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Abstract: This paper mainly studies the dynamical behavior of a stochastic COVID-19 model. First,
the stochastic COVID-19 model is built based on random perturbations, secondary vaccination and
bilinear incidence. Second, in the proposed model, we prove the existence and uniqueness of the global
positive solution using random Lyapunov function theory, and the sufficient conditions for disease
extinction are obtained. It is analyzed that secondary vaccination can effectively control the spread
of COVID-19 and the intensity of the random disturbance can promote the extinction of the infected
population. Finally, the theoretical results are verified by numerical simulations.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute
respiratory syndrome coronavirus which can lead to severe sequelae or death due to breathing
difficulties, headaches and loss of taste or smell [1, 2]. Since the outbreak of COVID-19 in 2019, it
has seriously affected the development of society and people’s lives all over the world. In order to
control COVID-19 as soon as possible, mathematical researchers have studied the infectious disease
by establishing mathematical models for COVID-19 and analyzed their dynamical behavior [3–8].

The mathematical model of infectious disease was first proposed by Kermack and
McKendrick [9]. They considered a fixed population with only three parts, i.e., S IR: the susceptible
population S (t), the infected population I(t) and the recovery population R(t). Since then, many
improved models, such as S EIR and S IRS models, have been used to describe various properties and
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laws of disease transmission [10–15]. Batabyal [16] built an S EIR model based on the seasonal
transmission nature of the virus, analyzed the stability of the model and obtained the influence of the
parameters on the basic regeneration number. Gumel et al. [17] proposed extended models of the
infectious disease in which the stability of the equilibrium point and parameter estimation was
studied. The global properties of an SIR model with nonlocal disperse and immigration effects were
studied in [18]; they evaluated the persistence, extinction of the disease, global stability analysis of
the model, existence of the positive equilibrium state and its uniqueness. The above deterministic
models have well revealed the mechanism of infectious diseases. In fact, due to the disturbance of
uncertain factors such as the environment, temperature, virus variation, prevention and control
measures, the COVID-19 model with random factors has gradually attracted more and more
attention [19–23]. Sweilam et al. [24] considered environmental noise and fractional calculus in the
COVID-19 model which concluded that random factors have a considerable impact on the demise of
infection. In a stochastic S IQ model affected by white noise, the sufficient conditions for stable
distribution and disease extinction were proved by Din et al. [25]. Khan et al. [26] described a
stochastic S EQIR model disturbed by white noise and telegraph noise at the same time; the
uniqueness of global positive solutions and random thresholds was obtained. The stochastic
coronavirus disease model with jump diffusion has also been researched, and Tesfay et al. [27] found
that random disturbance can inhibit the outbreak of disease better than the deterministic model.

As we all know, vaccination can improve the level of immunity of the population and control the
spread of the epidemic [28–31]. Djilali and Bentout [32] investigated an S VIR system with distributed
delay and drew the conclusion that increasing the number of people vaccinated will reduce the spread
of the disease. Zhang et al. [33] proposed a stochastic S VIR model based on one vaccination and got
the sufficient conditions for the existence of non-trivial periodic solutions. A basic qualitative analysis
of the positivity, invariant region and stability of disease-free equilibrium points was performed for
a stochastic S VITR model with vaccination [34]. Wang et al. [35] constructed a stochastic COVID-
19 mathematical model with quarantine, isolation and vaccination; they also studied the influence of
vaccination rates, vaccine effectiveness and immune loss rates on COVID-19. Omar et al. [36] studied
a discrete time-delayed influenza model with two strains and two vaccinations, and then concluded
that the vaccination of one strain would affect the disease dynamics of the other strain. Alshaikh [37]
generated a fractional order stochastic model based on the secondary vaccination and analyzed various
vaccination strategies. With the development of current medical technology and research, more and
more of the population has completed a secondary vaccination, even the third vaccination. Based
on the above references, although there have been extensive studies and application of COVID-19,
it should be pointed out that the complexity modeling of COVID-19 is still not enough, and that the
mechanisms of transmission for the complex model are unclear. Based on this, the research on the
transmission dynamics characteristics of stochastic COVID-19 epidemics with secondary vaccination
is very necessary.

In this paper, a stochastic disease model with secondary vaccination is established in Section 2.
In Section 3, we apply random Lyapunov function theory to study the qualitative characteristics. In the
last section, numerical simulations are applied to verify the theoretical results.
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2. Model building

In this study, we divided the population into seven time-dependent categories and built a
mathematical model of COVID-19 with secondary vaccination (see Figure 1) based on the current
situation of the epidemic. That is, it includes the susceptible person S (t), exposed person E(t), first
vaccinator V1(t), second vaccinator V2(t), asymptomatic infected person A(t), symptomatic infected
person I(t) and recovering person R(t).

