Research article Special Issues

Spatial decay bound and structural stability for the double-diffusion perturbation equations


  • Received: 05 October 2022 Revised: 07 November 2022 Accepted: 12 November 2022 Published: 01 December 2022
  • In this paper, we study the double-diffusion perturbation equations when the flow is through a porous medium. If the initial conditions satisfy some constraint conditions, the Saint-Venant type spatial decay of solutions for double-diffusion perturbation equations is obtained. Based on the spatial decay bound, the structural stability for the double-diffusion perturbation equations is also established.

    Citation: Yuanfei Li, Xuejiao Chen. Spatial decay bound and structural stability for the double-diffusion perturbation equations[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2998-3022. doi: 10.3934/mbe.2023142

    Related Papers:

  • In this paper, we study the double-diffusion perturbation equations when the flow is through a porous medium. If the initial conditions satisfy some constraint conditions, the Saint-Venant type spatial decay of solutions for double-diffusion perturbation equations is obtained. Based on the spatial decay bound, the structural stability for the double-diffusion perturbation equations is also established.



    加载中


    [1] Y. Li, C. Lin, Spatial decay for solutions to 2-D Boussinesq system with variable thermal diffusivity, Acta Appl. Math., 154 (2017), 111–130. https://doi.org/10.1007/s10440-017-0136-z doi: 10.1007/s10440-017-0136-z
    [2] Y. Liu, H. Qiu, C. Lin, Sptial decay bounds of solutions to the Navier-Stokes equations for transient compressible viscous flow, J. Korean Math. Soc., 48 (2011), 1153–1170. https://doi.org/10.4134/JKMS.2011.48.6.1153 doi: 10.4134/JKMS.2011.48.6.1153
    [3] J. C. Song, Spatial decay estimates in time-dependent double-diffusive Darcy plane flow, J. Math. Anal. Appl., 267 (2002), 76–88. https://doi.org/10.1006/jmaa.2001.7750 doi: 10.1006/jmaa.2001.7750
    [4] R. J. Knops, R. Quintanilla, Spatial decay in transient heat conduction for general elongated regions, Q. Appl. Math., 76 (2018), 611–625. https://doi.org/10.1090/qam/1497 doi: 10.1090/qam/1497
    [5] R. Quintanilla, Some remarks on the fast spatial growth/decay in exterior regions, Z. Angew. Math. Phys., 70 (2019), 83. https://doi.org/10.1007/s00033-019-1127-x doi: 10.1007/s00033-019-1127-x
    [6] Y. Li, S. Xiao, X. Chen, Spatial alternative and stability of type III Thermoelastic equations, Appl. Math. Mech., 42 (2021), 431–440. https://doi.org/10.21656/1000-0887.410270 doi: 10.21656/1000-0887.410270
    [7] M. C. Leseduarte, R. Quintanilla, On the decay of solutions for the heat conduction with two temperatures, Acta Mech., 224 (2013), 631–643. https://doi.org/10.1007/s00707-012-0777-y doi: 10.1007/s00707-012-0777-y
    [8] X. Chen, Y. Li, Structural stability on the boundary coefficient of the Thermoelastic equations of type III, Mathematics, 10 (2022), 366. https://doi.org/10.3390/math10030366 doi: 10.3390/math10030366
    [9] W. Chen, Cauchy problem for thermoelastic plate equations with different damping mechanisms, Commun. Math. Sci., 18 (2020), 429–457. https://doi.org/10.4310/CMS.2020.v18.n2.a7 doi: 10.4310/CMS.2020.v18.n2.a7
    [10] W. Chen, Decay properties and asymptotic profiles for elastic waves with Kelvin-Voigt damping in 2D, Asymptotic Anal., 117 (2020), 113–140. https://doi.org/10.3233/ASY-191548 doi: 10.3233/ASY-191548
    [11] L. E. Payne, J. C. Song, Spatial decay bounds for the Forchheimer equations, Int. J. Eng. Sci., 40 (2002), 943–956. https://doi.org/10.1016/S0020-7225(01)00102-1 doi: 10.1016/S0020-7225(01)00102-1
    [12] N. L. Scott, Continuous dependence on boundary reaction terms in a porous medium of Darcy type, J. Math. Anal. Appl., 399 (2013), 667–675. https://doi.org/10.1016/j.jmaa.2012.10.054 doi: 10.1016/j.jmaa.2012.10.054
    [13] Y. Liu, Continuous dependence for a thermal convection model with temperaturedependent solubitity, Appl. Math. Comput., 308 (2017), 18–30. https://doi.org/10.1016/j.amc.2017.03.004 doi: 10.1016/j.amc.2017.03.004
    [14] L. E. Payne, J. C. Song, Spatial decay estimates for the Brinkman and Darcy flows in a semi-infinite cylinder, Continuum Mech. Thermodyn., 9 (1997), 175–190. https://doi.org/10.1007/s001610050064 doi: 10.1007/s001610050064
    [15] K. A. Ames, L. E. Payne, J. C. Song, Spatial decay in the pipe flow of a viscous fluid interfacing a porous medium, Math. Models Methods Appl. Sci., 118 (2001), 1547–1562. https://doi.org/10.1142/S021820250100146X doi: 10.1142/S021820250100146X
    [16] Y. Liu, S. Xiao, Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain, Nonlinear Anal. Real World Appl., 42 (2018), 308–333. https://doi.org/10.1016/j.nonrwa.2018.01.007 doi: 10.1016/j.nonrwa.2018.01.007
    [17] Y. Liu, S. Xiao, Y. Lin, Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain, Math. Comput. Simul., 150 (2018), 66–82. https://doi.org/10.1016/j.matcom.2018.02.009 doi: 10.1016/j.matcom.2018.02.009
    [18] D. A. Nield, A. V. Kuznetsov, Do isoflux boundary conditions inhibit oscillatory double-diffusive convection, Transp. Porous Media, 112 (2016), 609–618. https://doi.org/10.1007/s11242-016-0666-2 doi: 10.1007/s11242-016-0666-2
    [19] B. Straughan, Heated and salted below porous convection with generalized temperature and solute boundary conditions, Transp. Porous Media, 131 (2020), 617–631. https://doi.org/10.1007/s11242-019-01359-y doi: 10.1007/s11242-019-01359-y
    [20] M. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974. https://doi.org/10.1016/s0079-8169(08)x6044-1
    [21] Y. Li, X. Chen, J. Shi, Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid, Appl. Math. Optim., 84 (2021), 979–999. https://doi.org/10.1007/s00245-021-09791-7 doi: 10.1007/s00245-021-09791-7
    [22] Y. Liu, X. Qin, J. Shi, W. Zhi, Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in $\mathbb{R}^2$, Appl. Math. Comput., 411 (2021), 126488. https://doi.org/10.1016/j.amc.2021.126488 doi: 10.1016/j.amc.2021.126488
    [23] N. L. Scott, B. Straughan, Continuous dependence on the reaction terms in porous convection with surface reactions, Q. Appl. Math., 71 (2013), 501–508. https://doi.org/10.1090/S0033-569X-2013-01289-X doi: 10.1090/S0033-569X-2013-01289-X
    [24] M. Gentile, B. Straughan, Structural stability in resonant penetrative convection in a Forchheimer porous material, Nonlinear Anal. Real World Appl., 14 (2013), 397–401. https://doi.org/10.1016/j.nonrwa.2012.07.003 doi: 10.1016/j.nonrwa.2012.07.003
    [25] Y. Li, S. Xiao, P. Zeng, The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere, J. Math. Inequal., 15 (2021), 293–304. https://doi.org/10.7153/jmi-2021-15-22 doi: 10.7153/jmi-2021-15-22
    [26] C. Lin, L. E. Payne, Continuous dependence on the Soret coefficient for double diffusive convection in Darcy flow, J. Math. Anal. Appl., 342 (2008), 311–325. https://doi.org/ 10.1016/j.jmaa.2007.11.036 doi: 10.1016/j.jmaa.2007.11.036
    [27] R. Quintanilla, Convergence and structural stability in thermoelasticity, Appl. Math. Comput., 135 (2003), 287–300. https://doi.org/10.1016/S0096-3003(01)00331-9 doi: 10.1016/S0096-3003(01)00331-9
    [28] R. Quintanilla, Structural stability and continuous dependence of solutions in thermoelasticity of type III, Discrete Contin. Dyn. Syst. B, 1 (2001), 463–470. https://doi.org/10.3934/dcdsb.2001.1.463 doi: 10.3934/dcdsb.2001.1.463
    [29] B. Straughan, Continuous dependence on the heat source in resonant porous penetrative convection, Stud. Appl. Math., 127 (2011), 302–314. https://doi.org/10.1111/j.1467-9590.2011.00521.x doi: 10.1111/j.1467-9590.2011.00521.x
    [30] M. Ciarletta, B. Straughan, V. Tibullo, Structural stability for a thermal convection model with temperature-dependent solubility, Nonlinear Anal. Real World Appl., 22 (2015), 34–43. https://doi.org/10.1016/j.nonrwa.2014.07.012 doi: 10.1016/j.nonrwa.2014.07.012
    [31] C. O. Horgan, L. T. Wheeler, Spatial decay estimates for the Navier–Stokes equations with application to the problem of entry flow, SIAM J. Math. Anal., 35 (1978), 97–116. https://doi.org/10.1137/0135008 doi: 10.1137/0135008
    [32] H. A. Levine, An estimate for the best constant in a Sobolev inequality involving three integral norms, Ann. Mat. Pura Appl., 4 (1980), 181–197. https://doi.org/10.1007/BF01795392 doi: 10.1007/BF01795392
    [33] Y. Li, C. Lin, Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe, Appl. Math. Comput., 244 (2014), 201–208. https://doi.org/10.1016/j.amc.2014.06.082 doi: 10.1016/j.amc.2014.06.082
    [34] J. Shi, S. Luo, Convergence results for the double-diffusion perturbation equations, Symmetry, 14 (2022), 67. https://doi.org/10.3390/sym14010067 doi: 10.3390/sym14010067
    [35] H. Li, S. Wang, X. Li, G. Zhao, Perturbation analysis for controllability of logical control networks, SIAM J. Control Optim., 584 (2020), 3632–3657. https://doi.org/10.1137/19M1281332 doi: 10.1137/19M1281332
    [36] H. Li, X. Yang, S. Wang, Robustness for stability and stabilization of Boolean networks with stochastic function perturbations, IEEE Trans. Autom. Control, 66 (2021), 1231–1237. https://doi.org/10.1109/TAC.2020.2997282 doi: 10.1109/TAC.2020.2997282
    [37] S. Liang, H. Li, S. Wang, Structural controllability of Boolean control networks with unknown function structure, Sci. China Inf. Sci., 63 (2020), 219203. https://doi.org/10.1007/s11432-018-9770-4 doi: 10.1007/s11432-018-9770-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1090) PDF downloads(51) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog