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Abstract: In this paper, we study the double-diffusion perturbation equations when the flow is through
a porous medium. If the initial conditions satisfy some constraint conditions, the Saint-Venant type
spatial decay of solutions for double-diffusion perturbation equations is obtained. Based on the spatial
decay bound, the structural stability for the double-diffusion perturbation equations is also established.
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1. Introduction

The asymptotic behavior or norm of solutions to initial-boundary value problems of various partial
differential equations has received attention for many years, and a large number of results have been
obtained (see [1-10]). These results can be regarded as a study of the Saint-Venant principle type
which has been commonly used in engineering mechanics.

We note that Payne and Song [11] studied the Forchheimer equation

blulu+ (1 +yT)u+Vp—-gT =0,
V-u=0,
T,+u-VT - AT =0,
jul, IT| = O(1), |us|, |VT1, |p| = 0(x3"), as x3 — oo,

where u = (uy, u,, u3), T and p denote the velocity, temperature and pressure in the semi-infinite pipe,
respectively. b and 7y are positive constants. The vector g = (g, g2, g3) represents a gravity field.
Using the maximum principle, they first got the maximum value of the temperature and then obtained
the exponential decay result of the solutions. Using a similar method, other studies that obtained the
desired results can be seen in [12—-17].
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In this paper, we consider the following cylindrical domain
Q= {(Xl,xz,x3)|(x1, x2) € D, x3 > 0},

where D is a bounded simply connected region in the (xi, x;)-plane with the piecewise smooth bound-
ary 0D. We let D(z) denote the cross-section of Q at x3 = z, i.e.,

D(2) = {(xl,xz, x3)|(x1, X)) €D, x3=27> O}.

We present the non-dimensional perturbation equations in the form of (see [18, 19])

ui+ RTk; — p; — Ckip =0, in Q x (0,1), (1.1)
u; =0, in Qx(0,1) (1.2)

T, +uT; =us+ AT, in Q% (0,1) (1.3)

e + Leu;p; = uz + A, in Q x (0,1), (1.4)

with the following initial-boundary conditions

u=0,T=¢=0, ondD x{x3 >0} x(0,1), (1.5)

u; = fi(x1, x2,0), T = h(xy,x3,1), ¢ = H(x1, x3,1), on DX (0,1), (1.6)
T=¢=0, inQx{t=0} (1.7)

jul, T, lgl = O1), lusl, VT, [Vel, Ip| = 0(x3"), as x3 — . (1.8)

Here ¢ is the concentration perturbation, Le is the Lewis number, €, = €Le (€ is the porosity), R and C
are the Rayleigh and salt Rayleigh numbers, respectively, and k = (ki, k», k3) = (0,0, 1). The prescribed
functions f = (f1, f>, f3), h and H are continuously differentiable and f; satisfies the constraint condition

=0.
axl (9x2

It can be seen from Eqs (1.3) and (1.4) that we cannot obtain the maximum values of temperature
and concentration perturbations as in the previous studies. Therefore, the spatial decay results we
derive will not be obtained by using the previous methods. We must adopt a new method to overcome
the difficulty of being able to obtain the maximum value of the temperature. To do this, we derive the
L* norms of T and ¢. There is no Laplacian term in Eq (1.1), so we need to use the Soblev inequality
to derive a nonlinear differential inequality about the L? norms of the the velocity and its gradient.

The second aim is to study the structural stability of solutions of Eqs (1.1)—(1.8). The concept
of structural stability was first proposed by Hirsch and Smale [20]. Structural stability of this type
involves studying whether a small change in a coeflicient in the equations will induce a dramatic
change in the solution. There is a large number of studies that investigated have studied the structural
stability of various types of partial differential equations. Scott [12] considered a porous medium of
Darcy type and obtained the continuous dependence on boundary reaction terms. Considering the
simultaneous existence of multiple fluids in a bounded region, Li et al. [21] obtained the structural
stability of resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy
fluid. Liu et al. [22] assumed that Boussinesq fluid interfaced with a Darcy fluid in a bounded region
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in R?, and they obtained the continuous dependence on the interface parameters. For more papers one
can refer to [23-30]. Clearly, most of the above articles mainly focused on the structural stability of
solutions on bounded regions. The innovation of this work is to extend the study of structural stability
in a bounded region to a semi-infinite cylinder. In this work, we still need the prior bounds of the L*
norm of T and ¢, the H' norm of u, and the spatial decay estimate of solutions.

We declare that in Egs (1.1)—(1.8) and in the whole paper, the usual summation convention is em-
ployed with repeated Latin subscripts summed from 1 to 3 and repeated Greek alphabet summed

(a—b’f)z and

from 1 to 2. The comma is used to indicate partial differentiation, e.g., u; ju;; = >3 o
J

i,j=1
2
Ug pllap = Ziﬁzl(%) )
The plan of the paper is as follows. In the next section, we derive the a priori bounds for 7', ¢ and
u in the region Q. The third section is devoted to deriving the spatial decay bound for the solution.
In Section 4, we prove the continuous dependence on the coefficients R and C. In the Section 5, a
convergence result is proved for Eqs (1.1)—(1.8) when (R, C) — (0, 0).
2. Preliminaries of the problem

To obtain the main result, we shall make frequent use of the following inequalities.
Lemma 2.1 (see [11,31]) If y|_ =0, then

oD
A f V[2dA < f VoV odA,
D D

where 4, is the smallest positive eigenvalue of
NG+ A9 =0,inD, 3 =0, ondD.

Lemma 2.2 (see [32,33]) If v; € C1(D X (0, 0)) and v; vanishes on dD for x; > z and if v; vanishes
4
where k; = 2—17(3) )

as x3 — oo, then
(oo 00 3
f f (ViVi)SdAdfdﬂ < kl[f f V,"J'Vi’jdAdf] .
z D z D)
4

We can prove the following lemmas.
Lemma 2.3 If [ f,dA =0, f; € LX(D), then

fM3PdA < ny(),
D

where n,(¢) is a positive computable function.
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Proof. From Eq (1.1), we can have

ua(xl,x29 X3, t) - p,a(xl,XQ, .X3, Z‘) = O

(2.1
for o =1, 2. Since fD JfodA = 0, we integrate Eq (2.1) on D to obtain

pl[)D = fp,adA = f”adA = ffadA =0.
D D D

Therefore, using Lemma 2.1 we obtain

1 1 1
dA < ZdAf 2dA | _—f ZdAf WDadAl’. 2.2
Lusp <[Lf3 P ]<\/ﬂ_1[ ng PaP. ] (2.2)

In light of Eq (2.1), from Eq (2.2) we can obtain

fD uspdA < s f ffdA. (2.3)

Choosing n;(t) = 2\/» fD fifidA, from Eq (2.3) we can have Lemma 2.3.
Lemma 2.4 Letting

h(xy, X2, x3,1) = h(xy, x2,)e” 7", 01 > 0

and assuming i € L*(Q x (0, 1)), then
t t
— f f e “"TT3dAdn < ny(t) + & f fe_“’”T,iT,idAdgdn
0 JD) 0 Ja

+ g0 f Tszd§+(e3+ L@) f f e 1T dAdédn

+ 84f f “MuudAdédn + ssf f “NldAdédn, (2.5)

(2.4)

and
t 73
- f f eI T 3dAdn < ny(1) + &, f f e “"T ;T dAdédn
0 Jbpo)

+ghe ™ f T?dAdé + (&) + > ,L;) f f e “IT*dAdédn

+ & f f ey dAdédn + € f f “NyidAdédn, (2.6)

where Ly = supg, o {IVA(x1, X2, X3, DI, [VH (X1, X2, X3, DI}, n2(7) and n)y(¢) are computable functions and
w, g, &(i =1,2,...,5) are positive constants.
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Proof. From the definition of /h\, we can conclude that 7 has the same initial-boundary conditions

as T. Therefore, we have

! ! !
- f f e “"TT 3dAdn = — f f e~ IhT 3dAdny = f f e~ I(hT ;) ,dAdédn
0 D(0) D(0)

ff _“’"h TdAa’fdn+ff “”’h(T + u;T; — u3)dAdédn

= f f ¢ “Th, T . dAdédn + e f hTdAdé
0o Ja Q
t !
+w f f e “"hTdAdédn — f f e “""h, TdAdédn
0 Jo 0 Jo
f !
—f fe_”"h,iudeAdfdn—f fhmdAdfdn
0 Ja 0o Jo
f
- f f e “h* f3dAdédn
0 Ja

= Ai(1) + Ax(1) + A3(1) + Au(1) + As(0) + Ag(1)

!
- f f e h? f3dAdédn.
0 Q

By the Holder inequality and the Young inequality, we obtain

!
A(f) < & f f ‘”"TTdAdfdn+— f f e~ “Th h,dAdédn,
0
—wt 2 1 —wt 2
Ax(t) < &re f T dAd§+—e f h*dAdé,
Q
1 !
As(t) < 83 f f ““”Tszdfdn+2—w f f e T2 dAdédn,
Ay(t) < 583 f f ‘“’”Tszdgdn+— f f —wﬂdAdgdn,
0
! 1
As(t) < &4 f f w’luudAdgdn+4—L2 f f e T T dAdéd,
0 €4

!
Ag(t) < &5 f f “’”ugdAdfdn+— f f e T2 dAdédn.
0

Inserting Eqs (2.8)—(2.13) into Eq (2.7) and choosing

1 [ 1
ny(t) = f f el h;dAdédny + — e f dAdé
481 4dg,
f f -wﬂdAdgdm(—w +—) f f e T2 dAdédn
483 des
- f f e fydAdédn,
0 Q
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we can obtain Eq (2.5). Using a similar method, we can also obtain Eq (2.6).
If we let

H(xy, X3, X3, 1) = H(xy, X2, )€™ 7%, 07, > 0,

we can obtain the following lemma.
Lemma 2.5 Assuming H € L*(Q x (0, 1)), then

! 1 !
- f f g sdAdn < mat) + (61 + —12,) f f e 10 dAdEdn
0 JD©) 464 0 Ja

t
+ 67 f Q*dAdE + 83 f f e o’ dAdédn
Q 0 Ja

! !
+ 04 f f e “MuudAdédn + s f f e lusdAdédn,
0 Q 0 Q

! 1 !
- f f e_“”’go3go,3dAd17 <ny(t) + (6] + — Lﬁl) f f e i dAdédn
o Jpo) 46, 0 Jo

!
+ 0he™ f Q> dAdE + 8, f f e~ “p*dAdédn
Q 0 Ja

t t
+5Qf fe_””uiuidAdfdn+6;f fe‘“”’u%dAdfdn,
0 Jo 0 Ja

where n3(7) and /() are computable functions and 6;,6;(i = 1,2, ..., 5) are positive constants.
Now, we multiply Eq (1.1) by u;, and integrate in [z, c0) X D(€) to have

f f [l/ti + RTk, —pi— Cklcp]u,dAdf =0.
k4 D)

and

Therefore, we have

f f uiu;dAdé = —R f f Tus;dAdé
z D) . D(&)
+Cf f 90u3dAd§—f puszdA.
: JDE D()

Using the Schwarz inequality, we have

(2.15)

(2.16)

(2.17)

(2.18)

! 00 ! 00 1 ! 00
f f f e “luu;dAdédn < —R f f f e “"TusdAdédn + > f f f e “luzdAdédn
0 z D(¢) 0 z D(¢) 0 z D(&)

1 t 00 !
+ ECZ f f f e~ “p*dAdédn — f f e “"pusdAdn,
0 Jz D(¢) 0 JD(2)
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or

! 00 ! 00
fff e“‘”’uiuidAdfdnS—ZRfff e “"TuzdAdédn
0 Jz D(é) D
+C? f f f 1o’ dAdédn — f f e “pusdAdn.  (2.19)
D(&) D(z)

and [|¢lf? To

To obtain the bound for |Ju|]? L2@xon) W have to seek bounds for ||T[? 22Qx0.) 120"

do this, we multiply Eq (1.3) by ¢77T, and integrate in [z, c0) X D(¢) X (0, f) to have

f f T2 dAd¢ + f f f wT2+TT]dAd§d77
D(&) D)
f f f e”“"TusdAdédn
D(&)

- f f usT2dAdn — f f e~ “"TT 3dAdn. (2.20)
"2 DE) D)
Similarly, we obtain

= elf f 2dAd§+ff f ela)go +@ip; ]dAdfdn
D) D)
< f f f e “usdAdédn + f f f “n2dAdédn
=34 D D
+ Le f f e~ “Muzp*dAdn — f f “Nop 3dAdn. (2.21)
2 D) D(z)

Combining Egs (2.19)—(2.21) with z = 0, using Lemma 2.3 and Eqgs (2.5), (2.16) and (1.6) and
choosing

1 1 1 1 4C? 4 1
= =0 = -, =0 :1, = :—,6 =0 = —, > 4+—L2’—+—+_L2’
g1 =& 1 3 &3 3 &4 = &5 3R 4 5 16 w > max{ S M e e | €04 vl

we can obtain the following lemma.
Lemma 2.6 If h, H € L*(Q X (0, 1)), then

e R f T*dAdE + e™“'e f ©*dAdé

1
f f N u; Ui + R(,()T2 + 5610)Q02 + ZRTIT, + gD,ng]dAdfdi]

< ny(1),

where
!
nas(t) = 4f e “ni(n)dn + 4Rn32(t) + 2ns(t)
0
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! !
+2R f f fsh*dAdn + Le f f e~ s H*dAdn.
0 JD©) 0 J D)

Now using the Schwarz inequality and Lemmas 2.2 and 2.6 in Eq (2.18), we have
f uiu;dAdé < 2R* f T*dAd¢ + 2C? f O*dAdE + ny (1)
Q Q Q

< 2 max {R, C—}e "na(t) + ny(0).
€1

To get our main result, we also need the bound for ||[Vu|| 2%, We note that

f f I/t,‘,jl/t,‘JdAdf = f f (I/t,‘,j — l/ljJ)I/t,',jdAdé: + f f Mi,jbtj’,‘dAdf.
0 D 0 D(®) 0 D)

Using the divergence theorem and Eqs (1.2) and (1.5), we have

—f f f u,-,juj’idAdgd{:f f M3,jl/tjdAd{: —f M%dA
z 4 D(£) z D(&) D(z)

Therefore, we obtain
f f ui’juj’idAdf = —f u3u3,3dA.
z D) D(z)

Fi(x]’-x27 X3, t) = ﬁ(-xla-xZ’ t)e_O-SX3’ 03 > 0’

Now letting

(2.22)

(2.23)

(2.24)

(2.25)

we can know that F; has the same boundary condition as ;. Using Eq (1.6), from Eq (2.25) we obtain

f f u,',juj,,-dAdfdg“ = — f F3l/t3’3dA = f (Fgui,3),,~dAd§
0 D) D 0 D(¢)
= f f F3,iu,~,3dAd§
0 D(¢)
1 00 00
<- f f u,-,3u,-,3dAd§ + f f F31F3,dAd§
4 Jo D(¢) 0 D(£)

For the first term on the right of Eq (2.24), we can compute
f (Mi,j - uj,,-)u,-,jdAdf = —Rf (T’jbt:;’j — T,,-u,-,3)dAd§
0 JD® 0 (&)

+C f (p jus j — @ u;i3)dAdé
D(¢)

l
= f f Uz jus, ]dAd-f + = f f u,-,gul-,gdAdf
=3 D) o Jow

+ 8R? f f T,T dAdé + 8C? f f @ jp dAdE.
0 D) 0 D(&)

(2.26)

(2.27)
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Inserting Eqs (2.26) and (2.27) into Eq (2.24), we obtain

f f ui,ju,;jdAdf < 16R2f f TJT’JdAdf + 16C2f f ()DJ(,DJdAdé:
0 D) 0 D) 0 D()

+2 f f Fs,F3,dAdé, (2.28)
0 D)

. t
f f ey ju; jdAdédn < 16R? f f e T T dAdg
0 JQ 0 v

+16C2Le_””go,jgo,jdAd§dn

!
+2 f f e_‘””F3’l~F3,,»dAd§d
0 JQ

!
< 8 max{R, 2Cny(t) + 2 f f e “F3,Fy,dAdédn. (2.29)
0 Q

or

We summarize the above results as the following lemma.
Lemma 2.7 If f € H'(Q x (0,1)) and i, H € L*(Q x (0, 1)), then

!
fu,-u,-dAdem(t),f fe_‘””ul-,ju,-,jdAdgdnSnﬁ(t),
Q 0 Ja

where n5(1) = 2max(R, }e“"ny(t) + ny (1) and ne(r) = 8 max{R, 2C%}ny(t) + 2 [} [ € “1F;,F3,dAdédn,
For the bounds of [|T'||;4q and ||¢l|;4(), We can prove the following lemma.
Lemma 2.8 If f € H'(Q x (0,7) and h, H € L*(Q x (0, 1)), then

f e T*dAdE < ny(1), € f e dAdE < ng(t),
Q

Q

where n(¢) and ng(¢) are positive computable functions.
Proof. We compute

d
—{ f e T*dAd¢} + w f T dAdE
=4 f e‘“”T3[AT +usz — uiT,i]dAdg
Q
=-12 f e ITT T ,dAdE + 4 f e T3 usdAdé
Q Q

+ f el fidA + 4 f e “'T°T 3dA. (2.30)
D(0) D(0)
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Using the Holder inequality and Lemmas 2.2 and 2.6, we obtain

4 f e T uzdAdé < 4 f e““tT(’dAdg]%[ f e“”’Tszdf]%[ f o dAdg]%[ f o dAdg]
Q Q Q Q Q
1 1
<4 NN f e™'T, T dAd¢|’ | f €™ uy juz sdAdE |
Q

/11

na(0)| f T T dAdE + f e™"us iz sdAdE . (2.31)
Q

Inserting Eq (2.31) into Eq (2.30) and integrating Eq (2.30) from O to ¢, we have

!
f e ' TYdAdE + w f f e~ “"T*dAdédn
Q 0 Q

2k, ‘o o
< V(0| ¢ “'T T ;dAdédn + €™z us dAdgdn)|
VA 0 Jo 0 Jo

! !
+ f f e~ h? f3dAdn + 4 f f e~ “"T>T 3dAdp. (2.32)
0 JD(©0) 0 J D)

Using Lemma 2.7, Eq (2.6) and Lemma 2.6, we have, from Eq (2.32)

!
f e ' TYdAdE + w f f e~ “IT*dAdédn < ny(1), (2.33)
Q 0 Q

where

n(f) = ‘/_ 7 Vs [—n4(t) + n6(0)]

1 1
2R68 'ny(t) + ehng(t) + Rw( EL;)m(t)
+ g4na(t) + e5na(t) + ny(1).
Similarly, for ¢ we have
!
€ f e YO dAdE + e w f f e “'o*dAdédn < ng(1), (2.34)
Q 0 Q

where ng(¢) is a positive function which is similar to n;(¢).
3. Spatial decay bound

In this section, we shall derive the spatial decay bounds for the solutions of Eqs (1.1)-(1.8). To do
this, we define

F(z,t) = e f f [2RT2+61(,02]dAd§
b4 D)

1
f f f u ;i + RwT? + zelwgo +2RT ;T ; + 2¢ 0, ]dAdgdn 3.1
D(¢)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2998-3022.
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If we choose z = 0 in Eq (3.1), using Lemma 2.6, we can conclude that F(0, ) can be bounded by
known data.
We define

Fz,1) = f F(&,1)dé = e f (£ - 2)|2RT? + 1¢? |dAde
P . JDE
e 1 1
+ f f f e_“”’(f — z)[—uiui + RCL)TZ + —61(1)902 + 2RT’,'TJ' + 2(p’190’,:|dAd§d77 (32)
0 D) 2 2

2(2+C )

Combining Eqs (2.19)—(2.21) and choosing that w > , we have

t 00 t 00
F(z,1) < - f f f e pusdAdédn + R f f f usT?dAdédn
0 Jz D(¢) 0 Jz D(¢)
! 00
—2Rff f e “TT 3dAdédn
0 Jz D)
! 00 t 00
+ Le f f f e~ “Musp*dAdédn — 2 f f f e “"ppsdAdédn
0 Jz D(¢) 0 Jz D(¢)

= Il(Z, I) + IQ(Z, [) + I3(Z, l) + I4(Z, t) + Is(Z, t). (33)

Using the Holder inequality, Lemma 2.1 and Young’s inequality, we obtain

t 00 ! 00 1
Li(z,0) < [ f f f e “p*dAdédn f f f e-wﬂugdAdgdnr
0 Jz D(&) 0 Jz D)
AN
< e “"uu,dAdédn, (3.4)
2y Jo J: I
t S} ! 00 1
I;(z.1) < 2R| f f f e “"T2 dAdédn f f f dée™"TdAdédn|*
D) D(¢)
<R— f f f ¢ T, T . dAdédn, (3.5)
D)
I5(z,t)s—ff f ey dAdédn. (3.6)
\//1_1 0 Jz D(&)

Using the Holder inequality, Eq (2.23), Lemma 2.2 and Young’s inequality, we obtain

IZ(Z’I)Sth[fmf e_wnuédAdf]%[fmf e_“”’Tszdg]‘l‘[fmf e—wnTsdAdg]%dn
o "J: I . Joe S
4k1n§(t) f =
“m L,

D(£)

1 00 3
e "RwTdAdé|’| f f ¢™“"2RT T idAd¢|" dn
z D)

@@fff

e “TRwT2dAdédn + f f f ¢™“"2RT T dAdédn|,  (3.7)
D(&) D)
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and

”2](11’15(1‘ 1
Iy(z,t) £ ——Le f f f e “”’26 \we*dAdédn + f f f e e "M, dAdfdn] (3.8)

Inserting Eqs (3.4)—(3.8) into Eq (3.3) and combining Eq (3.2), we obtain

1 8
F(z.0) < m[ -5 TG 0. (3.9)

2 :
Y SR A V2 (3.10)

max{ Le,1}.
\/ w €

where

a (l)
Integrating Eq (3.9) from O to z, we obtain
F(z,1) < F(0,1)e ", (3.11)

Combining Eqs (3.2) and (3.11) we can obtain the following theorem.
Theorem 3.1 If f € H'(Q x (0,1)) and h, H € L*(Q X (0, 1)), then the solutions of Eqs (1.1)—(1.8)
decay exponentially as z — oo. Specifically,

e f (- z)[2RT2 + elgoz]dAdg
z D(§)

! 00 1 1
+ f f f e (¢ - z)[—uiui + RwT? + —ewe” + 2RT,T; + 2g0,igo,i]dAd§d77
D 2 2 ’
< F (0, 0%,

where w > max{ 2(2+1C ) 4+ Lﬁl, 451 + g 5115 L2} and a;(7) has been defined in Eq (3.10).

Remark 3.1 Theorem 1 shows that the solutions of Eqs (1.1)—(1.8) decay exponentially with the
space variable. This decay result can be regarded as the Saint-Venant principle type result.

4. Continuous dependence on R and C

We now consider two solutions to Eqgs (1.1)—(1.8), namely (u;, T, ¢, p) and (u;,T", ¢", p*), for dif-
ferent coefficients (R, C) and (R*, C*) in Eq (1.1), respectively, but they have the same initial-boundary
conditions. Letting

vi=u—vi,2=T-T0=¢p—-—¢"n=p-p,r=R-R',c=C-C",
then (v;, Z, 0, m) satisfy

Vi + I"Tki + R*Zk, - — Ckl‘QD - C*klg =0, inQx (0, t), (41)
Vii = 0, inQx (0,1 4.2)
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ZoAvT,+uZ; =vi+AZ, inQx(0,1) 4.3)
€0, + Levip; + Leu:0; = vi + A6, in Q x (0,1), 4.4)

with the following initial-boundary conditions

vi=0,2=60=0, ondDx(0,1), 4.5)

v;=0,2=60=0, onDx(0,1), (4.6)

X=60=0, inQx{r=0} 4.7)

W, (2,16 = O(1), [vsl, VI, [V, In] = o(x3"), as x; — oo. (4.8)

To obtain our main result, we prove the following lemmas.
Lemma 4.1 The solutions of Eqs (4.1)—(4.8) satisfy

! 00 !
f f f e v, jv; i dAdédn < -2 f f e “v3vs3dAdn
0 Jz JIbwe 0 JD()
! 00
+8 f f f e (RYVZZ, +(C)0,0,]|dAdédn
0 Jz D(¢)

! 00
+8 f f f e“‘”’[rzT,iT,i + cch,igo,i]dAdfdn.
0 Jz D)
Proof. We start with the identity

! 00 ! 00
f f f e”“Mv; jvi dAdédn = f f f e (v —vj)vidAdédn
0 Jz D(¢) 0 Jz D(é)

! 00
+ f f f e_“’”v,-,jvj,,-dAd{;‘dn. (49)
0 Jz D(&)
Using Eq (4.1), we have

f f f DIy, ; = viovi jdAdédn = f f "[vi; = viilvidAdédn
D(¢) (f)
= —rf f f e“”’l jV3j T; V,3]dAd§dT]
0 D)
! 00
0 Jz JDE
73 o)
+ Cf f f e‘wn[(p’jv&j — (psl-v,-,g]dAdfdn
2 D(¢)

t 00
e f f f e_wn[gd“’ij - 9,iVi,3]dAd§d77. (4.10)
0 Jz JDE

o
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By using the Holder inequality and Young’s inequality, from Eq (4.10) we have

! 00 1 ! 00
f f f e_“’”(vl-,j —Vj,i)Vi’jdAdfdn < —f f f e‘“’”v,-,jv,-,jdAdfdn
0 J: Jow 2Jo Jz I
! 00
+ 477 f f f e “"T,;T dAdédn
0 Jz D
t 00
+4(R*)? f f f e 1L ,;X dAdédn
0 Jz JD@
t 00
+4c2 f f f e i dAdédn
0 Jz D)
t 00
+4(C*)? f f f e™"0,0 ,dAdédn. 4.11)
0 Jz JDE

Using a similar method to that of Eq (2.25), we can obtain

! 00 !
f f f e ;v dAdédn = — f f e “v3vs3dAdn. 4.12)
0 J: JIbpe 0 JD@)

Inserting Eqs (4.11) and (4.12) into Eq (4.9), we may have Lemma 4.1.
Lemma 4.2 The L? norm of v satisfies

! 00 ! 00
f f f e “vividAdédn < -2R” f f f e “"YvydAdédn
0 Jz D(¢) 0 Jz D(¢)
s o0
+4 f f f e‘w”[r2T2+czg02]dAd§dn
0 Jz D)
t 00
+(C*)? f f f e~ 0P dAdéEdn
0 Jz D)

) L.
+ — e”“vivdAdn.
\//1_1 0 JD@)

Proof. We multiply Eq (4.1) by e™“"v; and integrate in D(z) X (z, 00) X (0, f) to have

t 00 ! 00 f 00
f f f e “lvvidAdédn = —r f f f e “"Tv3dAdédn — R f f f e “"2v3dAdédn
0 Jz D(&) 0 Jz D) 0 Jz D(§)
t 00 ! 00

+c f f f e “ovsdAdédn + C* f f f e “"0vidAdédn
0 Jz D(¢) 0 Jz D(¢)
!

- f f e “nvidAdn.

0 JD(z)
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Noting that 7, = v,, and by using Lemma 2.1, the Holder inequality and Young’s inequality again,

we have

t 00 1 ! 00
f f f e “lvividAdédn < - f f f e"“hidAdédn + 21 f f f e “1T?dAdédn
0 J: Jne 2Jo J: Jpe D)
! 00
- R f f f e~ “LvidAdédn + 2c* f f f e “p*dAdédn
0o J: Jpe 0 J: Jpe
+ 1(C*)2 f [ f ) f e PP dAdédn + ! f t f e~ “MvvidAdn
2 o J: Jne 2N, Jo Jpe o '

(4.13)

From Eq (4.13) we may have Lemma 4.2.
Next, we seek the bounds for the L? norms of X and §. We write the results as the following lemma.

Lemma 4.3 If f € L*(Q x (0,2)) and h, H € L*(Q x (0, 1)), then

o ! 00
ot f f S2AAdE + f f f e ws? + L3, |dAdédn
z D(¢) D)
f f 1S s dAdn + 2 f f “ui S dAdn
D(z) D(z)
+2 f f ~omy. TYdAdn + f f f e v3XdAdédn
D) b
\/_ /n (t)ewtff f wnvi,jVi’jdAdé‘:dn-
D(&)

Proof. We multiply Eq (4.3) by e™7Z and integrate in D(¢) X (z, o0) X (0, 7) to have

f f T2 dAdE + f f f | w22+22]dAd.§dn
D(&) D(&)
= - f f e™“TEY 3dAdn + — f f e X dAdn
0 D(z) D(z)

!
+ f f e vy TEdAdn + f f f e “"TE  dAdédn
0 D(2) 0 z D(¢)
t 00
+ f f f e”“viZdAdédn. (4.14)
0 Jz Jbwe

By using the Holder inequality and Lemmas 2.1, 2.2 and 2.8, we have

f f viTEdAdE < | f f 3% dAdE]
z D) D(&)
f f (viv)*dAdé|'| f f T*dAdg|’
D(&) z D(&)

<~ f f S 5 dAdé
2J. Jbe
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—+

00 1 0 1
na(0)] f (viv)*dAdé|'| f f vividAdg|’
: Jp© : Jbwe
[ v 25 i [
<= XX dAdE + n;(t)e*" f f vivi  dAdE.
2J. Jpe 2V : Y

D)

| =

Therefore, we have

! 00 1 ! 00
f f f e “TX dAdédn < — f f f e Y X dAdédn
o J: Jne 2Jo J. I
Vky i

e_‘”nvl-,jv,-,jdAdgdn. (415)

n-(t)e®!

D(&)

Inserting Eq (4.15) into Eq (4.14), we can obtain Lemma 4.3.
Similar to Lemma 4.3, we can obtain the following lemma.
Lemma 4.4 If f € L*(Q x (0,1)) and h, H € L*(Q x (0, 1)), then

wie f f G2dAd¢ + f f f w6192+90]dAd§d77
D) D(&)
f f 190 3dAdn + 2Le f f e~ uy0*dAdn
D(z) D(2)
+2ff “”7V3900dAd77+—ff f e “lvidAdédn
D(z) D)

\/_ \H’lg(t)ewtf f f( ) T]V,"jV,"jdAdfdﬂ.
D¢

In Lemma 4.4, we have used the inequality

f 00 1 ! 00
f f f e”“"'v30dAdédn < —w f f f e PP dAdEdn
0 J: JIne 4 Jo J: Ine
1 ! 00
+— f f f e N2 dAdédn. (4.16)
w Jo Jz D(&)

Now, we assume that 6; and 9, are positive constants such that

1
5, > 16(C*)%6,, 6, < R w > max{44,, —(c*) 1, (4.17)

and the boundary conditions satisfy

Ik Vi
{/\/A:TW+2R*</\/%WS 8. (4.18)
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If we define

E(z,H)=e* f f |R'S? + 6,66 |dAdg
z D(&)

! 00 1 1 1 1
+ —wnl _ R* 22+_R*zizl_+_6 P+ =5 0.0,|dAdéd
f0fz fD(f)e [2 W TR RS o1war T 50, ] &dn

L[ re
+ - f f f e_“”’[vivi + (52vi,jvi,j]dAd§d77, (419)
2 0 z D(¢)

then combining Lemmas 4.1-4.4, we have

E(z, )<—52 f f ““Tv3vszdAdn + — f f “yividAdn
D(z) \/_ D(z)

— 2R f f eSS s dAdn — 26, f f 190 sdAdn
0 D(z) D(z
t !

+2R" f f e “Mu3¥2dAdn + 2Led, f f e “"u0*dAdn
0 JDG)
!

+ 2R" f f e “"v3TZdAdn + 26, f f e “v3p0dAdn
0 D(z) 0 D(2)

! 00
+ 4f f f e_“”7[r2T2 + 27T, T, + c*¢* + 20290,,-g0’,‘]dAd§d77. (4.20)
D(&)

Based on the above lemmas, we can obtain the following theorem.
Theorem 4.1 If f € L*(Q x (0,1)), h, H € L*(Q x (0,1)) and the inequality given by Eq (4.18)
holds, then the solutions of Egs (1.1)—(1.8) continuously depend on the coefficients R and C, i.e.,

i, T, 0, p) = (u;, T, ¢", p*), as (R,C) = (R, C7).

Specifically, either the inequality
e ! f (€ - D[R'T? + 61616%|dAde
z D)

Lo 1 1 1 1
+ (¢ — )| =R'wE* + =R*'L X + -6,6,08 + =6,0,0,;|dAdéd
f(;f L(g)e ¢ Z)[z w S Zisi ¥ L0160 5919, ] &dn

L
+ = f f f e_‘””(f - z)[vivi + 62v,~,jv,-,j]dAd§dn
2Jo J: I

ax(Has(1) [e—a|(t)z B e—az(f)z]

< as(O)(r? + e @D 4 (2 + cz)a O —a)
(1) — ay
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holds, or the inequality
e ! f (€ - D[RS + 61616 |dAde
z D(£)

o 1 1 1 1
+ TONE - )| 2R'WE? + ~R°EX,; + —01wb + =6,0,0,|dAdéd
fof fD(,f)e « z)[2 N 27 ST Y 27 ] e

1 ! 00

3 f f f & = 2)|vivi + 8yvi,vi j|dAdédn
2Jo Jz I

< as()(r* + e 4 (7 + Aay(H)as(t)ze*

holds, where a;(?), ax(t), as(t) and as(t) are positive computable functions and w is a sufficiently large
positive constant.

Remark 4.1 In particular, the continuous dependence of the pressure p on the coefficients R and C
can be obtained by Eq (3.1) easily.

Remark 4.2 Theorem 4.1 shows that small perturbations of the coefficients R and C will not have
a huge impact on the solution of Eqgs (1.1)—(1.8).

Proof. We define

&z, 1) = f ) E(, e = e f ) f (€ - D[R'T? + 61616%|dAde
z b4 D)

2

1 ! 00
+ = f f f eNE = 2)|vivi + Syvi v, j|dAdédn. 4.21)
2 0 Jz D(¢)
Using Theorem 3.1, from Eq (4.20) we have
1 o
E(z,1) £ — f f f e “vividAdédn
\//l_l 0 Jz D(¢)
! o] ! 00
- 2R" f f f e XX 3dAdédn — 26, f f f e 00 3dAdédn
0 Jz D(¢) 0 Jz D(¢)
t o] t 00
+ 2R* f f f e Mu3S2dAdédn + 2Led, f f f e Mu0*dAdédn
D) D(¢)
+ 2R" f f f e "3 TEdAdédn + 26, f f f e “"v3p0dAdédn
D) D)

}F(0, e 1%, (4.22)

e 1 1 1 1
+ f f f eNE - )| SR W + SRET; + 561600 + =610,0,|dAdédn
0 D(f) 2 ’ ’ 4‘ 2 ’ ’

+ 407 + ¢®) max{

NIH

where we have used the fact that

f f f “My3vssdAdédn = —= f f e “VidAdn < 0.
D) D(z)
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By using the Holder inequality and Young’s inequality, we have

t 00 R* ‘ -
_2R*f f f e‘w'lzz’ < f f f e_‘”nE,iZ,;dAdfdn, (423)
0 Jo Jne \/_ D)
! 00
20 f f f ¢ 00dAdgdn < —== f f f e™"0,0,dAdédn. (4.24)
0o J: Joe e

Similar to Eq (3.7), we have

! 00
2R* f f f e s dAdédn
D)
2k1n5(t
LI L,

2Led, f f f e “u0°dAdédn
D)
21“61}’15(1‘) ff f
———Le

—onZs,
D)

gon 5K |w2? + 2,5, |dAdédn, (4.25)

|€106” + 26,0, |dAdédn. (4.26)

Using the Holder inequality, Young’s inequality, Lemmas 2.1, 2.2 and 2.8 and Eq (2.34), we have

! 00
2R* f f f e “viTEdAdédn
D)
< 2R* f —n( f f vidAde)’ ( f f T*dAdé)’( f f *dAdg) dn
D) 0 D) D(&)
1 1 1
< 2R* \n(1)e" f e ( f f vidAdé)’( f f S2dAdé)'( f f 0dAdé) dn
0 z D(¢) D(¢) D(¢)
2R* f,l’l%(l)ezwtkl t 00 1 1
T f e ( f f vidAdé)’( f f %% dAdE)" dn
0 z z D(¢)

D(¢)
4\/(R*)4 (t)ez‘*”kl
f f f —v3+ Rz i|dAdédn. (4.27)
D(§)

! 00
26, f f f e " “v3pBdAdédn
D(&)

2\/(51)4 2(f)e2ork, T
T f f f e | 2v3+ 26190]dAd§dn. (4.28)

Inserting Eqs (4.23)—(4.28) into Eq (4.22), we obtain

and

1 a —ap(1)z
&z 1) < ;(t)[ - 56 D]+ a0 + e, (4.29)
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where
. { O Q/zklng(z) 2Q/kln§(t)L | 43/(13*)4;13(;)@2%l 23/(51)4n§(r)e2wk1
= max 5 , 5 e, + + >
as (1) Vi N4 Vw Vwer VA, Vi VA

11
a3(t) = 4maX{—, ) I}T(O’ t)
R €1
Integrating Eq (4.29) from O to z, we obtain
74
E(z,1) < E(0,)e™ % 4 ar(Haz(t)e > (r* + %) f el @0=a )X g (4.30)
0

If a,(t) # a,(2), it follows from Eq (4.30) that

8. 1) < &0, He ™ 4+ (2 + CZ)M[e—W)Z ! 431)
ax(t) — a (1)
If a,(¢) = a(1), it follows from Eq (4.30) that
E(z, 1) < &0, e D + (2 + Day(H)az(t)ze -, (4.32)

On the other hand, we choose z = 0 in Eq (4.20) and use the boundary conditions Eqs (4.5) and
(4.6) to obtain

a A
——&0,0) <4 f f e_‘””[rsz +2°T,T; + 2 + 2c2¢,,~¢,i]dAd§dn.
0z 0 JQ
Using Lemma 2.6, we have

—6%8(0, ) < ay(D)[r* + 2, (4.33)

where a,(f) = 4max{+-, 3,

(4.29), we have

1, ﬂ%}. Choosing z = 0 in Eq (4.29) and then inserting Eq (4.33) into Eq

E@0,1) < as()(* + ), (4.34)

where as(t) = 23 + as(1).

Combining Eqs (4.21), (4.31), (4.32) and (4.34), we can complete the proof of Theorem 4.1.

5. Convergence result on R and C

We now assume that (u;, T, ¢*, p*) are the solutions to Eqs (1.1)—(1.8) with R = C = 0, but have
the same initial-boundary conditions as (u;, T, ¢, p). We also let

vi=u;—vi,2=T-T,0=¢p—-¢",n=p-p,
then (v;, Z, 0, m) satisfy

V; + RTk, - — Ck,gD =0, in QX (0, l), (51)
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Vii = O, inQx (O, l)
2+ V,‘TJ' + M;ZJ =v3+AX, inQx (0,1
€6, + Levip,; + Leu;0; = vi + A6, in Q x (0,1),

with the following initial-boundary conditions

vi=0,X2=60=0, ondD X {x3 > 0} x (0,1,
vi=0,2=0=0, onD x(0,1),
2=60=0, inQx{t=0},
Wl 1Z1, 161 = O(1), [vs], IVEL IV, In] = 0(x3"), as x3 — e.

Similar to Lemmas 4.1 and 4.2, noting that R* = C* = 0 by recalculation we can obtain

t 00 !
f f f e_‘””vi,jvi,jdAdfdn <=2 f f e_‘””v3v3,3dAd17
0 Jz D) 0 JD(2)

! 00
+2 f f f e‘””[RZTJT,,- + ngo,[go,[]dAdfdn,
0 b4 D(¢)

! 00 ! 00
f f f e “lvvidAdédn < 2 f f f e“"”[RZT2 +C 2¢,02]dAd§dn
0 Jz D) 0 Jz D)

AN
+ — e “vivdAdn.
‘//l_l 0 JD(z)

and

Now we define a new function

Fz,0)= e f (& - 2|2 + €16 |dAde
z D(£)
+ ft fmf e(E ~ )[10)22 iy loar+ Log |dAded
o J: Ipe 12 T g 27 g

1 (e
+— f f f e (¢ - Z)[Vivi + 6Vi,jvi,j]dAd§d77'
2Jo J: JIbe

(5.2)
(5.3)
(5.4)

(5.5)
(5.6)
(5.7)
(5.8)

(5.9)

(5.10)

(5.11)

Choosing w > 8 and ¢ = 2;—‘/? Ve[ Vnq(t) + vng(?)] and combining Lemmas 4.3 and 4.4 and Eqs
1

(5.9) and (5.10), we obtain

1 i
F(z,t) < — f f f e “vividAdédn
\//1_1 0 Jz D(&)
73 00 ! 00
-2 f f f e "X 3dAdédn -2 f f f e 00 3dAdédn
0 Jz D(&) 0 Jz D)
! 00 t ]
+2 f f f e 33 dAdédn + 2Le f f f e “u0°dAdédn
0 Jz D) 0 Jz D)
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f 00 ! 00
+2 f f f e v TEdAdédn + 2 f f f e “v3p0dAdédn
0 Jz D(¢) 0 Jz D(¢)

11
+2(R* + C?) max{, —, 0, e 10z,
€

where we have used Theorem 3.1.
Combining Eqs (4.23)—(4.28), (5.11) and (5.12), we can conclude that

L _ﬁ 2 2\ ,—a1(0z
Flan < (:)[ i D] + a(O(® + Ce %,

(5.12)

(5.13)

Through the analysis similar to that in Section 3, from Eq (5.13) we can obtain the following theo-

rem.
Theorem 5.1 If f € L*(Q  (0,1), [, fodA = 0 and h, H € L™(Q x (0, 1)), then

(u;, T,, p) — (0,0,0,0), as (R,C) — (0,0).

Specifically, either the inequality

e f ) (& - 2|2 + at?|dAds
z D)

t 00 1 1 1 1
+ —wn _ _ 22+_Zizi+_ 92+_9i9i dAd d
Ll fD(g)e €3 Z)[za) STZi+ e 50, ] Edn

1 re
+ = f f f e—wr](g - Z)[Vl'vi + 6vi,jv,-,j]dAd§d77
2Jo J: I

- ar(Hasz(t) 1 _ ~
< as(D)(R* + CHe @D 4 (R? + O7)——= |00z _ prax(iz
5 0~ |

holds, or the inequality

e f ) (& - 2|2 + af?|dAds
z D)

1 1
f f f e~ I(E - a)22+ zz + —we b + ee]dAdgdn
D) 4 2

+ —f f f e (& - z) Viv; + 6v,~,jv,~,j]dAd§d77
2Jo J: I

< as()(R* + CHe™ @7 4 (R? + CPax(f)as(r)ze 2"

holds.

6. Conclusions

In this paper, we prove the spatial decay estimate and structural stability on the coefficients R and
C of the solutions of Egs (1.1)—(1.8) in a semi-infinite cylinder, where it is assumed that the solution
satisfies the homogeneous boundary conditions on the side of the cylinder. This is a generalization of

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2998-3022.



3020

the literatures. However, if the solutions satisfy the nonlinear conditions on the side of the cylinder,
the method in this paper will not be fully applicable. We note that Shi and Luo [34] studied the
structural stability for the double-diffusion perturbation equations with nonlinear boundary conditions
in a bounded region. How to deal with nonlinear boundary conditions is still an open problem in
an unbounded domain. We suggest that this problem can be solved in the future by establishing an
appropriate “‘energy function”. Using methods similar to those in Li et al. [35-37], we will also study
the problem of the function perturbation to Eqs (1.1)—(1.8).
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