In order to obtain the required results, we present the following assumptions:
1) The recovered population has immunity and will not be infected again.
2) Most people who receive the second vaccination will have immunity and will not be infected

again.
3) Vaccinated people will transfer to exposure after being infected.
4) Assuming that the interval between two vaccinations is short, the first vaccinated person will

not be infected temporarily.
The model is shown in Eq (2.1):

Figure 1. Model of COVID-19 .



dS
dt
= Λ − β1S A − β2S I − µ1S − ρ1S ,

dE
dt
= β1S A + β2S I + α2β2V2I − σE − µ1E,

dV1

dt
= ρ1S − ρ2V1 − µ1V1,

dV2

dt
= ρ2V1 − µ1V2 − α2β2V2I − (1 − α2)V2,

dA
dt
= (1 − ω)σE − αA − γ1A − (µ1 + µ2)A,

dI
dt
= ωσE + αA − γ2I − (µ1 + µ2)I,

dR
dt
= (1 − α2)V2 + γ1A + γ2I − µ1R,

(2.1)

where Λ is the constant migration rate of the susceptible population, β1 is the transmission rate of
asymptomatic infected persons, β2 is the transmission rate of symptomatic infected persons, ρ1 is the
first vaccination rate, ρ2 is the second vaccination rate, σ is the infection rate of the exposed to the
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infected, ω is the proportion of infections in symptomatic patients, α is the ratio of asymptomatic
infected people to symptomatic infected people and α2 (0 < α2 < 1) is the ratio of secondary
vaccinators to symptomatic infected people, so 1 − α2 is the effectiveness of the vaccine. γ1 and γ2

respectively represent the recovery rate of asymptomatic and symptomatic infected persons. µ1 and µ2

represent the natural mortality rate and disease-related mortality rate respectively. All parameters are
positive.

The disease-free equilibrium point of Eq (2.1) can be obtained (E, A and I are all zero)

P0 = (S ∗, 0,V∗1 ,V
∗
2 , 0, 0,R

∗),

where

S ∗ =
Λ

µ1 + ρ1
, V∗1 =

Λρ1

(µ1 + ρ1) (µ1 + ρ2)
,

V∗2 =
Λρ1ρ2

(µ1 + ρ1) (µ1 + ρ2) (µ1 + 1 − α2)
,

R∗ =
Λρ1ρ2 (1 − α2)

µ1 (µ1 + ρ1) (µ1 + ρ2) (µ1 + 1 − α2)
.

Using the next generation matrix method [17], the basic regeneration number of Eq (2.1) is

R0 =[
Λβ1

µ1 + ρ1
+

Λα2β2ρ1ρ2

(µ1 + ρ1)(µ1 + ρ2)(µ1 + 1 − α2)
](

α + ωσ(γ1 + µ1 + µ2)
(σ + µ1)(α + γ1 + µ1 + µ2)(γ2 + µ1 + µ2)

)

−
(1 − ω)σ

(σ + µ1)(α + γ1 + µ1 + µ2)
.

As we all know, the following theoretical results on equilibrium stability have been established [1]:
1) when R0 < 1, the disease-free equilibrium point of the infectious disease model is locally

asymptotically stable; otherwise, it is unstable;
2) when R0 = 1, the infectious model passes through a transcritical bifurcation near the disease-

free equilibrium.
In fact, in order to have a more accurate understanding of the real disease development process,

we added the influence of random factors into Eq (2.1). The improved stochastic model S EV1V2AIR
is as follows: 

dS =
[
Λ − β1S A − β2S I − (µ1 + ρ1) S

]
dt + σ1dB1(t),

dE =
[
β1S A + β2S I + α2β2V2I − (σ + µ1) E

]
dt + σ2dB2(t),

dV1 =
[
ρ1S − (ρ2 + µ1) V1

]
dt + σ3dB3(t),

dV2 =
[
ρ2V1 − µ1V2 − α2β2V2I − (1 − α2) V2

]
dt + σ4dB4(t),

dA =
[
(1 − ω)σE − (α + γ1 + µ1 + µ2) A

]
dt + σ5dB5(t),

dI =
[
ωσE + αA − (γ2 + µ1 + µ2) I

]
dt + σ6dB6(t),

dR =
[
(1 − α2) V2 + γ1A + γ2I − µ1R

]
dt + σ7dB7(t),

(2.2)

where Bi(t), i = 1, 2, 3, · · · , 7 is the independent standard Brownian motion which represents small
disturbance on each variable, and σi ≥ 0 is the intensity of Bi(t), i = 1, 2, 3, · · · , 7.
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3. Existence and uniqueness of global positive solutions

In order to study the dynamical behavior of the infectious disease model proposed in this paper,
we first need to consider whether the solution is global and non-negative. So in this section, we will
prove that there exists a unique global positive solution for Eq (2.2).

Theorem 1. For any given initial value {S (0), E(0),V1(0),V2(0), A(0), I(0),R(0)} ∈ R7
+, Eq (2.2) has a

unique positive solution {S (t), E(t),V1(t),V2(t), A(t), I(t),R(t)} at t ≥ 0, and this solution will stay in R7
+

with a probability of 1. So, for all t ≥ 0, the solution {S (t), E(t),V1(t),V2(t), A(t), I(t),R(t)} ∈ R7
+ a.s.

Proof: Since the coefficients of the equation are Lipschitz continuous, for any given initial value
{S (0), E(0),V1(0),V2(0), A(0), I(0),R(0)} ∈ R7

+, there is a unique local
solution {S (t), E(t),V1(t),V2(t), A(t), I(t),R(t)} , t ∈ [0, τe) , where τe stands for the explosion time, and
if τe = ∞, this local solution is global. To do that, we have to make k0 sufficiently large and S (t), E(t),
V1(t), V2(t), A(t), I(t), R(t) is in the interval [ 1

k0
, k0]. For each integer k ≥ k0, we define the stopping

time as follows:

τk = inf
{

t ∈ [0, τe) : S (t) <
(
1
k
, k

)
or E(t) <

(
1
k
, k

)
or V1(t) <

(
1
k
, k

)
or V2(t) <

(
1
k
, k

)
or A(t) <

(
1
k
, k

)
or I(t) <

(
1
k
, k

)
or R(t) <

(
1
k
, k

)}
.

In this section, we set in f∅ = ∞ (∅ denotes the empty set). It is easy to get τk that is increasing as
k → ∞. Set τ∞ = limk→∞τk which implies τ∞ < τk a.s.. If the hypothesis τ∞ < ∞ is true, then τe = ∞

a.s. For all t ≥ 0, this means

{S (t), E(t),V1(t),V2(t), A(t), I(t),R(t)} ∈ R7
+ a.s.

In other words, we just prove τe = ∞ a.s. If this statement is wrong, then there are constants T > 0 and
ε ∈ (0, 1) which make P {τ∞ < T } > ε. Hence there is an integer k1 > k0 such that

P {τ∞ ≤ T } ≥ ε, ∀k > k1. (3.1)

Define a C2−function V : R7
+ → R+ as follows:

V (S , E,V1,V2, A, I,R)

=(S − 1 − ln S ) + (E − 1 − ln E) + (V1 − 1 − ln V1)+
(V2 − 1 − ln V2) + (A − 1 − ln A) + (I − 1 − ln I) + (R − 1 − ln R);

(3.2)

the non-negativity of Eq (3.2) can be obtained from

u − 1 − lnu ≥ 0, ∀u > 0.

Using Itôs formula, we can get

dV (S , E,V1,V2, A, I,R)

=LV (S , E,V1,V2, A, I,R) dt + σ1(S − 1)dB1(t)
+ σ2(E − 1)dB2(t) + σ3 (V1 − 1) dB3(t)
+ σ4 (V2 − 1) dB4(t) + σ5(A − 1)dB5(t)
+ σ6(I − 1)dB6(t) + σ7(R − 1)dB7(t),

(3.3)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2980–2997.



2985

where LV : R7
+ → R+ is defined by

LV (S , E,V1,V2, A, I,R)

=

(
1 −

1
S

) [
Λ − β1S A − β2S I − (µ1 + ρ1) S

]
+

(
1 −

1
E

) [
β1S A + β2S I + α2β2V2I − (σ + µ1) E

]
+

(
1 −

1
V1

) [
ρ1S − (ρ2 + µ1) V1

]
+

(
1 −

1
V2

) [
ρ2V1 − µ1V2 − α2β2V2I − (1 − α2) V2

]
+

(
1 −

1
A

) [
(1 − ω)σE − (α + γ1 + µ1 + µ2) A

]
+

(
1 −

1
I

) [
ωσE + αA − (γ2 + µ1 + µ2) I

]
+

(
1 −

1
R

) [
(1 − α2) V2 + γ1A + γ2I − µR

]
+

1
2

(
σ2

1 + σ
2
2 + σ

2
3 + σ

2
4 + σ

2
5 + σ

2
6 + σ

2
7

)
⩽Λ + ρ1 + σ + ρ2 + (1 − α2) + α + γ1 + γ2 + 2µ2 + 7µ1 + (β2 (1 − α2) − µ1) I

+ (β1 − µ1) A − µ2(A + I) − µ1 (S + E + V1 + V2 + A + I + R)

+
1
2

(
σ2

1 + σ
2
2 + σ

2
3 + σ

2
4 + σ

2
5 + σ

2
6 + σ

2
7

)
⩽Λ + σ + ρ1 + ρ2 + (1 − α2) + α + γ1 + γ2 + 2µ1 + 7µ2

+
1
2

(
σ2

1 + σ
2
2 + σ

2
3 + σ

2
4 + σ

2
5 + σ

2
6 + σ

2
7

)
= : K,

where β2 ≤ max
{
µ1

1−α2
, µ1

}
is assumed and K (K ∈ N+) is a positive constant, which does not rely on S ,

E, V1, V2, A, I, R and t. So, there is

dV (S , E,V1,V2, A, I,R) ⩽Kdt + σ1(S − 1)dB1(t) + σ2(E − 1)dB2(t)
+ σ3 (V1 − 1) dB3(t) + σ4 (V2 − 1) dB4(t)
+ σ5(A − 1)dB5(t) + σ6(I − 1)dB6(t)
+ σ7(R − 1)dB7(t).

(3.4)

Let us integrate both sides of Eq (3.4) from 0 to τk ∧ T = min {τk,T } and then take the expectation; we
can get

EV (S (τk ∧ T ) , E (τk ∧ T ) ,V1 (τk ∧ T ) ,V2 (τk ∧ T ) , A (τk ∧ T ) , I (τk ∧ T ) ,R (τk ∧ T ))
⩽ V (S (0), E(0),V1(0),V2(0), A(0), I(0),R(0)) + KE (τk ∧ T )
⩽ V (S (0), E(0),V1(0),V2(0), A(0), I(0),R(0)) + KT.

(3.5)
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Set Ωk = {τk ≤ T }, and we obtain P {Ωk} ≥ ε by Eq (3.1). Now, notice that, for every ω ∈ Ωk, there
is at least one of S (τk, ω), E(τk, ω), V1(τk, ω), V2(τk, ω), A(τk, ω), I(τk, ω) or R(τk, ω) that equals to k
or 1

k .
Therefore

V {S (τk, ω), E(τk, ω),V1(τk, ω),V2(τk, ω), A(τk, ω), I(τk, ω),R(τk, ω)}

is no less than

k − 1 − lnk or
1
k
− 1 + lnk;

thus,
V {S (τk, ω), E(τk, ω),V1(τk, ω),V2(τk, ω), A(τk, ω), I(τk, ω),R(τk, ω)}

≥ min
{

k − 1 − lnk,
1
k
− 1 + lnk

}
.

(3.6)

Substitute Eq (3.5) into Eq (3.6), we have

V (S (0), E(0),V1(0),V2(0), A(0), I(0),R(0)) + KT

⩾E
[
1Ωkω
∀V {S (τk, ω) , E (τk, ω) ,V (τk, ω) ,V (τk, ω) , A (τk, ω) , I (τk, ω) ,R (τk, ω)}

]
⩾εmin

{
k − 1 − ln k,

1
k
− 1 + ln k

}
,

(3.7)

where 1Ωkω
denotes the indicator function of Ωk. Letting k → ∞, then

∞ > V (S (0), E(0),V1(0),V2(0), A(0), I(0),R(0)) + KT = ∞. (3.8)

Equation (3.8) is a contradiction. Therefore we have τ∞ = ∞. The proof is completed. Therefore,
there exists a unique global positive solution to Eq (2.2).

4. Extinction of disease

Lemma 1. For any initial value

{S (0), E(0),V1(0),V2(0), A(0), I(0),R(0)} ∈ R7
+,

Eq (2.2) always has a unique positive solution

{S (t), E(t),V1(t),V2(t), A(t), I(t),R(t)} ∈ R7
+ at t ≥ 0,

{S (t), E(t),V1(t),V2(t), A(t), I(t),R(t)} has the following properties:

lim
t→∞

S (t)
t
= 0, lim

t→∞

E(t)
t
= 0, lim

t→∞

V1(t)
t
= 0, lim

t→∞

V2(t)
t
= 0,

lim
t→∞

A(t)
t
= 0, lim

t→∞

I(t)
t
= 0, lim

t→∞

R(t)
t
= 0,

(4.1)
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and

lim
t→∞

log S (t)
t

⩽ 0, lim
t→∞

log E(t)
t

⩽ 0, lim
t→∞

log V1(t)
t

⩽ 0, lim
t→∞

log V2(t)
t

⩽ 0,

lim
t→∞

log A(t)
t

⩽ 0, lim
t→∞

log I(t)
t
⩽ 0, lim

t→∞

log R(t)
t

⩽ 0,
(4.2)

as well as

lim
t→∞

∫ t

0
S (x)dB1(x)

t
= 0, lim

t→∞

∫ t

0
E(x)dB2(x)

t
= 0,

lim
t→∞

∫ t

0
V1(x)dB3(x)

t
= 0, lim

t→∞

∫ t

0
V2(x)dB4(x)

t
= 0,

lim
t→∞

∫ t

0
A(x)dB5(x)

t
= 0, lim

t→∞

∫ t

0
I(x)dB6(x)

t
= 0,

lim
t→∞

∫ t

0
R(x)dB7(x)

t
= 0.

(4.3)

In order to get the conditions of disease extinction, we set Theorem 2.

Theorem 2. Let {S (t), E(t),V1(t),V2(t), A(t), I(t),R(t)} ∈ R7
+ be a positive solution for Eq (2.2), and the

initial solution of Eq (2.2) is {S (0), E(0),V1(0),V2(0), A(0), I(0),R(0)}.
If RS

0 =
(1−ω)σΛ

µ1

(
α+γ1+µ1+µ2+

σ2
5

2

) < 1, then the solution of the system has the following properties:

lim
t→∞

sup
log A(t)

t
< 0, lim

t→∞
sup

log I(t)
t
< 0. (4.4)

Proof: First, integrate Eq (2.2) to obtain

S (t) − S (0)
t

=Λ − β2⟨S (t)⟩⟨I(t)⟩ − β1⟨S (t)⟩⟨A(t)⟩ − (µ1 + ρ1) ⟨S (t)⟩

+
σ1

t

∫ t

0
S dB1(x),

E(t) − E(0)
t

=β2⟨S (t)⟩⟨I(t)⟩ + β1⟨S (t)⟩⟨A(t)⟩ + α2β2 ⟨V2(t)⟩ ⟨I(t)⟩

− (µ1 + σ) ⟨E(t)⟩ +
σ2

t

∫ t

0
EdB2(x),

V1(t) − V1(0)
t

=ρ1⟨S (t)⟩ − (µ1 + ρ2) ⟨V1(t)⟩ +
σ3

t

∫ t

0
V1dB3(x),

V2(t) − V2(0)
t

=ρ2 ⟨V1(t)⟩ − µ1 ⟨V2(t)⟩ − α2β2 ⟨V2(t)⟩ ⟨I(t)⟩

− (1 − α2) ⟨V2(t)⟩ +
σ4

t

∫ t

0
V2dB4(x),

A(t) − A(0)
t

=(1 − ω)σ⟨E(t)⟩ − (α + γ1) ⟨A(t)⟩ − (µ1 + µ2) ⟨A(t)⟩

+
σ5

t

∫ t

0
AdB5(x),

(4.5)
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I(t) − I(0)
t

=ωσ⟨E(t)⟩ + α⟨A(t)⟩ − γ2⟨I((t)⟩ − (µ1 + µ2) ⟨I(t)⟩

+
σ6

t

∫ t

0
IdB6(x),

R(t) − R(0)
t

= (1 − α2) ⟨V2(t)⟩ + γ1⟨A(t)⟩ + γ2⟨I(t)⟩ − µ1⟨R(t)⟩

+
σ7

t

∫ t

0
RdB7(x).

Adding the left and right sides of Eq (4.5) respectively, we obtain

S (t) − S (0)
t

+
E(t) − E(0)

t
+

V1(t) − V1(0)
t

+
V2(t) − V2(0)

t

+
A(t) − A(0)

t
+

I(t) − I(0)
t

+
R(t) − R(0)

t
=A − µ1[⟨S (t)⟩ + ⟨E(t)⟩ + ⟨V(t)⟩ + ⟨V(t)⟩ + ⟨R(t)⟩] − (µ1 + µ2) [⟨A(t)⟩ + ⟨I(t)⟩]

+
σ1

t

∫ t

0
S dB1(x) +

σ2

t

∫ t

0
EdB2(x) +

σ3

t

∫ t

0
V1dB3(x) +

σ4

t

∫ t

0
V2dB4(x)

+
σ5

t

∫ t

0
AdB5(x) +

σ6

t

∫ t

0
IdB6(x) +

σ7

t

∫ t

0
RdB7(x).

At this time, we have

⟨S (t)⟩ =
A
µ1
− [⟨E(t)⟩ + ⟨V1(t)⟩ + ⟨V2(t)⟩ + ⟨R(t)⟩]

−
(µ1 + µ2)
µ1

[⟨A(t)⟩ + ⟨I(t)⟩] + ϕ(t),
(4.6)

where

ϕ(t) =
σ1

µ1t

∫ t

0
S dB1(x) +

σ2

µ1t

∫ t

0
EdB2(x) +

σ3

µ1t

∫ t

0
V1dB3(x) +

σ4

µ1t

∫ t

0
V2dB4(x)

+
σ5

µ1t

∫ t

0
AdB5(x) +

σ6

µ1t

∫ t

0
IdB6(x) +

σ7

µ1t

∫ t

0
RdB7(x)

−
1
µ1

[
S (t) − S (0)

t
+

E(t) − E(0)
t

+
V1(t) − V1(0)

t
+

V2(t) − V2(0)
t

]
−

1
µ1

[
A(t) − A(0)

t
+

I(t) − I(0)
t

+
R(t) − R(0)

t

]
.

We can also obtained
⟨E(t)⟩ =

A
µ1
− [⟨S (t)⟩ + ⟨V1(t)⟩ + ⟨V2(t)⟩ + ⟨R(t)⟩]

−
(µ1 + µ2)
µ1

[⟨A(t)⟩ + ⟨I(t)⟩] + ϕ(t).
(4.7)

Then, Itôs formula is used for the fifth formula in Eq (2.2), we can get

d log A(t) =
[
(1 − ω)σE − (α + γ1 + µ1 + µ2) A

] 1
A

dt −
σ2

5

2
dt + σ5dB5(t). (4.8)
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Integrate Eq (4.8) from 0 to t:

log A(t) − log A(0)

⩽

∫ t

0

[
(1 − ω)σE −

(
α + γ1 + µ1 + µ2 +

σ2
5

2

)]
dt + σ5dB5(t)

⩽

[
(1 − ω)σE −

(
α + γ1 + µ1 + µ2 +

σ2
5

2

)]
t + σ5B5(t).

(4.9)

Substitute Eq (4.7) into Eq (4.9) and divide by t, so there is

log A(t) − log A(0)
t

⩽(1 − ω)σ⟨E(t)⟩ − (α + γ1 + µ1 + µ2 +
σ2

5

2
) +
σ5B5(t)

t

⩽
(1 − ω)σ
µ1

Λ −
(µ1 + µ2) (1 − ω)σ

µ1
⟨A(t)⟩ + (1 − ω)σϕ(t)

− (α + γ1 + µ1 + µ2 +
σ2

5

2
) +
σ5B5(t)

t

⩽(α + γ1 + µ1 + µ2 +
σ2

5

2
)(

(1 − ω)σA

µ1

(
α + γ1 + µ1 + µ2 +

σ2
5

2

) − 1)

−
(µ1 + µ2) (1 − ω)σ

µ1
⟨A(t)⟩ +

σ5B5(t)
t
+ φ(t),

(4.10)

where φ(t) = σ(1 − ω)ϕ(t). Rs
0 is the called random threshold and it is shown as

Rs
0 =

(1 − ω)σA

µ1

(
α + γ1 + µ1 + µ2 +

σ2
5

2

) .
According to the strong number theorem, we have lim

t→∞

B5(t)
t = 0, i.e., lim

t→∞

σ5B5(t)
t = 0. Therefore, take

the limit on both sides of Eq (4.10) at the same time; we then get

lim
t→∞

sup
log A(t)

t
⩽

(
α + γ1 + µ1 + µ2 +

σ2
5

2

) (
Rs

0 − 1
)

−
(µ1 + µ2) (1 − ω)σ

µ1
⟨A(t)⟩

<0;

this means that when Rs
0 < 1

lim
t→∞

A(t) = 0. (4.11)

Taking the limit on both sides of Eq (4.6) at the same time, we can obtain

lim
t→∞

S (t) =
Λ

µ1
. (4.12)
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Set M =
{
ω = Ω : limt→∞ S (t) = Λ

µ1

}
, which means that P(M) = 1 at this point.

From Eq (4.7), we can get

lim
t→∞
⟨E(t)⟩ ⩽

Λ

µ1
.

For ∀ω ∈ M, t > 0, we can get lim
t→∞

E(ω, t) = 0, ω ∈ M. Considering that P(M) = 1,we can obtain

lim
t→∞

E(t) = 0, a.s.. (4.13)

It can be seen from Eq (4.5) that

I(t) − I(0)
t

=ωσ⟨E(t)⟩ + α⟨A(t)⟩ − γ2⟨I((t)⟩ − (µ1 + µ2) ⟨I(t)⟩ +
σ6

t

∫ t

0
IdB6(x),

i.e.

⟨I(t)⟩ =
1

γ2 + µ1 + µ2
[ωσ⟨E(t)⟩ + α⟨A(t)⟩ −

I(t) − I(0)
t

+
σ6

t

∫ t

0
IdB5(t)]. (4.14)

It can be concluded that limt→∞⟨I(t)⟩ = 0, a.s.
Therefore, this conclusion is proved.

5. Numerical simulation

In this section, in order to verify the effects of vaccination and random disturbance on controlling
the spread of disease, we used the Milstein method [38, 39] to conduct numerical simulations of the
stochastic model described by Eq (2.2).

The parameter values of Eq (2.2) are shown in the following table (Table 1).

Table 1. Numerical experimental parameter values of Eq (2.2).

Parameter Value Source

Λ 0.03
β1 1.038
β2 0.083
σ 1

5.2 [40]
ω 0.8 [40]
α 0.19 [40]
γ1 0.3 [41]
γ2 0.001 [41]
µ1 0.09 [41]
µ2 0.001 [41]
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Eq (2.2) is discretized into the following format:

S j =S j−1 +
[
Λ −

(
β1A j−1 + β2I j−1

)
S j−1 − (µ1 + ρ1) S j−1

]
∆t

+ σ1

(
S j−1

) √
∆tζ j−1 +

σ2
1

2

(
S j−1

) (
ζ2

j−1 − 1
)
∆t,

E j =E j−1 +
[(
β1A j−1 + β2I j−1

)
S j−1 + α2β2V2 j−1I j−1 − (σ + µ1) E j−1

]
∆t

+ σ2

(
E j−1

) √
∆tζ j−1 +

σ2
2

2

(
E j−1

) (
ζ2

j−1 − 1
)
∆t,

V1 j =V1 j−1 +
[
ρ1S j−1 − (ρ2 + µ1) V1 j−1

]
∆t + σ3

(
V1 j−1

) √
∆tζ j−1

+
σ2

3

2

(
V1 j−1

) (
ζ2

j−1 − 1
)
∆t,

V2 j =V2 j−1 +
[
ρ2V1 j−1 − α2β2V2 j−1I j−1 − (µ1 + 1 − α2) V2 j−1

]
∆t

+ σ4

(
V2 j−1

) √
∆tζ j−1 +

σ2
4

2

(
V2 j−1

) (
ζ2

j−1 − 1
)
∆t,

A j =A j−1 +
[
(1 − ω)σE j−1 − (α + γ1 + µ1 + µ2) A j−1

]
∆t

+ σ5

(
A j−1

) √
∆tζ j−1 +

σ2
5

2

(
A j−1

) (
ζ2

j−1 − 1
)
∆t,

I j =I j−1 +
[
ωσE j−1 + αA j−1 − (γ2 + µ1 + µ2) I j−1

]
∆t

+ σ6

(
I j−1

) √
∆tζ j−1 +

σ2
6

2

(
I j−1

) (
ζ2

j−1 − 1
)
∆t,

R j =R j−1 +
[
(1 − α2) V2 j−1 + γ1A j−1 + γ2I j−1 − µ1R j−1

]
∆t

+ σ7

(
R j−1

) √
∆tζ j−1 +

σ2
7

2

(
R j−1

) (
ζ2

j−1 − 1
)
∆t,

where ζ j( j = 1, 2, · · · , n) are independent Gaussian random variables N(0, 1). Based on the
parameters in Table 1, the initial value of the numerical experiment was set as
(S (0), E(0),V1(0),V2(0), A(0), I(0),R(0)) = (0.1, 0.1, 0, 0, 0.1, 0.2, 0).

(a) (b)

Figure 2. Trends of infected persons for the deterministic and stochastic models.
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Based on Table 1, let ρ1 = 0.9, ρ2 = 0.9, α2 = 0.008, σ1 = 0.15, σ2 = 0.063, σ3 = 0.338,
σ4 = 0.068, σ5 = 0.25, σ6 = 0.09 and σ7 = 0.023. The asymptotic behavior of the stochastic model
at the disease-free equilibrium point E0 = (0.0303, 0, 0.0275, 0.0229, 0, 0, 0.2526) can be shown in
Figure 2. At this time, the random threshold is Rs

0 = 0.0209 < R0 = 0.2872 < 1.
In Figure 2, asymptomatic and symptomatic infections gradually decrease until they disappear,

which means that the disease tends to extinction. This is consistent with the previous theoretical results
on the extinction of disease. In other words, appropriate noise intensity can promote the extinction of
the disease. With the passage of time, the probability of disease extinction becomes 1.

(a) (b)

(c) (d)

Figure 3. Trends of infected persons affected by secondary vaccination rate and vaccine
efficiency.

Based on the parameters given in Table 1, ρ1 = 0.9, α2 = 0.008 and we let ρ2 equal to 0, 0.5
and 0.9 respectively, the extinction trends of asymptomatic infected person A and symptomatic infected
person I are shown in Figure 3(a) and (b). It is clear from Figure 3 that with the increase of the
secondary vaccination rate, disease extinction approaches faster. In addition, when ρ1 = 0.9, ρ2 = 0.9,
the extinction trends of the two infected populations are shown in Figure 3(c) and (d) as α2 is equal
to 0.008, 0.025 and 0.05 respectively. We found that the smaller the value of α2 and the higher the
vaccine efficiency, the faster the disease tends to extinction. So, we can know from Figure 3 that
improving the secondary vaccination rate and vaccine efficiency is one of the important measures to
effectively control the epidemic.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2980–2997.



2993

(a) (b)

Figure 4. Trends of infected persons in stochastic model under different intensities σ5.

According to Theorem 2, σ5 is random intensity acting on asymptomatic infected persons which
can directly affect the random threshold Rs

0. This means that σ5 can directly affect the speed of the
extinction of the disease and that other noise intensity types indirectly affects the extinction of the
disease. Therefore the influence of σ5 on the extinction of the disease was mainly investigated. When
other noise intensity types are kept constant and σ5 is set to 0, 0.05, 0.15 and 0.25 respectively, the
influence of different noise intensities on disease extinction is shown in Figure 4. It can be seen in
Figure 4 that the noise intensity can promote the extinction of the infected population. Under the
constraint of a random threshold, the higher the noise intensity σ5, the faster the disease-free
equilibrium point is reached.

In real life, σ5 represents the disturbance intensity of infected persons under the policies of
isolation measures, the effective diagnosis of asymptomatic infected persons and self-protection.
From the above analysis, it can be seen that the more complete the intervention policies for infected
people, the better the disease prevention and control.

6. Conclusions

At present, the mathematical modeling of infectious diseases plays an important role in
providing epidemic prevention and control strategies. In order to control the epidemic in real life,
quarantine and other epidemic prevention measures have been proposed, which have become a
random disturbance factor affecting the spread of the epidemic in the infectious disease model. So far,
vaccination is considered to be one of the most popular and effective methods to alleviate and prevent
epidemics. Based on this, the S EV1V2AIR model was established by considering random disturbance
and secondary vaccination, and then the dynamical analysis of the model was carried out. First, using
the stop time theory and Lyapunov analysis method, it was proved that the proposed model has a
globally unique positive solution. Then, we obtained the theoretical results about the random
threshold Rs

0. When RS
0 < 1, the disease tends to become extinct. Finally, numerical simulations were

performed to verify the theoretical results.
In this paper, the theoretical and numerical simulations show that vaccination and random

disturbance have a great impact on disease dynamics. The intensity of the random disturbance
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directly affects the extinction rate of the infected population. In addition, the higher the secondary
vaccination rate and vaccine effectiveness, the faster the extinction rate of the disease. In order to
control infectious diseases, we can not only reduce the disease transmission rate through isolation,
self-protection and other measures, but also encourage susceptible individuals to get vaccinated and
improve the effectiveness of the vaccine. These conclusions provide theoretical basis for preventing
and controlling the spread of COVID-19.

Furthmore, the impact of some discontinuous factors and vaccine frequency on COVID-19 will
be discussed in the future work because of more influential disturbances, such as large-scale human
aggregation, the promotion of antiviral drugs and so on.
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