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Abstract: In this paper, we study the double-diffusion perturbation equations when the flow is through
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1. Introduction

The asymptotic behavior or norm of solutions to initial-boundary value problems of various partial
differential equations has received attention for many years, and a large number of results have been
obtained (see [1–10]). These results can be regarded as a study of the Saint-Venant principle type
which has been commonly used in engineering mechanics.

We note that Payne and Song [11] studied the Forchheimer equation

b|u|u + (1 + γT )u + ∇p − gT = 0,
∇ · u = 0,

Tt + u · ∇T − ∆T = 0,
|u|, |T | = O(1), |u3|, |∇T |, |p| = o(x−1

3 ), as x3 → ∞,

where u = (u1, u2, u3),T and p denote the velocity, temperature and pressure in the semi-infinite pipe,
respectively. b and γ are positive constants. The vector g = (g1, g2, g3) represents a gravity field.
Using the maximum principle, they first got the maximum value of the temperature and then obtained
the exponential decay result of the solutions. Using a similar method, other studies that obtained the
desired results can be seen in [12–17].
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In this paper, we consider the following cylindrical domain

Ω =
{
(x1, x2, x3)

∣∣∣∣(x1, x2) ∈ D, x3 > 0
}
,

where D is a bounded simply connected region in the (x1, x2)-plane with the piecewise smooth bound-
ary ∂D. We let D(z) denote the cross-section of Ω at x3 = z, i.e.,

D(z) =
{
(x1, x2, x3)

∣∣∣∣(x1, x2) ∈ D, x3 = z > 0
}
.

We present the non-dimensional perturbation equations in the form of (see [18, 19])

ui + RTki − p,i −Ckiϕ = 0, in Ω × (0, t), (1.1)
ui,i = 0, in Ω × (0, t) (1.2)

Tt + uiT,i = u3 + ∆T, in Ω × (0, t) (1.3)
ε1ϕt + Leuiϕ,i = u3 + ∆ϕ, in Ω × (0, t), (1.4)

with the following initial-boundary conditions

ui = 0, T = ϕ = 0, on ∂D × {x3 > 0} × (0, t), (1.5)
ui = fi(x1, x2, t), T = h(x1, x2, t), ϕ = H(x1, x2, t), on D × (0, t), (1.6)

T = ϕ = 0, in Ω × {t = 0}, (1.7)
|u|, |T |, |ϕ| = O(1), |u3|, |∇T |, |∇ϕ|, |p| = o(x−1

3 ), as x3 → ∞. (1.8)

Here ϕ is the concentration perturbation, Le is the Lewis number, ε1 = εLe (ε is the porosity), R and C
are the Rayleigh and salt Rayleigh numbers, respectively, and k = (k1, k2, k3) = (0, 0, 1). The prescribed
functions f = ( f1, f2, f3), h and H are continuously differentiable and fi satisfies the constraint condition

∂ f1

∂x1
+
∂ f2

∂x2
= 0.

It can be seen from Eqs (1.3) and (1.4) that we cannot obtain the maximum values of temperature
and concentration perturbations as in the previous studies. Therefore, the spatial decay results we
derive will not be obtained by using the previous methods. We must adopt a new method to overcome
the difficulty of being able to obtain the maximum value of the temperature. To do this, we derive the
L4 norms of T and ϕ. There is no Laplacian term in Eq (1.1), so we need to use the Soblev inequality
to derive a nonlinear differential inequality about the L2 norms of the the velocity and its gradient.

The second aim is to study the structural stability of solutions of Eqs (1.1)–(1.8). The concept
of structural stability was first proposed by Hirsch and Smale [20]. Structural stability of this type
involves studying whether a small change in a coefficient in the equations will induce a dramatic
change in the solution. There is a large number of studies that investigated have studied the structural
stability of various types of partial differential equations. Scott [12] considered a porous medium of
Darcy type and obtained the continuous dependence on boundary reaction terms. Considering the
simultaneous existence of multiple fluids in a bounded region, Li et al. [21] obtained the structural
stability of resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy
fluid. Liu et al. [22] assumed that Boussinesq fluid interfaced with a Darcy fluid in a bounded region
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in R2, and they obtained the continuous dependence on the interface parameters. For more papers one
can refer to [23–30]. Clearly, most of the above articles mainly focused on the structural stability of
solutions on bounded regions. The innovation of this work is to extend the study of structural stability
in a bounded region to a semi-infinite cylinder. In this work, we still need the prior bounds of the L4

norm of T and ϕ, the H1 norm of u, and the spatial decay estimate of solutions.
We declare that in Eqs (1.1)–(1.8) and in the whole paper, the usual summation convention is em-

ployed with repeated Latin subscripts summed from 1 to 3 and repeated Greek alphabet summed

from 1 to 2. The comma is used to indicate partial differentiation, e.g., ui, jui, j = Σ3
i, j=1

(
∂ui
∂x j

)2
and

uα,βuα,β = Σ2
α,β=1

(
∂uα
∂xβ

)2
.

The plan of the paper is as follows. In the next section, we derive the a priori bounds for T, ϕ and
u in the region Ω. The third section is devoted to deriving the spatial decay bound for the solution.
In Section 4, we prove the continuous dependence on the coefficients R and C. In the Section 5, a
convergence result is proved for Eqs (1.1)–(1.8) when (R,C)→ (0, 0).

2. Preliminaries of the problem

To obtain the main result, we shall make frequent use of the following inequalities.
Lemma 2.1 (see [11, 31]) If v

∣∣∣∣
∂D

= 0, then

λ1

∫
D
|v|2dA ≤

∫
D

v,αv,αdA,

where λ1 is the smallest positive eigenvalue of

∆2ϑ + λϑ = 0, in D, ϑ = 0, on ∂D.

Lemma 2.2 (see [32, 33]) If vi ∈ C1(D × (0,∞)) and vi vanishes on ∂D for x3 ≥ z and if vi vanishes
as x3 → ∞, then ∫ ∞

z

∫
D(ξ)

(vivi)3dAdξdη ≤ k1

[ ∫ ∞

z

∫
D(ξ)

vi, jvi, jdAdξ
]3
,

where k1 = 1
27

(
3
4

)4
.

We can prove the following lemmas.
Lemma 2.3 If

∫
D

fαdA = 0, fi ∈ L2(D), then∫
D

u3 pdA ≤ n1(t),

where n1(t) is a positive computable function.
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Proof. From Eq (1.1), we can have

uα(x1, x2, x3, t) − p,α(x1, x2, x3, t) = 0 (2.1)

for α = 1, 2. Since
∫

D
fαdA = 0, we integrate Eq (2.1) on D to obtain

p|∂D =

∫
D

p,αdA =

∫
D

uαdA =

∫
D

fαdA = 0.

Therefore, using Lemma 2.1 we obtain∫
D

u3 pdA ≤
[ ∫

D
f 2
3 dA

∫
D

p2dA
] 1

2
≤

1
√
λ1

[ ∫
D

f 2
3 dA

∫
D

p,αp,αdA
] 1

2
. (2.2)

In light of Eq (2.1), from Eq (2.2) we can obtain∫
D

u3 pdA ≤
1

2
√
λ1

∫
D

fi fidA. (2.3)

Choosing n1(t) = 1
2
√
λ1

∫
D

fi fidA, from Eq (2.3) we can have Lemma 2.3.
Lemma 2.4 Letting

ĥ(x1, x2, x3, t) = h(x1, x2, t)e−σ1 x3 , σ1 > 0 (2.4)

and assuming h ∈ L2(Ω × (0, t)), then

−

∫ t

0

∫
D(0)

e−ωηTT,3dAdη ≤ n2(t) + ε1

∫ t

0

∫
Ω

e−ωηT,iT,idAdξdη

+ ε2e−ωt
∫

Ω

T 2dAdξ + (ε3 +
1

4ε4
L2

M)
∫ t

0

∫
Ω

e−ωηT 2dAdξdη

+ ε4

∫ t

0

∫
Ω

e−ωηuiuidAdξdη + ε5

∫ t

0

∫
Ω

e−ωηu2
3dAdξdη, (2.5)

and

−

∫ t

0

∫
D(0)

e−ωηT 3T,3dAdη ≤ n′2(t) + ε′1

∫ t

0

∫
Ω

e−ωηT,iT,idAdξdη

+ ε′2e−ωt
∫

Ω

T 2dAdξ + (ε′3 +
1

4ε′4
L6

M)
∫ t

0

∫
Ω

e−ωηT 2dAdξdη

+ ε′4

∫ t

0

∫
Ω

e−ωηuiuidAdξdη + ε′5

∫ t

0

∫
Ω

e−ωηu2
3dAdξdη, (2.6)

where LM = supΩ×(0,t){|∇h(x1, x2, x3, t)|, |∇H(x1, x2, x3, t)|}, n2(t) and n′2(t) are computable functions and
ω, εi, ε

′
i(i = 1, 2, ..., 5) are positive constants.
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Proof. From the definition of ĥ, we can conclude that ĥ has the same initial-boundary conditions
as T . Therefore, we have

−

∫ t

0

∫
D(0)

e−ωηTT,3dAdη = −

∫ t

0

∫
D(0)

e−ωη̂hT,3dAdη =

∫ t

0

∫
Ω

e−ωη(̂hT,i),idAdξdη

=

∫ t

0

∫
Ω

e−ωη̂h,iT,idAdξdη +

∫ t

0

∫
Ω

e−ωη̂h(Tη + uiT,i − u3)dAdξdη

=

∫ t

0

∫
Ω

e−ωη̂h,iT,idAdξdη + e−ωt
∫

Ω

ĥTdAdξ

+ ω

∫ t

0

∫
Ω

e−ωη̂hTdAdξdη −
∫ t

0

∫
Ω

e−ωη̂hηTdAdξdη

−

∫ t

0

∫
Ω

e−ωη̂h,iuiTdAdξdη −
∫ t

0

∫
Ω

ĥu3dAdξdη

−

∫ t

0

∫
Ω

e−ωηh2 f3dAdξdη

� A1(t) + A2(t) + A3(t) + A4(t) + A5(t) + A6(t)

−

∫ t

0

∫
Ω

e−ωηh2 f3dAdξdη. (2.7)

By the Hölder inequality and the Young inequality, we obtain

A1(t) ≤ ε1

∫ t

0

∫
Ω

e−ωηT,iT,idAdξdη +
1

4ε1

∫ t

0

∫
Ω

e−ωη̂h,îh,idAdξdη, (2.8)

A2(t) ≤ ε2e−ωt
∫

Ω

T 2dAdξ +
1

4ε2
e−ωt

∫
Ω

ĥ2dAdξ, (2.9)

A3(t) ≤
1
2
ε3

∫ t

0

∫
Ω

e−ωηT 2dAdξdη +
1

2ε3
ω2

∫ t

0

∫
Ω

e−ωη̂h2dAdξdη, (2.10)

A4(t) ≤
1
2
ε3

∫ t

0

∫
Ω

e−ωηT 2dAdξdη +
1

2ε3

∫ t

0

∫
Ω

e−ωη̂h2
ηdAdξdη, (2.11)

A5(t) ≤ ε4

∫ t

0

∫
Ω

e−ωηuiuidAdξdη +
1

4ε4
L2

M

∫ t

0

∫
Ω

e−ωηT,iT,idAdξdη, (2.12)

A6(t) ≤ ε5

∫ t

0

∫
Ω

e−ωηu2
3dAdξdη +

1
4ε5

∫ t

0

∫
Ω

e−ωη̂h2dAdξdη. (2.13)

Inserting Eqs (2.8)–(2.13) into Eq (2.7) and choosing

n3(t) =
1

4ε1

∫ t

0

∫
Ω

e−ωη̂h,îh,idAdξdη +
1

4ε2
e−ωt

∫
Ω

ĥ2dAdξ

+
1

4ε3

∫ t

0

∫
Ω

e−ωη̂h2
ηdAdξdη + (

1
2ε3

ω2 +
1

4ε5
)
∫ t

0

∫
Ω

e−ωη̂h2dAdξdη

−

∫ t

0

∫
Ω

e−ωηh2 f3dAdξdη, (2.14)
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we can obtain Eq (2.5). Using a similar method, we can also obtain Eq (2.6).
If we let

Ĥ(x1, x2, x3, t) = H(x1, x2, t)e−σ2 x3 , σ2 > 0, (2.15)

we can obtain the following lemma.
Lemma 2.5 Assuming H ∈ L∞(Ω × (0, t)), then

−

∫ t

0

∫
D(0)

e−ωηϕϕ,3dAdη ≤ n3(t) + (δ1 +
1

4δ4
L2

M)
∫ t

0

∫
Ω

e−ωηϕ,iϕ,idAdξdη

+ δ2e−ωt
∫

Ω

ϕ2dAdξ + δ3

∫ t

0

∫
Ω

e−ωηϕ2dAdξdη

+ δ4

∫ t

0

∫
Ω

e−ωηuiuidAdξdη + δ5

∫ t

0

∫
Ω

e−ωηu2
3dAdξdη, (2.16)

and

−

∫ t

0

∫
D(0)

e−ωηϕ3ϕ,3dAdη ≤ n′3(t) + (δ′1 +
1

4δ′4
L2

M)
∫ t

0

∫
Ω

e−ωηϕ,iϕ,idAdξdη

+ δ′2e−ωt
∫

Ω

ϕ2dAdξ + δ′3

∫ t

0

∫
Ω

e−ωηϕ2dAdξdη

+ δ′4

∫ t

0

∫
Ω

e−ωηuiuidAdξdη + δ′5

∫ t

0

∫
Ω

e−ωηu2
3dAdξdη, (2.17)

where n3(t) and n′3(t) are computable functions and δi, δ
′
i(i = 1, 2, ..., 5) are positive constants.

Now, we multiply Eq (1.1) by ui, and integrate in [z,∞) × D(ξ) to have∫ ∞

z

∫
D(ξ)

[
ui + RTki − p,i −Ckiϕ

]
uidAdξ = 0.

Therefore, we have∫ ∞

z

∫
D(ξ)

uiuidAdξ = −R
∫ ∞

z

∫
D(ξ)

Tu3dAdξ

+ C
∫ ∞

z

∫
D(ξ)

ϕu3dAdξ −
∫

D(z)
pu3dA. (2.18)

Using the Schwarz inequality, we have∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηuiuidAdξdη ≤ −R
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηTu3dAdξdη +
1
2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηu2
3dAdξdη

+
1
2

C2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηϕ2dAdξdη −
∫ t

0

∫
D(z)

e−ωηpu3dAdη,
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or ∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηuiuidAdξdη ≤ −2R
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηTu3dAdξdη

+ C2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηϕ2dAdξdη −
∫ t

0

∫
D(z)

e−ωηpu3dAdη. (2.19)

To obtain the bound for ||u||2L2(Ω×(0,t)), we have to seek bounds for ||T ||2L2(Ω×(0,t)) and ||ϕ||2L2(Ω×(0,t)). To
do this, we multiply Eq (1.3) by e−ωηT , and integrate in [z,∞) × D(ξ) × (0, t) to have

1
2

e−ωt
∫ ∞

z

∫
D(ξ)

T 2dAdξ +

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[1
2
ωT 2 + T,iT,i

]
dAdξdη

=

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηTu3dAdξdη

+
1
2

∫ t

0

∫
D(z)

u3T 2dAdη −
∫ t

0

∫
D(z)

e−ωηTT,3dAdη. (2.20)

Similarly, we obtain

1
2

e−ωtε1

∫ ∞

z

∫
D(ξ)

ϕ2dAdξ +

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[1
2
ε1ωϕ

2 + ϕ,iϕ,i
]
dAdξdη

≤
1
4

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηu2
3dAdξdη +

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηϕ2dAdξdη

+
1
2

Le
∫ t

0

∫
D(z)

e−ωηu3ϕ
2dAdη −

∫ t

0

∫
D(z)

e−ωηϕϕ,3dAdη. (2.21)

Combining Eqs (2.19)–(2.21) with z = 0, using Lemma 2.3 and Eqs (2.5), (2.16) and (1.6) and
choosing

ε1 = ε2 = δ1 =
1
2
, ε3 = δ3 = 1, ε4 = ε5 =

1
32R

, δ4 = δ5 =
1

16
, ω > max{4 +

1
ε4

L2
M,

4C2

ε1
+

4
ε1

+
1
ε1δ4

L2
M},

we can obtain the following lemma.
Lemma 2.6 If h,H ∈ L∞(Ω × (0, t)), then

e−ωtR
∫

Ω

T 2dAdξ + e−ωtε1

∫
Ω

ϕ2dAdξ

+

∫ t

0

∫
Ω

e−ωη
[
uiui + RωT 2 +

1
2
ε1ωϕ

2 + 2RT,iT,i + ϕ,iϕ,i
]
dAdξdη

≤ n4(t),

where

n4(t) = 4
∫ t

0
e−ωηn1(η)dη + 4Rn32(t) + 2n3(t)
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+ 2R
∫ t

0

∫
D(0)

f3h2dAdη + Le
∫ t

0

∫
D(0)

e−ωη f3H2dAdη. (2.22)

Now using the Schwarz inequality and Lemmas 2.2 and 2.6 in Eq (2.18), we have∫
Ω

uiuidAdξ ≤ 2R2
∫

Ω

T 2dAdξ + 2C2
∫

Ω

ϕ2dAdξ + n1(t)

≤ 2 max
{
R,

C2

ε1

}
eωtn4(t) + n1(t). (2.23)

To get our main result, we also need the bound for ||∇u||L2(Ω×(0,t)). We note that∫ ∞

0

∫
D(ξ)

ui, jui, jdAdξ =

∫ ∞

0

∫
D(ξ)

(ui, j − u j,i)ui, jdAdξ +

∫ ∞

0

∫
D(ξ)

ui, ju j,idAdξ. (2.24)

Using the divergence theorem and Eqs (1.2) and (1.5), we have

−

∫ ∞

z

∫ ∞

ζ

∫
D(ξ)

ui, ju j,idAdξdζ =

∫ ∞

z

∫
D(ζ)

u3, ju jdAdζ = −

∫
D(z)

u2
3dA.

Therefore, we obtain ∫ ∞

z

∫
D(ξ)

ui, ju j,idAdξ = −

∫
D(z)

u3u3,3dA. (2.25)

Now letting
Fi(x1, x2, x3, t) = fi(x1, x2, t)e−σ3 x3 , σ3 > 0,

we can know that Fi has the same boundary condition as ui. Using Eq (1.6), from Eq (2.25) we obtain∫ ∞

0

∫
D(ξ)

ui, ju j,idAdξdζ = −

∫
D

F3u3,3dA =

∫ ∞

0

∫
D(ξ)

(F3ui,3),idAdξ

=

∫ ∞

0

∫
D(ξ)

F3,iui,3dAdξ

≤
1
4

∫ ∞

0

∫
D(ξ)

ui,3ui,3dAdξ +

∫ ∞

0

∫
D(ξ)

F3,iF3,idAdξ. (2.26)

For the first term on the right of Eq (2.24), we can compute∫ ∞

0

∫
D(ξ)

(ui, j − u j,i)ui, jdAdξ = −R
∫ ∞

0

∫
D(ξ)

(T, ju3, j − T,iui,3)dAdξ

+ C
∫ ∞

0

∫
D(ξ)

(ϕ, ju3, j − ϕ,iui,3)dAdξ

≤
1
8

∫ ∞

0

∫
D(ξ)

u3, ju3, jdAdξ +
1
8

∫ ∞

0

∫
D(ξ)

ui,3ui,3dAdξ

+ 8R2
∫ ∞

0

∫
D(ξ)

T, jT, jdAdξ + 8C2
∫ ∞

0

∫
D(ξ)

ϕ, jϕ, jdAdξ. (2.27)
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Inserting Eqs (2.26) and (2.27) into Eq (2.24), we obtain∫ ∞

0

∫
D(ξ)

ui, jui, jdAdξ ≤ 16R2
∫ ∞

0

∫
D(ξ)

T, jT, jdAdξ + 16C2
∫ ∞

0

∫
D(ξ)

ϕ, jϕ, jdAdξ

+ 2
∫ ∞

0

∫
D(ξ)

F3,iF3,idAdξ, (2.28)

or ∫ t

0

∫
Ω

e−ωηui, jui, jdAdξdη ≤ 16R2
∫ t

0

∫
Ω

e−ωηT, jT, jdAdξ

+ 16C2
∫

Ω

e−ωηϕ, jϕ, jdAdξdη

+ 2
∫ t

0

∫
Ω

e−ωηF3,iF3,idAdξdη

≤ 8 max{R, 2C2}n4(t) + 2
∫ t

0

∫
Ω

e−ωηF3,iF3,idAdξdη. (2.29)

We summarize the above results as the following lemma.
Lemma 2.7 If f ∈ H1(Ω × (0, t)) and h,H ∈ L∞(Ω × (0, t)), then∫

Ω

uiuidAdξ ≤ n5(t),
∫ t

0

∫
Ω

e−ωηui, jui, jdAdξdη ≤ n6(t),

where n5(t) = 2 max{R, C2

ε1
}eωtn4(t) + n1(t) and n6(t) = 8 max{R, 2C2}n4(t) + 2

∫ t

0

∫
Ω

e−ωηF3,iF3,idAdξdη.
For the bounds of ||T ||L4(Ω and ||ϕ||L4(Ω), we can prove the following lemma.
Lemma 2.8 If f ∈ H1(Ω × (0, t)) and h,H ∈ L∞(Ω × (0, t)), then∫

Ω

e−ωtT 4dAdξ ≤ n7(t), ε1

∫
Ω

e−ωtϕ4dAdξ ≤ n8(t),

where n7(t) and n8(t) are positive computable functions.
Proof. We compute

d
dt

{ ∫
Ω

e−ωtT 4dAdξ
}

+ ω

∫
Ω

e−ωtT 4dAdξ

= 4
∫

Ω

e−ωtT 3
[
∆T + u3 − uiT,i

]
dAdξ

= −12
∫

Ω

e−ωtT 2T,iT,idAdξ + 4
∫

Ω

e−ωtT 3u3dAdξ

+

∫
D(0)

e−ωth3 f3dA + 4
∫

D(0)
e−ωtT 3T,3dA. (2.30)
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Using the Hölder inequality and Lemmas 2.2 and 2.6, we obtain

4
∫

Ω

e−ωtT 3u3dAdξ ≤ 4
[ ∫

Ω

e−ωtT 6dAdξ
] 1

6
[ ∫

Ω

e−ωtT 2dAdξ
] 1

2
[ ∫

Ω

e−ωtu6
3dAdξ

] 1
12
[ ∫

Ω

e−ωtu2
3dAdξ

] 1
4

≤
4
√
λ1

√
n4(t) 4

√
k1

[ ∫
Ω

e−ωtT,iT,idAdξ
] 1

2
[ ∫

Ω

e−ωtu3,iu3,idAdξ
] 1

2

≤
2 4√k1
√
λ1

√
n4(t)

[ ∫
Ω

e−ωtT,iT,idAdξ +

∫
Ω

e−ωtu3,iu3,idAdξ
]
. (2.31)

Inserting Eq (2.31) into Eq (2.30) and integrating Eq (2.30) from 0 to t, we have∫
Ω

e−ωtT 4dAdξ + ω

∫ t

0

∫
Ω

e−ωηT 4dAdξdη

≤
2 4√k1
√
λ1

√
n4(t)

[ ∫ t

0

∫
Ω

e−ωηT,iT,idAdξdη +

∫ t

0

∫
Ω

e−ωηu3,iu3,idAdξdη
]

+

∫ t

0

∫
D(0)

e−ωηh3 f3dAdη + 4
∫ t

0

∫
D(0)

e−ωηT 3T,3dAdη. (2.32)

Using Lemma 2.7, Eq (2.6) and Lemma 2.6, we have, from Eq (2.32)∫
Ω

e−ωtT 4dAdξ + ω

∫ t

0

∫
Ω

e−ωηT 4dAdξdη ≤ n7(t), (2.33)

where

n7(t) =
2 4√k1
√
λ1

√
n4(t)

[ 1
2R

n4(t) + n6(t)
]

+
1

2R
δiε
′
1n4(t) + ε′2n4(t) +

1
Rω

(ε′3 +
1

4ε′4
L6

M)n4(t)

+ ε′4n4(t) + ε′5n4(t) + n′2(t).

Similarly, for ϕ we have

ε1

∫
Ω

e−ωtϕ4dAdξ + ε1ω

∫ t

0

∫
Ω

e−ωtϕ4dAdξdη ≤ n8(t), (2.34)

where n8(t) is a positive function which is similar to n7(t).

3. Spatial decay bound

In this section, we shall derive the spatial decay bounds for the solutions of Eqs (1.1)–(1.8). To do
this, we define

F(z, t) = e−ωt
∫ ∞

z

∫
D(ξ)

[
2RT 2 + ε1ϕ

2
]
dAdξ

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[1
2

uiui + RωT 2 +
1
2
ε1ωϕ

2 + 2RT,iT,i + 2ϕ,iϕ,i
]
dAdξdη. (3.1)
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If we choose z = 0 in Eq (3.1), using Lemma 2.6, we can conclude that F(0, t) can be bounded by
known data.

We define

F (z, t) =

∫ ∞

z
F(ξ, t)dξ = e−ωt

∫ ∞

z

∫
D(ξ)

(ξ − z)
[
2RT 2 + ε1ϕ

2
]
dAdξ

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[1
2

uiui + RωT 2 +
1
2
ε1ωϕ

2 + 2RT,iT,i + 2ϕ,iϕ,i
]
dAdξdη. (3.2)

Combining Eqs (2.19)–(2.21) and choosing that ω ≥ 2(2+C2)
ε1

, we have

F (z, t) ≤ −
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηpu3dAdξdη + R
∫ t

0

∫ ∞

z

∫
D(ξ)

u3T 2dAdξdη

− 2R
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηTT,3dAdξdη

+ Le
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηu3ϕ
2dAdξdη − 2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηϕϕ,3dAdξdη

� I1(z, t) + I2(z, t) + I3(z, t) + I4(z, t) + I5(z, t). (3.3)

Using the Hölder inequality, Lemma 2.1 and Young’s inequality, we obtain

I1(z, t) ≤
[ ∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηp2dAdξdη
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηu2
3dAdξdη

] 1
2

≤
1

2
√
λ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηuiuidAdξdη, (3.4)

I3(z, t) ≤ 2R
[ ∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηT 2dAdξdη
∫ t

0

∫ ∞

z

∫
D(ξ)

dξe−ωηT 2
,3dAdξdη

] 1
2

≤ R
1
√
λ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηT,iT,idAdξdη, (3.5)

I5(z, t) ≤
1
√
λ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηϕ,iϕ,idAdξdη. (3.6)

Using the Hölder inequality, Eq (2.23), Lemma 2.2 and Young’s inequality, we obtain

I2(z, t) ≤ R
∫ t

0

[ ∫ ∞

z

∫
D(ξ)

e−ωηu2
3dAdξ

] 1
2
[ ∫ ∞

z

∫
D(ξ)

e−ωηT 2dAdξ
] 1

4
[ ∫ ∞

z

∫
D(ξ)

e−ωηT 6dAdξ
] 1

4 dη

≤

4
√

k1n2
5(t)

4√4ω

∫ t

0

[ ∫ ∞

z

∫
D(ξ)

e−ωηRωT 2dAdξ
] 1

4
[ ∫ ∞

z

∫
D(ξ)

e−ωη2RT,iT,idAdξ
] 3

4 dη

≤

4
√

k1n2
5(t)

4√4ω

[ ∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηRωT 2dAdξdη +

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη2RT,iT,idAdξdη
]
, (3.7)
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and

I4(z, t) ≤
4
√

2k1n2
5(t)

4
√
ε1ω

Le
[ ∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
1
2
ε1ωϕ

2dAdξdη +

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη2ϕ,iϕ,idAdξdη
]
. (3.8)

Inserting Eqs (3.4)–(3.8) into Eq (3.3) and combining Eq (3.2), we obtain

F (z, t) ≤
1

a1(t)

[
−
∂

∂z
F (z, t)

]
, (3.9)

where

1
a1(t)

=
√
λ1 +

4
√

k1n2
5(t)

4√4ω
max{

4√2
√
ε1

Le, 1}. (3.10)

Integrating Eq (3.9) from 0 to z, we obtain

F (z, t) ≤ F (0, t)e−a1(t)z. (3.11)

Combining Eqs (3.2) and (3.11) we can obtain the following theorem.
Theorem 3.1 If f ∈ H1(Ω × (0, t)) and h,H ∈ L∞(Ω × (0, t)), then the solutions of Eqs (1.1)–(1.8)

decay exponentially as z→ ∞. Specifically,

e−ωt
∫ ∞

z

∫
D(ξ)

(ξ − z)
[
2RT 2 + ε1ϕ

2
]
dAdξ

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[1
2

uiui + RωT 2 +
1
2
ε1ωϕ

2 + 2RT,iT,i + 2ϕ,iϕ,i
]
dAdξdη

≤ F (0, t)e−a1(t)z,

where ω > max{ 2(2+C2)
ε1

, 4 + 1
ε4

L2
M,

4C2

ε1
+ 4

ε1
+ 1

ε1δ4
L2

M} and a1(t) has been defined in Eq (3.10).
Remark 3.1 Theorem 1 shows that the solutions of Eqs (1.1)–(1.8) decay exponentially with the

space variable. This decay result can be regarded as the Saint-Venant principle type result.

4. Continuous dependence on R and C

We now consider two solutions to Eqs (1.1)–(1.8), namely (ui,T, ϕ, p) and (u∗i ,T
∗, ϕ∗, p∗), for dif-

ferent coefficients (R,C) and (R∗,C∗) in Eq (1.1), respectively, but they have the same initial-boundary
conditions. Letting

vi = ui − v∗i ,Σ = T − T ∗, θ = ϕ − ϕ∗, π = p − p∗, r = R − R∗, c = C −C∗,

then (vi,Σ, θ, π) satisfy

vi + rTki + R∗Σki − π,i − ckiϕ −C∗kiθ = 0, in Ω × (0, t), (4.1)
vi,i = 0, in Ω × (0, t) (4.2)
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Σt + viT,i + u∗i Σ,i = v3 + ∆Σ, in Ω × (0, t) (4.3)
ε1θt + Leviϕ,i + Leu∗i θ,i = v3 + ∆θ, in Ω × (0, t), (4.4)

with the following initial-boundary conditions

vi = 0, Σ = θ = 0, on ∂D × (0, t), (4.5)
vi = 0, Σ = θ = 0, on D × (0, t), (4.6)

Σ = θ = 0, in Ω × {t = 0}, (4.7)
|v|, |Σ|, |θ| = O(1), |v3|, |∇Σ|, |∇θ|, |π| = o(x−1

3 ), as x3 → ∞. (4.8)

To obtain our main result, we prove the following lemmas.
Lemma 4.1 The solutions of Eqs (4.1)–(4.8) satisfy∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvi, jvi, jdAdξdη ≤ −2
∫ t

0

∫
D(z)

e−ωηv3v3,3dAdη

+ 8
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
(R∗)2Σ,iΣ,i + (C∗)2θ,iθ,i

]
dAdξdη

+ 8
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
r2T,iT,i + c2ϕ,iϕ,i

]
dAdξdη.

Proof. We start with the identity∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvi, jvi, jdAdξdη =

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(vi, j − v j,i)vi, jdAdξdη

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvi, jv j,idAdξdη. (4.9)

Using Eq (4.1), we have∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(vi, j − v j,i)vi, jdAdξdη =

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
vi, j − v j,i

]
vi, jdAdξdη

= −r
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
T, jv3, j − T,ivi,3

]
dAdξdη

− R∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
Σ, jv3, j − Σ,ivi,3

]
dAdξdη

+ c
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
ϕ, jv3, j − ϕ,ivi,3

]
dAdξdη

+ C∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
θ, jv3, j − θ,ivi,3

]
dAdξdη. (4.10)
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By using the Hölder inequality and Young’s inequality, from Eq (4.10) we have∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(vi, j − v j,i)vi, jdAdξdη ≤
1
2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvi, jvi, jdAdξdη

+ 4r2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηT,iT,idAdξdη

+ 4(R∗)2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηΣ,iΣ,idAdξdη

+ 4c2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηϕ,iϕ,idAdξdη

+ 4(C∗)2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηθ,iθ,idAdξdη. (4.11)

Using a similar method to that of Eq (2.25), we can obtain∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvi, jv j,idAdξdη = −

∫ t

0

∫
D(z)

e−ωηv3v3,3dAdη. (4.12)

Inserting Eqs (4.11) and (4.12) into Eq (4.9), we may have Lemma 4.1.
Lemma 4.2 The L2 norm of v satisfies∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvividAdξdη ≤ −2R∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηΣv3dAdξdη

+ 4
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
r2T 2 + c2ϕ2

]
dAdξdη

+ (C∗)2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηθ2dAdξdη

+
1
√
λ1

∫ t

0

∫
D(z)

e−ωηvividAdη.

Proof. We multiply Eq (4.1) by e−ωηvi and integrate in D(z) × (z,∞) × (0, t) to have∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvividAdξdη = −r
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηTv3dAdξdη − R∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηΣv3dAdξdη

+ c
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηϕv3dAdξdη + C∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηθv3dAdξdη

−

∫ t

0

∫
D(z)

e−ωηπv3dAdη.
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Noting that π,α = vα, and by using Lemma 2.1, the Hölder inequality and Young’s inequality again,
we have∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvividAdξdη ≤
1
2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv2
3dAdξdη + 2r2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηT 2dAdξdη

− R∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηΣv3dAdξdη + 2c2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηϕ2dAdξdη

+
1
2

(C∗)2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηθ2dAdξdη +
1

2
√
λ1

∫ t

0

∫
D(z)

e−ωηvividAdη.

(4.13)

From Eq (4.13) we may have Lemma 4.2.
Next, we seek the bounds for the L2 norms of Σ and θ. We write the results as the following lemma.
Lemma 4.3 If f ∈ L4(Ω × (0, t)) and h,H ∈ L∞(Ω × (0, t)), then

e−ωt
∫ ∞

z

∫
D(ξ)

Σ2dAdξ +

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
ωΣ2 + Σ,iΣ,i

]
dAdξdη

≤ −2
∫ t

0

∫
D(z)

e−ωηΣΣ,3dAdη + 2
∫ t

0

∫
D(z)

e−ωηu∗3Σ
2dAdη

+ 2
∫ t

0

∫
D(z)

e−ωηv3TΣdAdη +

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv3ΣdAdξdη

+

4√k2
4√λ1

√
n7(t)eωt

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvi, jvi, jdAdξdη.

Proof. We multiply Eq (4.3) by e−ωηΣ and integrate in D(ξ) × (z,∞) × (0, t) to have

1
2

e−ωt
∫ ∞

z

∫
D(ξ)

Σ2dAdξ +

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[1
2
ωΣ2 + Σ,iΣ,i

]
dAdξdη

= −

∫ t

0

∫
D(z)

e−ωηΣΣ,3dAdη +
1
2

∫ t

0

∫
D(z)

e−ωηu∗3Σ
2dAdη

+

∫ t

0

∫
D(z)

e−ωηv3TΣdAdη +

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηviTΣ,idAdξdη

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv3ΣdAdξdη. (4.14)

By using the Hölder inequality and Lemmas 2.1, 2.2 and 2.8, we have∫ ∞

z

∫
D(ξ)

viTΣ,idAdξ ≤
[ ∫ ∞

z

∫
D(ξ)

Σ,iΣ,idAdξ
] 1

2

·
[ ∫ ∞

z

∫
D(ξ)

(vivi)2dAdξ
] 1

4
[ ∫ ∞

z

∫
D(ξ)

T 4dAdξ
] 1

4

≤
1
2

∫ ∞

z

∫
D(ξ)

Σ,iΣ,idAdξ
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+
1
2

√
n7(t)

[ ∫ ∞

z

∫
D(ξ)

(vivi)3dAdξ
] 1

4
[ ∫ ∞

z

∫
D(ξ)

vividAdξ
] 1

4

≤
1
2

∫ ∞

z

∫
D(ξ)

Σ,iΣ,idAdξ +

4√k2

2 4√λ1

√
n7(t)eωt

∫ ∞

z

∫
D(ξ)

vi, jvi, jdAdξ.

Therefore, we have∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηviTΣ,idAdξdη ≤
1
2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηΣ,iΣ,idAdξdη

+

4√k2

2 4√λ1

√
n7(t)eωt

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvi, jvi, jdAdξdη. (4.15)

Inserting Eq (4.15) into Eq (4.14), we can obtain Lemma 4.3.
Similar to Lemma 4.3, we can obtain the following lemma.
Lemma 4.4 If f ∈ L4(Ω × (0, t)) and h,H ∈ L∞(Ω × (0, t)), then

e−ωtε1

∫ ∞

z

∫
D(ξ)

θ2dAdξ +

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[1
2
ωε1θ

2 + θ,iθ,i
]
dAdξdη

≤ −2
∫ t

0

∫
D(z)

e−ωηθθ,3dAdη + 2Le
∫ t

0

∫
D(z)

e−ωηu∗3θ
2dAdη

+ 2
∫ t

0

∫
D(z)

e−ωηv3ϕθdAdη +
2
ω

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv2
3dAdξdη

+

4√k2
4√λ1

√
n8(t)eωt

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvi, jvi, jdAdξdη.

In Lemma 4.4, we have used the inequality∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv3θdAdξdη ≤
1
4
ω

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηθ2dAdξdη

+
1
ω

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv2
3dAdξdη. (4.16)

Now, we assume that δ1 and δ2 are positive constants such that

δ1 ≥ 16(C∗)2δ2, δ2 ≤
1

16R∗
, ω ≥ max{4δ1,

12
δ1

(C∗)2}, (4.17)

and the boundary conditions satisfy

2δ1

4√k2
4√λ1

√
n8(t)eωt + 2R∗

4√k2
4√λ1

√
n7(t)eωt ≤ δ2. (4.18)
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If we define

E(z, t) = e−ωt
∫ ∞

z

∫
D(ξ)

[
R∗Σ2 + δ1ε1θ

2
]
dAdξ

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[1
2

R∗ωΣ2 +
1
2

R∗Σ,iΣ,i +
1
4
δ1ωε1θ

2 +
1
2
δ1θ,iθ,i

]
dAdξdη

+
1
2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
vivi + δ2vi, jvi, j

]
dAdξdη, (4.19)

then combining Lemmas 4.1–4.4, we have

E(z, t) ≤
1
√
λ1
δ2

∫ t

0

∫
D(z)

e−ωηv3v3,3dAdη +
1
√
λ1

∫ t

0

∫
D(z)

e−ωηvividAdη

− 2R∗
∫ t

0

∫
D(z)

e−ωηΣΣ,3dAdη − 2δ1

∫ t

0

∫
D(z)

e−ωηθθ,3dAdη

+ 2R∗
∫ t

0

∫
D(z)

e−ωηu∗3Σ
2dAdη + 2Leδ1

∫ t

0

∫
D(z)

e−ωηu∗3θ
2dAdη

+ 2R∗
∫ t

0

∫
D(z)

e−ωηv3TΣdAdη + 2δ1

∫ t

0

∫
D(z)

e−ωηv3ϕθdAdη

+ 4
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
r2T 2 + 2r2T,iT,i + c2ϕ2 + 2c2ϕ,iϕ,i

]
dAdξdη. (4.20)

Based on the above lemmas, we can obtain the following theorem.
Theorem 4.1 If f ∈ L4(Ω × (0, t)), h,H ∈ L∞(Ω × (0, t)) and the inequality given by Eq (4.18)

holds, then the solutions of Eqs (1.1)–(1.8) continuously depend on the coefficients R and C, i.e.,

(ui,T, ϕ, p)→ (u∗i ,T
∗, ϕ∗, p∗), as (R,C)→ (R∗,C∗).

Specifically, either the inequality

e−ωt
∫ ∞

z

∫
D(ξ)

(ξ − z)
[
R∗Σ2 + δ1ε1θ

2
]
dAdξ

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[1
2

R∗ωΣ2 +
1
2

R∗Σ,iΣ,i +
1
4
δ1ε1ωθ

2 +
1
2
δ1θ,iθ,i

]
dAdξdη

+
1
2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[
vivi + δ2vi, jvi, j

]
dAdξdη

≤ a5(t)(r2 + c2)e−a2(t)z + (r2 + c2)
a2(t)a3(t)

a2(t) − a1(t)

[
e−a1(t)z − e−a2(t)z

]
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holds, or the inequality

e−ωt
∫ ∞

z

∫
D(ξ)

(ξ − z)
[
R∗Σ2 + δ1ε1θ

2
]
dAdξ

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[1
2

R∗ωΣ2 +
1
2

R∗Σ,iΣ,i +
1
4
δ1ε1ωθ

2 +
1
2
δ1θ,iθ,i

]
dAdξdη

+
1
2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[
vivi + δ2vi, jvi, j

]
dAdξdη

≤ a5(t)(r2 + c2)e−a2(t)z + (r2 + c2)a2(t)a3(t)ze−a2(t)z

holds, where a1(t), a2(t), a3(t) and a5(t) are positive computable functions and ω is a sufficiently large
positive constant.

Remark 4.1 In particular, the continuous dependence of the pressure p on the coefficients R and C
can be obtained by Eq (3.1) easily.

Remark 4.2 Theorem 4.1 shows that small perturbations of the coefficients R and C will not have
a huge impact on the solution of Eqs (1.1)–(1.8).

Proof. We define

E(z, t) =

∫ ∞

z
E(ξ, t)dξ = e−ωt

∫ ∞

z

∫
D(ξ)

(ξ − z)
[
R∗Σ2 + δ1ε1θ

2
]
dAdξ

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[1
2

R∗ωΣ2 +
1
2

R∗Σ,iΣ,i +
1
4
δ1ε1ωθ

2 +
1
2
δ1θ,iθ,i

]
dAdξdη

+
1
2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[
vivi + δ2vi, jvi, j

]
dAdξdη. (4.21)

Using Theorem 3.1, from Eq (4.20) we have

E(z, t) ≤
1
√
λ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvividAdξdη

− 2R∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηΣΣ,3dAdξdη − 2δ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηθθ,3dAdξdη

+ 2R∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηu∗3Σ
2dAdξdη + 2Leδ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηu∗3θ
2dAdξdη

+ 2R∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv3TΣdAdξdη + 2δ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv3ϕθdAdξdη

+ 4(r2 + c2) max{
1
R
,

1
ε1
, 1}F (0, t)e−a1(t)z, (4.22)

where we have used the fact that∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv3v3,3dAdξdη = −
1
2

∫ t

0

∫
D(z)

e−ωηv2
3dAdη ≤ 0.
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By using the Hölder inequality and Young’s inequality, we have

−2R∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηΣΣ,3dAdξdη ≤
R∗
√
λ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηΣ,iΣ,idAdξdη, (4.23)

−2δ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηθθ,3dAdξdη ≤
δ1
√
λ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηθ,iθ,idAdξdη. (4.24)

Similar to Eq (3.7), we have

2R∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηu∗3Σ
2dAdξdη

≤

4
√

2k1n2
5(t)

4
√
ω

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
1
2

R∗
[
ωΣ2 + Σ,iΣ,i

]
dAdξdη, (4.25)

2Leδ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηu∗3θ
2dAdξdη

≤

2 4
√

k1n2
5(t)

4
√
ωε1

Le
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
1
4
δ1

[
ε1ωθ

2 + 2θ,iθ,i
]
dAdξdη. (4.26)

Using the Hölder inequality, Young’s inequality, Lemmas 2.1, 2.2 and 2.8 and Eq (2.34), we have

2R∗
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv3TΣdAdξdη

≤ 2R∗
∫ t

0
e−ωη

( ∫ ∞

z

∫
D(ξ)

v2
3dAdξ

) 1
2
( ∫ ∞

0

∫
D(ξ)

T 4dAdξ
) 1

4
( ∫ ∞

z

∫
D(ξ)

Σ4dAdξ
) 1

4 dη

≤ 2R∗ 4
√

n7(t)eωt

∫ t

0
e−ωη

( ∫ ∞

z

∫
D(ξ)

v2
3dAdξ

) 1
2
( ∫ ∞

z

∫
D(ξ)

Σ2dAdξ
) 1

8
( ∫ ∞

z

∫
D(ξ)

Σ6dAdξ
) 1

8 dη

≤

2R∗ 8
√

n2
7(t)e2ωtk1

8√λ1

∫ t

0
e−ωη

( ∫ ∞

z

∫
D(ξ)

v2
3dAdξ

) 1
2
( ∫ ∞

z

∫
D(ξ)

Σ,iΣ,idAdξ
) 1

2 dη

≤

4 8
√

(R∗)4n2
7(t)e2ωtk1

8√λ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[1
2

v2
3 +

1
4

R∗Σ,iΣ,i
]
dAdξdη, (4.27)

and

2δ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv3ϕθdAdξdη

≤

2 8
√

(δ1)4n2
8(t)e2ωtk1

8√λ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[1
2

v2
3 +

1
2
δ1θ,iθ,i

]
dAdξdη. (4.28)

Inserting Eqs (4.23)–(4.28) into Eq (4.22), we obtain

E(z, t) ≤
1

a2(t)

[
−
∂

∂z
E(z, t)

]
+ a3(t)(r2 + c2)e−a1(t)z, (4.29)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2998–3022.



3017

where

1
a2(t)

= max
{ R∗
√
λ1
,
δ1
√
λ1
,

4
√

2k1n2
5(t)

4
√
ω

,
2 4
√

k1n2
5(t)

4
√
ωε1

Le,
1
√
λ1

+
4 8
√

(R∗)4n2
7(t)e2ωtk1

8√λ1
+

2 8
√

(δ1)4n2
8(t)e2ωtk1

8√λ1

}
,

a3(t) = 4 max{
1
R
,

1
ε1
, 1}F (0, t).

Integrating Eq (4.29) from 0 to z, we obtain

E(z, t) ≤ E(0, t)e−a2(t)z + a2(t)a3(t)e−a2(t)z(r2 + c2)
∫ z

0
e(a2(t)−a1(t))ξdξ. (4.30)

If a2(t) , a1(t), it follows from Eq (4.30) that

E(z, t) ≤ E(0, t)e−a2(t)z + (r2 + c2)
a2(t)a3(t)

a2(t) − a1(t)

[
e−a1(t)z − e−a2(t)z

]
. (4.31)

If a2(t) = a1(t), it follows from Eq (4.30) that

E(z, t) ≤ E(0, t)e−a2(t)z + (r2 + c2)a2(t)a3(t)ze−a2(t)z. (4.32)

On the other hand, we choose z = 0 in Eq (4.20) and use the boundary conditions Eqs (4.5) and
(4.6) to obtain

−
∂

∂z
E(0, t) ≤ 4

∫ t

0

∫
Ω

e−ωη
[
r2T 2 + 2r2T,iT,i + c2ϕ2 + 2c2ϕ,iϕ,i

]
dAdξdη.

Using Lemma 2.6, we have

−
∂

∂z
E(0, t) ≤ a4(t)[r2 + c2], (4.33)

where a4(t) = 4 max{ 1
Rω ,

1
R , 1,

2
ε1ω
}. Choosing z = 0 in Eq (4.29) and then inserting Eq (4.33) into Eq

(4.29), we have

E(0, t) ≤ a5(t)(r2 + c2), (4.34)

where a5(t) =
a4(t)
a2(t) + a3(t).

Combining Eqs (4.21), (4.31), (4.32) and (4.34), we can complete the proof of Theorem 4.1.

5. Convergence result on R and C

We now assume that (u∗i ,T
∗, ϕ∗, p∗) are the solutions to Eqs (1.1)–(1.8) with R = C = 0, but have

the same initial-boundary conditions as (ui,T, ϕ, p). We also let

vi = ui − v∗i ,Σ = T − T ∗, θ = ϕ − ϕ∗, π = p − p∗,

then (vi,Σ, θ, π) satisfy

vi + RTki − π,i −Ckiϕ = 0, in Ω × (0, t), (5.1)
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vi,i = 0, in Ω × (0, t) (5.2)
Σt + viT,i + u∗i Σ,i = v3 + ∆Σ, in Ω × (0, t) (5.3)

ε1θt + Leviϕ,i + Leu∗i θ,i = v3 + ∆θ, in Ω × (0, t), (5.4)

with the following initial-boundary conditions

vi = 0, Σ = θ = 0, on ∂D × {x3 > 0} × (0, t), (5.5)
vi = 0, Σ = θ = 0, on D × (0, t), (5.6)

Σ = θ = 0, in Ω × {t = 0}, (5.7)
|v|, |Σ|, |θ| = O(1), |v3|, |∇Σ|, |∇θ|, |π| = o(x−1

3 ), as x3 → ∞. (5.8)

Similar to Lemmas 4.1 and 4.2, noting that R∗ = C∗ = 0 by recalculation we can obtain∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvi, jvi, jdAdξdη ≤ −2
∫ t

0

∫
D(z)

e−ωηv3v3,3dAdη

+ 2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
R2T,iT,i + C2ϕ,iϕ,i

]
dAdξdη, (5.9)

and ∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvividAdξdη ≤ 2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη
[
R2T 2 + C2ϕ2

]
dAdξdη

+
1
√
λ1

∫ t

0

∫
D(z)

e−ωηvividAdη. (5.10)

Now we define a new function

z(z, t) = e−ωt
∫ ∞

z

∫
D(ξ)

(ξ − z)
[
Σ2 + ε1θ

2
]
dAdξ

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[1
2
ωΣ2 +

1
2

Σ,iΣ,i +
1
4
ωε1θ

2 +
1
2
θ,iθ,i

]
dAdξdη

+
1
2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[
vivi + δvi, jvi, j

]
dAdξdη. (5.11)

Choosing ω > 8 and δ = 2
4√k2
4√λ1

√
eωt[
√

n7(t) +
√

n8(t)] and combining Lemmas 4.3 and 4.4 and Eqs
(5.9) and (5.10), we obtain

z(z, t) ≤
1
√
λ1

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηvividAdξdη

− 2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηΣΣ,3dAdξdη − 2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηθθ,3dAdξdη

+ 2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηu∗3Σ
2dAdξdη + 2Le

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηu∗3θ
2dAdξdη
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+ 2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv3TΣdAdξdη + 2
∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωηv3ϕθdAdξdη

+ 2(R2 + C2) max{
1
R
,

1
ε1
, 1}F (0, t)e−a1(t)z, (5.12)

where we have used Theorem 3.1.
Combining Eqs (4.23)–(4.28), (5.11) and (5.12), we can conclude that

z(z, t) ≤
1

a2(t)

[
−
∂

∂z
z(z, t)

]
+ a3(t)(R2 + C2)e−a1(t)z. (5.13)

Through the analysis similar to that in Section 3, from Eq (5.13) we can obtain the following theo-
rem.

Theorem 5.1 If f ∈ L4(Ω × (0, t)),
∫

D
fαdA = 0 and h,H ∈ L∞(Ω × (0, t)), then

(ui,T, ϕ, p)→ (0, 0, 0, 0), as (R,C)→ (0, 0).

Specifically, either the inequality

e−ωt
∫ ∞

z

∫
D(ξ)

(ξ − z)
[
Σ2 + ε1θ

2
]
dAdξ

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[1
2
ωΣ2 +

1
2

Σ,iΣ,i +
1
4
ωε1θ

2 +
1
2
θ,iθ,i

]
dAdξdη

+
1
2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[
vivi + δvi, jvi, j

]
dAdξdη

≤ a5(t)(R2 + C2)e−a2(t)z + (R2 + C2)
a2(t)a3(t)

a2(t) − a1(t)

[
e−a1(t)z − e−a2(t)z

]
holds, or the inequality

e−ωt
∫ ∞

z

∫
D(ξ)

(ξ − z)
[
Σ2 + ε1θ

2
]
dAdξ

+

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[1
2
ωΣ2 +

1
2

Σ,iΣ,i +
1
4
ωε1θ

2 +
1
2
θ,iθ,i

]
dAdξdη

+
1
2

∫ t

0

∫ ∞

z

∫
D(ξ)

e−ωη(ξ − z)
[
vivi + δvi, jvi, j

]
dAdξdη

≤ a5(t)(R2 + C2)e−a2(t)z + (R2 + C2)a2(t)a3(t)ze−a2(t)z

holds.

6. Conclusions

In this paper, we prove the spatial decay estimate and structural stability on the coefficients R and
C of the solutions of Eqs (1.1)–(1.8) in a semi-infinite cylinder, where it is assumed that the solution
satisfies the homogeneous boundary conditions on the side of the cylinder. This is a generalization of
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the literatures. However, if the solutions satisfy the nonlinear conditions on the side of the cylinder,
the method in this paper will not be fully applicable. We note that Shi and Luo [34] studied the
structural stability for the double-diffusion perturbation equations with nonlinear boundary conditions
in a bounded region. How to deal with nonlinear boundary conditions is still an open problem in
an unbounded domain. We suggest that this problem can be solved in the future by establishing an
appropriate “energy function”. Using methods similar to those in Li et al. [35–37], we will also study
the problem of the function perturbation to Eqs (1.1)–(1.8).
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