This paper mainly studies the dynamical behavior of a stochastic COVID-19 model. First, the stochastic COVID-19 model is built based on random perturbations, secondary vaccination and bilinear incidence. Second, in the proposed model, we prove the existence and uniqueness of the global positive solution using random Lyapunov function theory, and the sufficient conditions for disease extinction are obtained. It is analyzed that secondary vaccination can effectively control the spread of COVID-19 and the intensity of the random disturbance can promote the extinction of the infected population. Finally, the theoretical results are verified by numerical simulations.
Citation: Xinyu Bai, Shaojuan Ma. Stochastic dynamical behavior of COVID-19 model based on secondary vaccination[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2980-2997. doi: 10.3934/mbe.2023141
[1] | Tariq Mahmood, Liaqat Ali, Muhammad Aslam, Ghulam Farid . On commutativity of quotient semirings through generalized derivations. AIMS Mathematics, 2023, 8(11): 25729-25739. doi: 10.3934/math.20231312 |
[2] | Liaqat Ali, Yaqoub Ahmed Khan, A. A. Mousa, S. Abdel-Khalek, Ghulam Farid . Some differential identities of MA-semirings with involution. AIMS Mathematics, 2021, 6(3): 2304-2314. doi: 10.3934/math.2021139 |
[3] | Saba Al-Kaseasbeh, Madeline Al Tahan, Bijan Davvaz, Mariam Hariri . Single valued neutrosophic (m,n)-ideals of ordered semirings. AIMS Mathematics, 2022, 7(1): 1211-1223. doi: 10.3934/math.2022071 |
[4] | Pakorn Palakawong na Ayutthaya, Bundit Pibaljommee . On n-ary ring congruences of n-ary semirings. AIMS Mathematics, 2022, 7(10): 18553-18564. doi: 10.3934/math.20221019 |
[5] | Abdelghani Taouti, Waheed Ahmad Khan . Fuzzy subnear-semirings and fuzzy soft subnear-semirings. AIMS Mathematics, 2021, 6(3): 2268-2286. doi: 10.3934/math.2021137 |
[6] | Rukhshanda Anjum, Saad Ullah, Yu-Ming Chu, Mohammad Munir, Nasreen Kausar, Seifedine Kadry . Characterizations of ordered h-regular semirings by ordered h-ideals. AIMS Mathematics, 2020, 5(6): 5768-5790. doi: 10.3934/math.2020370 |
[7] | Gurninder S. Sandhu, Deepak Kumar . A note on derivations and Jordan ideals of prime rings. AIMS Mathematics, 2017, 2(4): 580-585. doi: 10.3934/Math.2017.4.580 |
[8] | Gurninder S. Sandhu, Deepak Kumar . Correction: A note on derivations and Jordan ideals in prime rings. AIMS Mathematics, 2019, 4(3): 684-685. doi: 10.3934/math.2019.3.684 |
[9] | Faiza Shujat, Faarie Alharbi, Abu Zaid Ansari . Weak (p,q)-Jordan centralizer and derivation on rings and algebras. AIMS Mathematics, 2025, 10(4): 8322-8330. doi: 10.3934/math.2025383 |
[10] | Kaiqing Huang, Yizhi Chen, Miaomiao Ren . Additively orthodox semirings with special transversals. AIMS Mathematics, 2022, 7(3): 4153-4167. doi: 10.3934/math.2022230 |
This paper mainly studies the dynamical behavior of a stochastic COVID-19 model. First, the stochastic COVID-19 model is built based on random perturbations, secondary vaccination and bilinear incidence. Second, in the proposed model, we prove the existence and uniqueness of the global positive solution using random Lyapunov function theory, and the sufficient conditions for disease extinction are obtained. It is analyzed that secondary vaccination can effectively control the spread of COVID-19 and the intensity of the random disturbance can promote the extinction of the infected population. Finally, the theoretical results are verified by numerical simulations.
Semirings have significant applications in theory of automata, optimization theory, and in theoretical computer sciences (see [1,2,3]). A group of Russian mathematicians was able to create novel probability theory based on additive inverse semirings, called idempotent analysis (see[4,5]) having interesting applications in quantum physics. Javed et al. [6] identified a proper subclass of semirings known as MA-Semirings. The development of commutator identities and Lie type theory of semirings [6,7,8,9,10] and derivations [6,7,8,11,12] make this class quite interesting for researchers. To investigate commuting conditions for rings through certain differential identities and certain ideals are still interesting problems for researchers in ring theory (see for example [13,14,15,16,17,18,19]) and some of them are generalized in semirings (see [6,8,9,10,11,20]). In this paper we investigate commuting conditions of prime MA-semirings through certain differential identities and Jordan ideals (Theorems 2.5–2.8) and also study differential identities with the help of Jordan ideals (Theorem 2.3, Theorem 2.4, Theorem 2.10). In this connection we are able to generalize a few results of Oukhtite [21] in the setting of semirings. Now we present some necessary definitions and preliminaries which will be very useful for the sequel. By a semiring S, we mean a semiring with absorbing zero '0' in which addition is commutative. A semiring S is said to be additive inverse semiring if for each s∈S there is a unique s′∈S such that s+s′+s=s and s′+s+s′=s′, where s′ denotes the pseudo inverse of s. An additive inverse semiring S is said to be an MA-semiring if it satisfies s+s′∈Z(S),∀s∈S, where Z(S) is the center of S. The class of MA-semirings properly contains the class of distributive lattices and the class of rings, we refer [6,8,11,22] for examples. Throughout the paper by semiring S we mean an MA-semiring unless stated otherwise. A semiring S is prime if aSb={0} implies that a=0 or b=0 and semiprime if aSa={0} implies that a=0. S is 2-torsion free if for s∈S,2s=0 implies s=0. An additive mapping d:S⟶S is a derivation if d(st)=d(s)t+sd(t). The commutator is defined as [s,t]=st+t′s. By Jordan product, we mean s∘t=st+ts for all s,t∈S. The notion of Jordan ideals was introduced by Herstein [23] in rings which is further extended canonically by Sara [20] for semirings. An additive subsemigroup G of S is called the Jordan ideal if s∘j∈G for all s∈S,j∈G. A mapping f:S⟶S is commuting if [f(s),s]=0, ∀s∈S. A mapping f:S⟶S is centralizing if [[f(s),s],r]=0, ∀s,r∈S. Next we include some well established identities of MA-semirings which will be very useful in the sequel. If s,t,z∈S and d is a derivation of S, then [s,st]=s[s,t], [st,z]=s[t,z]+[s,z]t, [s,tz]=[s,t]z+t[s,z], [s,t]+[t,s]=t(s+s′)=s(t+t′), (st)′=s′t=st′, [s,t]′=[s,t′]=[s′,t], s∘(t+z)=s∘t+s∘z, d(s′)=(d(s))′. To see more, we refer [6,7].
From the literature we recall a few results of MA-semirings required to establish the main results.
Lemma 1. [11] Let G be a Jordan ideal of an MA-semiring S. Then for all j∈G (a). 2[S,S]G⊆G (b). 2G[S,S]⊆G (c). 4j2S⊆G (d). 4Sj2⊆G (e). 4jSj⊆G.
Lemma 2. [11] Let S be a 2-torsion free prime MA-semiring and G a Jordan ideal of S. If aGb={0} then a=0 or b=0.
In view of Lemma 1 and Lemma 2, we give some very useful remarks.
Remark 1. [11]
a). If r,s,t∈S,u∈G, then 2[r,st]u∈G.
b). If aG={0} or Ga={0}, then a=0.
Lemma 3. [12] Let G be a nonzero Jordan ideal and d be a derivation of a 2-torsion free prime MA-semiring S such that for all u∈G, d(u2)=0. Then d=0.
Lemma 4. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S. If a∈S such that for all g∈G, [a,g2]=0. Then [a,s]=0,∀s∈S and hence a∈Z(S).
Proof. Define a function da:S⟶S by da(s)=[a,s], which is an inner derivation. As every inner derivation is derivation, therefore in view of hypothesis da is derivation satisfying da(g2)=[a,g2]=0,∀g∈G. By Lemma 3, da=0, which implies that da(s)=[a,s]=0, for all s∈S. Hence a∈Z(S).
Lemma 5. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If S is noncommutative such that for all u,v∈G and r∈S
a[r,uv]b=0, | (2.1) |
then a=0 or b=0.
Proof. In (2.1) replacing r by ar and using MA-semiring identities, we obtain
aa[r,uv]b+a[a,uv]rb=0 | (2.2) |
Using (2.1) again, we get a[a,uv]Sb=0. By the primeness of S, we have either b=0 or a[a,uv]=0. Suppose that
a[a,uv]=0 | (2.3) |
In view of Lemma 1, replacing v by 2v[s,t] in (2.3) and using 2-torsion freeness of S, we get 0=a[a,uv[s,t]]=auv[a,[s,t]]+a[a,uv][s,t]. Using (2.3) again auv[a,[s,t]]=0 and therefore auG[a,[s,t]]={0}. By the Lemma 2, we have either aG={0} or [a,[s,t]]=0. By Remark 1, aG={0} implies a=0. Suppose that
[a,[s,t]]=0 | (2.4) |
In (2.4) replacing s by sa, we get [a,s[a,t]]+[a,[s,t]a]=0 and therefore [a,s[a,t]]+[a,[s,t]]a=0. Using (2.4) again, we get [a,s][a,t]=0. By the primeness of S, [a,s]=0 and therefore a∈Z(S). Hence from (2.2), we can write aS[r,uv]b={0}. By the primeness of S, we obtain a=0 or
[r,uv]b=0 | (2.5) |
In (2.5) replacing r by rs and using (2.5) again, we get [r,uv]Sb={0}. By the primeness of S, we have either b=0 or [r,uv]=0. Suppose that
[r,uv]=0 | (2.6) |
In (2.6) replacing y by 2v[s,t] and using (2.6) again, we obtain 2[r,uv[s,t]]=0. As S is 2-torsion free, [r,uv[s,t]]=0 which further gives uG[r,[s,t]]={0}. As G≠{0}, by Lemma 2 [r,[s,t]]=0 which shows that S is commutative, a contradiction. Hence we conclude that a=0 or b=0.
Theorem 1. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If d1 and d2 are derivations of S such that for all u∈G,
d1d2(u)=0 | (2.7) |
then either d1=0 or d2=0.
Proof. Suppose that d2≠0. We will show that d1=0. In view of Lemma 1, replacing u by 4u2v,v∈G in (2.7), we obtain d1d2(4u2v)=0 and by the 2-torsion freeness of S, we have d1d2(u2v)=0. Using (2.7) again, we obtain
d2(u2)d1(v)+d1(u2)d2(v)=0 | (2.8) |
By lemma 1, replacing v by 2[r,jk]v,j,k∈G in (2.8), we get
d2(u2)d1(2[r,jk]v)+d1(u2)d2(2[r,jk]v)=0 |
and
2d2(u2)[r,jk]d1(v)+2d2(u2)d1([r,jk])v+2d1(u2)[r,jk]d2(v)+2d1(u2)d2([r,jk])v=0 |
Using (2.8) again and hence by the 2-torsion freeness of S, we obtain
d2(u2)[r,jk]d1(v)+d1(u2)[r,jk]d2(v)=0 | (2.9) |
In (2.9), replacing v by 4v2t,t∈S and using (2.9) again, we obtain
4d2(u2)[r,jk]v2d1(t)+4d1(u2)[r,jk]v2d2(t)=0 |
As S is 2-torsion free, therefore
d2(u2)[r,jk]v2d1(t)+d1(u2)[r,jk]v2d2(t)=0 | (2.10) |
In (2.10), taking t=d2(g),g∈G and using (2.7), we obtain
d1(u2)[r,jk]v2d2(d2(g))=0 | (2.11) |
In (2.11) writing a for d1(u2) and b for v2d2(d2(g)), we have a[r,jk]b=0,∀r∈S,j,k∈G.
Firstly suppose that S is not commutative. By Lemma 5, we have a=0 or b=0. If d1(u2)=a=0, then by Lemma 3, d1=0. Secondly suppose that S is commutative. In (2.7) replacing u by 2u2, we obtain 0=d1d2(2u2)=2d1d2(u2)=4d1(ud2(u))=4(d1(u)d2(u)+ud1d2(u)). Using (2.7) and the 2-torsion freeness of S, we obtain d1(u)d2(u)=0. By our assumption S is commutative, therefore d1(u)Sd2(u)={0}. By the primeness of S, we have either d1(G)={0} or d2(G)={0}. By Theorem 2.4 of [11], we have d1=0 or d2=0. But d2≠0. Hence d1=0 which completes the proof.
Theorem 2. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If d1 and d2 are derivations of S such that for all u∈G
d1(d2(u)+u′)=0, | (2.12) |
then d1=0.
Proof. Firstly suppose that S is commutative. Replacing u by 2u2 in (2.12) and using (2.12) again, we obtain d1(u)d2(u)=0 which further implies d1(u)Sd2(u)={0}. In view of Theorem 2.4 of [11], by the primeness of S we have d1=0 or d2=0. If d2=0, then from (2.12), we obtain d1(u)=0,∀u∈G and hence by Lemma 3, we conclude d1=0. Secondly suppose that S is noncommutative. Further suppose that d2≠0. We will show that d1=0. In (2.12) replacing u by 4u2v,v∈G, and using (2.12) again, we obtain 2(d2(u2)d1(v)+d1(u2)d2(v))=0. As S is 2-torsion free, therefore
d2(u2)d1(v)+d1(u2)d2(v)=0 | (2.13) |
In (2.13) replacing v by 2[r,jk]v,r∈S,j,k,v∈G, we obtain
d2(u2)d1(2[r,jk])v+2d2(u2)[r,jk]d1(v)+d1(u2)d2(2[r,jk])v+2d1(u2)[r,jk]d2(v)=0 |
As by MA-semiring identities, 2[r,jk]=2j[r,k]+2[r,j]k, by Lemma 1 2[r,jk]∈G. Therefore using (2.13) again and the 2-torsion freeness of S, we obtain
d2(u2)[r,jk]d1(v)+d1(u2)[r,jk]d2(v)=0 | (2.14) |
In (2.14) replacing v by 4v2t,t∈S and using (2.14) again, we get
d2(u2)[r,jk]v2d1(t)+d1(u2)[r,jk]v2d2(t)=0 | (2.15) |
In (2.15) taking t=t(d2(w)+w′),w∈G, we get
d2(u2)[r,jk]v2d1(t(d2(w)+w′))+d1(u2)[r,jk]v2d2(t(d2(w)+w′))=0 |
and therefore
d2(u2)[r,jk]v2d1(t)(d2(w)+w′)+d2(u2)[r,jk]v2td1((d2(w)+w′))
+d1(u2)[r,jk]v2d2(t)(d2(w)+w′)+d1(u2)[r,jk]v2td2(d2(w)+w′)=0 |
Using (2.12) and (2.15) in the last expression, we obtain
(d1(u2))[r,jk](v2td2(d2(w)+w′))=0 | (2.16) |
Applying Lemma 5 on (2.15), we get either d1(u2)=0 or v2td2(d2(w)+w′)=0. If d1(u2)=0 then by Lemma 3, d1=0. If v2Sd2(d2(w)+w′)={0}, the by the primeness of S, we have v2=0 or d2(d2(w)+w′)=0. If v2=0,∀v∈G, then G={0}, a contradiction. Suppose that for all w∈G
d2(d2(w)+w′)=0 | (2.17) |
In (2.17)replacing w by 4z2u,z,u∈G, and using (2.17) again, we obtain
d2(z2)d2(u)=0 | (2.18) |
In (2.18), replacing u by 4xz2,x∈G and using (2.18) again, we obtain d2(z2)Gd2(z2)={0}. By Lemma 2, d2(z2)=0 and hence by Lemma 3, we conclude that d2=0. Taking d2=0 in the hypothesis to obtain d1(u)=0 and hence by Theorem 2.4 of [11], we have d1=0.
Theorem 3. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d1 and d2 be derivations of S such that for all u,v∈G
[d1(u),d2(v)]+[u,v]′=0 | (2.19) |
Then S is commutative.
Proof. If d1=0 or d2=0, then from (2.19), we obtain [G,G]={0}. By Theorem 2.3 of [11] S is commutative. We assume that both d1 and d2 are nonzero. In (2.19) replacing u by 4uw2 and using MA-semiring identities and 2-torsion freeness of S, we get
d1(u)[2w2,d2(v)]+([d1(u),d2(v)]+[u,v]′)2w2+u([d1(2w2),d2(v)]
+[2w2,v]′)+[u,d2(v)]d1(2w2)=0 |
Using (2.19) again, we get
d1(u)[2w2,d2(v)]+[u,d2(v)]d1(2w2)=0 |
and by the 2-torsion freeness of S, we have
d1(u)[w2,d2(v)]+[u,d2(v)]d1(w2)=0 | (2.20) |
Replacing u by 2u[r,jk] in (2.20) and using it again, we obtain
d1(u)[r,jk][w2,d2(v)]+[u,d2(v)][r,jk]d1(w2)=0 | (2.21) |
In (2.21) replacing u by 4su2 and using (2.21) again, we obtain
d1(s)u2[r,jk][w2,d2(v)]+[s,d2(v)]u2[r,jk]d1(w2)=0 | (2.22) |
In (2.22) replacing s by d2(v)s and then using commutator identities, we get
d1d2(v)su2[r,jk][w2,d2(v)]=0 | (2.23) |
Therefore d1d2(v)Su2[r,jk][w2,d2(v)]={0}. By the primeness of S, we obtain either d1d2(v)=0 or u2[r,jk][w2,d2(v)]=0. Consider the sets
G1={v∈G:d1d2(v)=0} |
and
G2={v∈G:u2[r,jk][w2,d2(v)=0} |
We observe that G=G1∪G2. We will show that either G=G1 or G=G2. Suppose that v1∈G1∖G2 and v2∈G2∖G1. Then v1+v2∈G1+G2⊆G1∪G2=G. We now see that 0=d1d2(v1+v2)=d1d2(v2), which shows that v2∈G1, a contradiction. On the other hand 0=u2[r,jk][w2,d2(v1+v2)]=u2[r,jk][w2,d2(v1)], which shows that v1∈G2, a contradiction. Therefore either G1⊆G2 or G2⊆G1, which respectively show that either G=G1 or G=G2. Therefore we conclude that for all v∈G, d1d2(v)=0 or u2[r,jk][w2,d2(v)]=0. Suppose that d1d2(v)=0,v∈G. then by Lemma 2.1, d1=0 or d2=0. Secondly suppose that u2[r,jk][w2,d2(v)]=0,u,v,w,j,k∈G,r∈S. By Lemma 5, we have either u2=0 or [w2,d2(v)]=0. But u2=0 leads to G={0} which is not possible. Therefore [w2,d2(v)]=0 and employing Lemma 4, [d2(v),s]=0,s∈S. Hence by Theorem 2.2 of [22], S is commutative.
Theorem 4. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d1 and d2 be derivations of S such that for all u,v∈G
d1(u)d2(v)+[u,v]′=0 | (2.24) |
Then d1=0 or d2=0 and thus S is commutative.
Proof. It is quite clear that if at least one of d1 and d2 is zero, then we obtain [G,G]={0}. By Theorem 2.3 of [11] and Theorem 2.1 of [22], S is commutative. So we only show that at least one of the derivations is zero. Suppose that d2≠0. In (2.24), replacing v by 4vw2,w∈G, we obtain d1(u)d2(4vw2)+[u,4vw2]′=0 and therefore using MA-semirings identities, we can write
4d1(u)vd2(w2)+4d1(u)d2(v)w2+4v[u,w2]′+4[u,v]′w2=0 |
In view of Lemma 1 as 2w2∈G, using (2.24) and the 2-torsion freeness of S, we obtain
d1(u)vd2(w2)+v[u,w2]′=0 | (2.25) |
In (2.25) replacing v by 2[s,t]v, s,t∈S and hence by the 2-torsion freeness of S, we get
d1(u)[s,t]vd2(w2)+[s,t]v[u,w2]′=0 | (2.26) |
Multiplying (2.25) by [s,t] from the left, we get
[s,t]d1(u)vd2(w2)+[s,t]v[u,w2]′=0 |
and since S is an MA-semiring, therefore
[s,t]d1(u)vd2(w2)=[s,t]v[u,w2] | (2.27) |
Using (2.27) into (2.26), we obtain d1(u)[s,t]vd2(w2)+[s,t]′d1(u)vd2(w2)=0. By MA-semirings identities, we further obtain [d1(u),[s,t]]Gd2(w2)={0}. By Lemma 2, we obtain either [d1(u),[s,t]]=0 or d2(w2)=0. If d2(w2)=0, then by Lemma 3, d2=0. On the other hand, if
[d1(u),[s,t]]=0 | (2.28) |
In (2.28) replacing t by st, we get [d1(u),s[s,t]]=0 and using (2.23) again [d1(u),s][s,t]=0 and therefore [d1(u),s]S[s,t]={0} and by the primeness of S, we get [S,S]={0} and hence S is commutative or [d1(u),s]=0. In view of Theorem 2.2 of [22] from [d1(u),s]=0 we have [S,S]={0} which further implies S is commutative. Hence (2.19)becomes d1(u)d2(v)=0. As above we have either d1=0 or d2=0.
Theorem 5. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If d1, d2 and d3 be nonzero. derivations such that for all u,v∈G either
1). d3(v)d1(u)+d2(u′)d3(v)=0 or
2). d3(v)d1(u)+d2(u′)d3(v)+[u,v]′=0.
Then S is commutative and d1=d2.
Proof. 1). By the hypothesis for the first part, we have
d3(v)d1(u)+d2(u′)d3(v)=0 | (2.29) |
which further implies
d3(v)d1(u)=d2(u)d3(v) | (2.30) |
In (2.29) replacing u by 4uw2, we obtain
4d3(v)d1(u)w2+4d3(v)ud1(w2)+4d2(u′)w2d3(v)+4u′d2(w2)d3(v)=0 |
and therefore by the 2-torsion freeness of S, we have
d3(v)d1(u)w2+d3(v)ud1(w2)+d2(u′)w2d3(v)+u′d2(w2)d3(v)=0 | (2.31) |
Using (2.30) into (2.31), we obtain
d2(u)[d3(v),w2]+[d3(v),u]d1(w2)=0 | (2.32) |
In (2.32) replacing u by 2u[r,jk],r∈S,j,k∈G, and using (2.32) again, we get
d2(u)[r,jk][d3(v),w2]+[d3(v),u][r,jk]d1(w2)=0 | (2.33) |
In (2.33) replacing u by 4tu2,t∈S and using 2-torsion freeness and (2.33) again, we get
d2(t)u2[r,jk][d3(v),w2]+[d3(v),t]u2[r,jk]d1(w2)=0 | (2.34) |
Taking t=d3(v)t in (2.34) and using (2.34) again we obtain
d2d3(v)tu2[r,jk][d3(v),w2]=0 | (2.35) |
We see that equation (2.35) is similar as (2.23) of the previous theorem, therefore repeating the same process we obtain the required result.
2). By the hypothesis, we have
d3(v)d1(u)+d2(u′)d3(v)+[u,v]′=0 | (2.36) |
For d3=0, we obtain [G,G]={0} and by Theorem 2.3 of [11] this proves that S is commutative. Assume that d3≠0. From (2.36), using MA-semiring identities, we can write
d3(v)d1(u)=d2(u)d3(v)+[u,v] | (2.37) |
and
d3(v)d1(u)+[u,v]′=d2(u)d3(v) | (2.38) |
In (2.36), replacing u by 4uz2, we obtain
4(d3(v)ud1(z2)+d3(v)d1(u)z2+d2(u′)z2d3(v)+u′d2(z2)d3(v)+u[z2,v]′)+[u,v]′z2)=0 |
and using (2.37) and (2.38) and then 2-torsion freeness of S, we obtain
[d3(v),u]d1(z2)+d2(u)[d3(v),z2]=0 | (2.39) |
We see that (2.39) is same as (2.32) of the previous part of this result. This proves that [S,S]={0} and hence S is commutative. Also then by the hypothesis, since d3≠0, d1=d2.
Theorem 6. Let G be nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d1 and d2 be nonzero derivations of S such that for all u,v∈G
[d2(v),d1(u)]+d1[v,u]′=0 | (2.40) |
Then S is commutative.
In (2.40) replacing u by 4uw2,w∈G and using 2-torsion freeness and again using(2.40), we obtain
[d2(v)+v′,u]d1(w2)+d1(u)[d2(v)+v′,w2]=0 | (2.41) |
In (2.41) replacing u by 2u[r,jk],j,k∈G,r∈S, we obtain
u[d2(v)+v′,2[r,jk]]d1(w2)+2[d2(v)+v′,u][r,jk]d1(w2)
+ud1(2[r,jk])[d2(v)+v′,w2]+2d1(u)[r,jk][d2(v)+v′,w2]=0 |
Using 2-torsion freeness and (2.41) again, we get
[d2(v)+v′,u][r,jk]d1(w2)+d1(u)[r,jk][d2(v)+v′,w2]=0 | (2.42) |
In(2.42) replacing u by 4tu2,t∈Sand using (2.42) again, we get
[d2(v)+v′,t]u2[r,jk]d1(w2)+d1(t)u2[r,jk][d2(v)+v′,w2]=0 | (2.43) |
In (2.43) taking t=(d2(v)+v′)t and using MA-semirings identities, we obtain
(d2(v)+v′)[d2(v)+v′,t]u2[r,jk]d1(w2)+d1(d2(v)+v′)tu2[r,jk][d2(v)+v′,w2]
+(d2(v)+v′)d1(t)u2[r,jk][d2(v)+v′,w2]=0 |
and using (2.43) again, we obtain
d1(d2(v)+v′)tu2[r,jk][d2(v)+v′,w2]=0 | (2.44) |
By the primeness we obtain either d1(d2(v)+v′)=0 or u2[r,jk][d2(v)+v′,w2]=0. If d1(d2(v)+v′)=0, then by Theorem 2 we have d1=0, which contradicts the hypothesis. Therefore we must suppose u2[r,jk][d2(v)+v′,w2]=0. By Lemma 5, we have either u2=0 or [d2(v)+v′,w2]=0. But u2=0 implies G={0} which is not possible. On the other hand applying Lemma 5, we have [d2(v)+v′,r]=0,∀r∈S and therefore taking r=v,v∈G and [d2(v),v]+[v′,v]=0 and using MA-semiring identities, we get
[d2(v),v]+[v,v]′=0 | (2.45) |
As [v,v]′=[v,v], from (2.45), we obtain [d2(v),v]+[v,v]=0 and therefore
[d2(v),v]=[v,v]′ | (2.46) |
Using (2.46) into (2.45), we get 2[d2(v),v]=0 and by the 2-torsion freeness of S, we get [d2(v),v]=0. By Theorem 2.2 of [22], we conclude that S is commutative.
Corollary 1. Let G be nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d be a nonzero derivation of S such that for all u,v∈G d[v, u] = 0. Then S is commutative
Proof. In theorem (6) taking d2=0 and d1=d, we get the required result.
Theorem 7. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring and d2 be derivation of S. Then there exists no nonzero derivation d1 such that for all u,v∈G
d2(v)∘d1(u)+d1(v′∘u)=0 | (2.47) |
Proof. Suppose on the contrary that there is a nonzero derivation d1 satisfying (2.47). In (2.47) replacing u by 4uw2,w∈G and using (2.47) again, we obtain
d1(u)[w2,d2(v)+v]+[u,d2(v)]′d1(w2)+ud1(v∘w2)+(u∘v)d1(w2)′+ud1[v,w2]′=0 | (2.48) |
In (2.48), replacing u by u[r,jk],r∈S,j,k∈G and using (2.48) again, we get
d1(u)[r,jk][w2,d2(v)+v]+[u,d2(v)+v]′[r,jk]d1(w2)=0 | (2.49) |
In (2.49) replacing u by 4tu2,t∈S and using (2.49) again, we obtain
d1(t)u2[r,jk][w2,d2(v)+v]+td1(u2)[r,jk][w2,d2(v)+v]
+t[u2,d2(v)+v]′[r,jk]d1(w2)+[t,d2(v)+v]′u2[r,jk]d1(w2)=0 |
and using2-torsion freeness and (2.49) again, we obtain
d1(t)u2[r,jk][w2,d2(v)+v]+[t,d2(v)+v]′u2[r,jk]d1(w2)=0 | (2.50) |
In (2.50) taking t=(d2(v)+v)t and using MA-semirings identities, we get d1(d2(v)+v)tu2[r,jk][w2,d2(v)+v]+(d2(v)+v)d1(t)u2[r,jk][w2,d2(v)+v]
+(d2(v)+v)[t,d2(v)+v]′u2[r,jk]d1(w2)=0 |
Using (2.50) again, we obtain
d1(d2(v)+v)tu2[r,jk][w2,d2(v)+v]=0 | (2.51) |
that is d1(d2(v)+v)Su2[r,jk][w2,d2(v)+v]=0. Therefore by the primeness following the same process as above, we have either d1(d2(v)+v)=0 or u2[r,jk][w2,d2(v)+v]=0 for all u,v,j,k,w∈G,r∈S. If d1(d2(v)+v)=0. As d1≠0, therefore d2(v)+v=0. Secondly suppose that u2[r,jk][w2,d2(v)+v]=0. By Lemma 5, we have either u2=0 or [w2,d2(v)+v]=0. But u2=0 implies that G={0}, a contradiction. Therefore we consider the case when [w2,d2(v)+v]=0, which implies, by Lemma 4, that [d2(v)+v,r]=0,∀r∈S and taking in particular t=v∈G, we have
[d2(v),v]+[v,v]=0 | (2.52) |
Also by definition of MA-semirings, we have [v,v]=[v,v]′. Therefore [d2(v),v]+[v,v]′=0 and therefore
[d2(v),v]=[v,v] | (2.53) |
Using (2.53) into (2.52) and then using 2-torsion freeness of S, we obtain [d(v),v]=0. By Theorem 2.2 of [22], we conclude that S is commutative. Therefore (2.47) will be rewritten as 2d1(u)d2(v)+2(d1(v′)u+v′d1(u))=0 and hence by the 2-torsion freeness of S, we obtain
d1(u)d2(v)+d1(v′)u+v′d1(u)=0 | (2.54) |
In (2.54) replacing u by 2uw and using 2-torsion freeness of S, we get
d1(u)wd2(v)+ud1(w)d2(v)+d1(v′)uw+v′d1(u)w+v′ud1(w)=0 |
and therefore
w(d1(u)d2(v)+d1(v′)u+v′d1(u))+ud1(w)d2(v)+v′ud1(w)=0 |
Using (2.54) again, we obtain
ud1(w)d2(v)+v′ud1(w)=0 | (2.55) |
In (2.55) replacing v by 2vz, we get
ud1(w)d2(v)z+ud1(w)vd2(z)+v′zud1(w)=0 |
and therefore
z(ud1(w)d2(v)+v′ud1(w))+ud1(w)vd2(z)=0 |
and using (2.55) again, we get d1(w)uGd2(z)={0}. By the above Lemma 2, we have either d1(w)u=0 or d2(z)=0 and therefore by Remark 1, we have either d1(w)=0 or d2(z)=0. As d1≠0, therefore d2=0. Therefore our hypothesis becomes d1(u∘v)=0 and therefore d1(u2)=0, ∀u∈G. By Lemma 3, d1=0 a contraction to the assumption. Hence d1 is zero.
We have proved the results of this paper for prime semirings and it would be interesting to generalize them for semiprime semirings, we leave it as an open problem.
Taif University Researchers Supporting Project number (TURSP-2020/154), Taif University Taif, Saudi Arabia.
The authors declare that they have no conflict of interest.
[1] |
M. Mandal, S. Jana, S. K. Nandi, A. Khatua, S. Adak, T. K. Kar, A model based study on the dynamics of COVID-19: Prediction and control, Chaos Solitons Fractals, 136 (2020), 109889. https://doi.org/10.1016/j.chaos.2020.109889 doi: 10.1016/j.chaos.2020.109889
![]() |
[2] |
S. Muhammad, M. A. Z. Raja, M. T. Sabir, A. H. Bukhari, H. Alrabaiah, Z. Shah, et al., A stochastic numerical analysis based on hybrid NAR-RBFs networks nonlinear SITR model for novel COVID-19 dynamics, Comput. Methods Programs Biomed., 202 (2021), 105973. https://doi.org/10.1016/j.cmpb.2021.105973 doi: 10.1016/j.cmpb.2021.105973
![]() |
[3] |
O. M. Otunuga, Estimation of epidemiological parameters for COVID-19 cases using a stochastic SEIRS epidemic model with vital dynamics, Results Phys., 28 (2021), 104664. https://doi.org/10.1016/j.rinp.2021.104664 doi: 10.1016/j.rinp.2021.104664
![]() |
[4] |
X. Zhu, B. Gao, Y. Zhong, C. Gu, K. Choi, Extended Kalman filter based on stochastic epidemiological model for COVID-19 modelling, Comput. Biol. Med., 137 (2021), 104810. https://doi.org/10.1016/j.compbiomed.2021.104810 doi: 10.1016/j.compbiomed.2021.104810
![]() |
[5] |
J. P. Hespanha, C. Raphael, R. R. Costa, M. K. Erdal, G. Yang, Forecasting COVID-19 cases based on a parameter-varying stochastic SIR model, Annu. Rev. Control, 51 (2021), 460–476. https://doi.org/10.1016/j.arcontrol.2021.03.008 doi: 10.1016/j.arcontrol.2021.03.008
![]() |
[6] |
O. E. Deeb, M. Jalloul, The dynamics of COVID-19 spread: evidence from Lebanon, Math. Biosci. Eng., 17 (2020), 5618–5632. https://doi.org/10.3934/mbe.2020302 doi: 10.3934/mbe.2020302
![]() |
[7] |
B. Machado, L. Antunes, C. Caetano, et al., The impact of vaccination on the evolution of COVID-19 in Portugal, Math. Biosci. Eng., 19 (2022), 936–952. https://doi.org/10.3934/mbe.2022043 doi: 10.3934/mbe.2022043
![]() |
[8] |
S. He, S. Tang, L. Rong, A discrete stochastic model of the COVID-19 outbreak: Forecast and control, Math. Biosci. Eng., 17 (2020), 2792–2804. https://doi.org/10.3934/mbe.2020153 doi: 10.3934/mbe.2020153
![]() |
[9] |
W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics-III. Further studies of the problem of endemicity, Bull. Math. Biol., 53 (1991), 89–118. https://doi.org/10.1016/S0092-8240(05)80042-4 doi: 10.1016/S0092-8240(05)80042-4
![]() |
[10] |
S. Djilali, A. Zeb, T. Saeed, Effect of Occasional heroin consumers on the spread of heroin addiction, Fractals, 5 (2022), 2240164. https://doi.org/10.1142/S0218348X22401648 doi: 10.1142/S0218348X22401648
![]() |
[11] |
E. A. Iboi, O. Sharomi, C. N. Ngonghala, A. B. Gumel, Mathematical modeling and analysis of COVID-19 pandemic in Nigeria, Math. Biosci. Eng., 17 (2020), 7192–7220. https://doi.org/10.3934/mbe.2020369 doi: 10.3934/mbe.2020369
![]() |
[12] |
S. Djilali, S. Bentout, T. M. Touaoula, A. Tridanee, S. Kumarf, Global behavior of Heroin epidemic model with time distributed delay and nonlinear incidence function, Results Phys., 31 (2021), 104953. https://doi.org/10.1016/j.rinp.2021.104953 doi: 10.1016/j.rinp.2021.104953
![]() |
[13] |
V. Piccirillo, COVID-19 pandemic control using restrictions and vaccination, Math. Biosci. Eng., 19 (2022), 1355–1372. https://doi.org/10.3934/mbe.2022062 doi: 10.3934/mbe.2022062
![]() |
[14] |
V. Piccirillo, Nonlinear control of infection spread based on a deterministic SEIR model, Chaos Solitons Fractals, 149 (2021), 111051. https://doi.org/10.1016/j.chaos.2021.111051 doi: 10.1016/j.chaos.2021.111051
![]() |
[15] |
S. Djilali, S. Bentout, T. M. Touaoula, A. Tridane, Global dynamics of alcoholism epidemic model with distributed delays, Math. Biosci. Eng., 18 (2021), 8245–8256. https://doi.org/10.3934/mbe.2021409 doi: 10.3934/mbe.2021409
![]() |
[16] |
S. Batabyal, COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission, Chaos Solitons Fractals, 145 (2021), 110772. https://doi.org/10.1016/j.chaos.2021.110772 doi: 10.1016/j.chaos.2021.110772
![]() |
[17] |
A. B. Gumel, E. A. Iboi, C. N. Ngonghala, E. H. Elbasha, A primer on using mathematics to understand COVID-19 dynamics: Modeling, analysis and simulations, Infect. Dis. Model., 6 (2021), 148–168. https://doi.org/10.1016/j.idm.2020.11.005 doi: 10.1016/j.idm.2020.11.005
![]() |
[18] |
A. Zeb, S. Djilali, T. Saeed, M. Sh. Alhodalyd, N. Gule, Global proprieties of an SIR epidemic model with nonlocal diffusion and immigration, Results Phys., 39 (2022), 105758. https://doi.org/10.1016/j.rinp.2022.105758 doi: 10.1016/j.rinp.2022.105758
![]() |
[19] |
F. A. Rihan, H. J. Alsakaji, Dynamics of a stochastic delay differential model for COVID-19 infection with asymptomatic infected and interacting people: Case study in the UAE, Results Phys., 28 (2021), 104658. https://doi.org/10.1016/j.rinp.2021.104658 doi: 10.1016/j.rinp.2021.104658
![]() |
[20] |
Z. Zhang, A. Zeb, S. Hussain, E. Alzahrani, Dynamics of COVID-19 mathematical model with stochastic perturbation, Adv. Differ. Equations, 1 (2020), 451. https://doi.org/10.1186/s13662-020-02909 doi: 10.1186/s13662-020-02909
![]() |
[21] |
J. Danane, K. Allali, Z. Hammouch, K. S. Nisar, Mathematical analysis and simulation of a stochastic COVID-19 Lˊevy jump model with isolation strategy, Results Phys., 23 (2021), 103994. https://doi.org/10.1016/j.rinp.2021.103994 doi: 10.1016/j.rinp.2021.103994
![]() |
[22] |
D. Adak, A. Majumder, N. Bairagi, Mathematical perspective of Covid-19 pandemic: Disease extinction criteria in deterministic and stochastic models, Chaos Solitons Fractals, 142 (2020), 110381. https://doi.org/10.1016/j.chaos.2020.110381 doi: 10.1016/j.chaos.2020.110381
![]() |
[23] |
B. Boukanjime, T. Caraballo, M. El Fatini, M. El Khalifi, Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching, Chaos Solitons Fractals, 141 (2020), 110361. https://doi.org/10.1016/j.chaos.2020.110361 doi: 10.1016/j.chaos.2020.110361
![]() |
[24] |
N. H. Sweilam, S. M. AL-Mekhlafi, D. Baleanu, A hybrid stochastic fractional order Coronavirus (2019-nCov) mathematical model, Chaos Solitons Fractals, 145 (2021), 110762. https://doi.org/10.1016/j.chaos.2021.110762 doi: 10.1016/j.chaos.2021.110762
![]() |
[25] |
A. Din, A. Khan, D. Baleanuc, Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model, Chaos Solitons Fractals, 139 (2020), 110036. https://doi.org/10.1016/j.chaos.2020.110036 doi: 10.1016/j.chaos.2020.110036
![]() |
[26] |
T. Khan, G. Zaman, Y. El-Khatib, Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model, Results Phys., 24 (2020), 104004. https://doi.org/10.1016/j.rinp.2021.104004 doi: 10.1016/j.rinp.2021.104004
![]() |
[27] |
A. Tesfay, T. Saeed, A. Zeb, D. Tesfay, A. Khalaf, J. Brannan, Dynamics of a stochastic COVID-19 epidemic model with jump-diffusion, Adv. Differ. Equations, 1 (2021), 228. https://doi.org/10.1186/s13662-021-03396-8 doi: 10.1186/s13662-021-03396-8
![]() |
[28] |
K. Zhao, S. Ma, Qualitative analysis of a two-group SVIR epidemic model with random effect, Adv. Differ. Equations, 1 (2021), 172. https://doi.org/10.1186/s13662-021-03332-w doi: 10.1186/s13662-021-03332-w
![]() |
[29] |
Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Stationary distribution of a stochastic delayed SVEIR epidemic model with vaccination and saturation incidence, Phys. A, 512 (2018), 849–863. https://doi.org/10.1016/j.physa.2018.08.054 doi: 10.1016/j.physa.2018.08.054
![]() |
[30] |
Z. Zhang, R. K. Upadhyay, Dynamical analysis for a deterministic SVIRS epidemic model with Holling type II incidence rate and multiple delays, Results Phys., 24 (2021), 104181. https://doi.org/10.1016/j.rinp.2021.104181 doi: 10.1016/j.rinp.2021.104181
![]() |
[31] |
Y. Xing, H. Li, Almost periodic solutions for a SVIR epidemic model with relapse, Math. Biosci. Eng., 18 (2021), 7191–7217. https://doi.org/10.3934/mbe.2021356 doi: 10.3934/mbe.2021356
![]() |
[32] |
S. Djilali, S. Bentout, Global dynamics of SVIR epidemic model with distributed delay and imperfect vaccine, Results Phys., 25 (2021), 104245. https://doi.org/10.1016/j.rinp.2021.104245 doi: 10.1016/j.rinp.2021.104245
![]() |
[33] |
X. Zhang, D. Jiang, T. Hayat, B. Ahmad, Dynamical behavior of a stochastic SVIR epidemic model with vaccination, Phys. A, 483 (2017), 94–108. https://doi.org/10.1016/j.physa.2017.04.173 doi: 10.1016/j.physa.2017.04.173
![]() |
[34] |
A. W. Tesfaye, T. S. Satana, Stochastic model of the transmission dynamics of COVID-19 pandemic, Adv. Differ. Equations, 1 (2021), 457–457. https://doi.org/10.1186/s13662-021-03597-1 doi: 10.1186/s13662-021-03597-1
![]() |
[35] |
F. Wang, L. Cao, X. Song, Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination, Math. Biosci. Eng., 19 (2022), 8035–8056. https://doi.org/10.3934/mbe.2022376 doi: 10.3934/mbe.2022376
![]() |
[36] |
O. A. M. Omar, Y. Alnafisah, R. A. Elbarkouky, H. M. Ahmed, COVID-19 deterministic and stochastic modelling with optimized daily vaccinations in Saudi Arabia, Results Phys., 28 (2021), 104629. https://doi.org/10.1016/j.rinp.2021.104629 doi: 10.1016/j.rinp.2021.104629
![]() |
[37] |
M. A. Alshaikh, Stability of discrete-time delayed influenza model with two-strain and two vaccinations, Results Phys., 28 (2021), 104563. https://doi.org/10.1016/j.rinp.2021.104629 doi: 10.1016/j.rinp.2021.104629
![]() |
[38] |
D. J. Higham, An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
![]() |
[39] |
P. Agarwal, R. Singh, A. ul Rehmanc, Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via Adam-Bashforth-Moulton predictor-corrector scheme, Chaos Solitons Fractals, 143 (2021), 110564. https://doi.org/10.1016/j.chaos.2020.110564 doi: 10.1016/j.chaos.2020.110564
![]() |
[40] |
N. Anggriani, M.Z. Ndii, R. Ameliaa, W. Suryaningrata, M. A. AjiPratamaa, A mathematical COVID-19 model considering asymptomatic and symptomatic classes with waning immunity, Alexandria Eng. J., 61(2022), 113–124. https://doi.org/10.1016/j.aej.2021.04.104 doi: 10.1016/j.aej.2021.04.104
![]() |
[41] |
X. Zhang, X. Zhang, The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size, Appl. Math. Model., 91 (2021), 749–767. https://doi.org/10.1016/j.apm.2020.09.050 doi: 10.1016/j.apm.2020.09.050
![]() |
1. | Tariq Mahmood, Liaqat Ali, Muhammad Aslam, Ghulam Farid, On commutativity of quotient semirings through generalized derivations, 2023, 8, 2473-6988, 25729, 10.3934/math.20231312 |