008 doi: 10.1016/j.ffa.2015.10.008
    [45] X. Wang, W. Xue, J. An, Image encryption algorithm based on LDCML and DNA coding sequence, Multimedia Tools Appl., 80 (2021), 591–614. https://doi.org/10.1007/s11042-020-09688-7 doi: 10.1007/s11042-020-09688-7
    [46] W. Song, K. Cai, M. Zhang, C. Yuen, Codes with run-length and GC-content constraints for DNA-based data storage, IEEE Commun. Lett., 22 (2018), 2004–2007. https://doi.org/10.1109/LCOMM.2018.2866566 doi: 10.1109/LCOMM.2018.2866566
    [47] T. T. Nguyen, K. Cai, K. A. S. Immink, Constrained coding with error control for DNA-based data storage, in 2020 IEEE International Symposium on Information Theory (ISIT), (2020), 694–699. https://doi.org/10.1109/ISIT44484.2020.9174438
    [48] Y. Wang, M. Noor-A-Rahim, E. Gunawan, Y. L. Guan, C. L. Poh, Thermodynamically stable DNA code design using a similarity significance model, in 2020 IEEE International Symposium on Information Theory (ISIT), (2020), 21–26. https://doi.org/10.1109/ISIT44484.2020.9174468
    [49] B. Cao, X. Li, X. Zhang, B. Wang, X. Wei, Designing uncorrelated address constrain for DNA storage by DMVO algorithm, IEEE/ACM Trans. Comput. Biol. Bioinf., 11 (2020), 866–877. https://doi.org/10.1109/TCBB.2020.3011582 doi: 10.1109/TCBB.2020.3011582
    [50] D. Limbachiya, M. K. Gupta, V. Aggarwal, Family of constrained codes for archival DNA data storage, IEEE Commun. Lett., 22 (2018), 1–10. https://doi.org/10.1109/LCOMM.2018.2861867 doi: 10.1109/LCOMM.2018.2861867
    [51] B. Cao, Q. Zhang, B. Wu, Q. Wang, X. Zhang, X. Wei, Minimum free energy coding for DNA storage, IEEE Trans. Nanobiosci., 20 (2021), 212–222. https://doi.org/10.1109/TNB.2021.3056351 doi: 10.1109/TNB.2021.3056351
    [52] M. Levy, E. Yaakobi, Mutually uncorrelated codes for DNA storage, IEEE Trans. Inf. Theory, 65 (2018), 3671–3691. https://doi.org/10.1109/TIT.2018.2873138 doi: 10.1109/TIT.2018.2873138
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2158) PDF downloads(121) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(18)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog