The Aquila optimizer (AO) is a recently developed swarm algorithm that simulates the hunting behavior of Aquila birds. In complex optimization problems, an AO may have slow convergence or fall in sub-optimal regions, especially in high complex ones. This paper tries to overcome these problems by using three different strategies: restart strategy, opposition-based learning and chaotic local search. The developed algorithm named as mAO was tested using 29 CEC 2017 functions and five different engineering constrained problems. The results prove the superiority and efficiency of mAO in solving many optimization issues.
Citation: Huangjing Yu, Heming Jia, Jianping Zhou, Abdelazim G. Hussien. Enhanced Aquila optimizer algorithm for global optimization and constrained engineering problems[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 14173-14211. doi: 10.3934/mbe.2022660
The Aquila optimizer (AO) is a recently developed swarm algorithm that simulates the hunting behavior of Aquila birds. In complex optimization problems, an AO may have slow convergence or fall in sub-optimal regions, especially in high complex ones. This paper tries to overcome these problems by using three different strategies: restart strategy, opposition-based learning and chaotic local search. The developed algorithm named as mAO was tested using 29 CEC 2017 functions and five different engineering constrained problems. The results prove the superiority and efficiency of mAO in solving many optimization issues.
[1] | Y. J. Zhang, Y. F. Wang, Y. X. Yan, J. Zhao, Z. M. Gao, Lmraoa: An improved arithmetic optimization algorithm with multi-leader and high-speed jumping based on opposition-based learning solving engineering and numerical problems, Alexandria Eng. J., 61 (2022), 12367–12403. https://doi.org/10.1016/j.aej.2022.06.017 doi: 10.1016/j.aej.2022.06.017 |
[2] | S. Singh, H. Singh, N. Mittal, A. G. Hussien, F. Sroubek, A feature level image fusion for night-vision context enhancement using arithmetic optimization algorithm based image segmentation, Expert Syst. Appl., 209 (2022), 118272. https://doi.org/10.1016/j.eswa.2022.118272 doi: 10.1016/j.eswa.2022.118272 |
[3] | A. G. Hussien, A. E. Hassanien, E. H. Houssein, M. Amin, A. T. Azar, New binary whale optimization algorithm for discrete optimization problems, Eng. Optimiz., 52 (2020), 945–959. https://doi.org/10.1080/0305215X.2019.1624740 doi: 10.1080/0305215X.2019.1624740 |
[4] | L. D. Giovanni, F. Pezzella, An improved genetic algorithm for the distributed and flexible job-shop scheduling problem, Eur. J. Oper. Res., 200 (2010), 395–408. https://doi.org/10.1016/j.ejor.2009.01.008 doi: 10.1016/j.ejor.2009.01.008 |
[5] | A. G. Hussien, E. H. Houssein, A. E. Hassanien, A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection, in IEEE 2017 Eighth international conference on intelligent computing and information systems (ICICIS), (2017), 166–172. https://doi.org/10.1109/INTELCIS.2017.8260031 |
[6] | A. G. Hussien, D. Oliva, E. H. Houssein, A. A. Juan, X. Yu, Binary whale optimization algorithm for dimensionality reduction, Mathematics, 8 (2020), 1821. https://doi.org/10.3390/math8101821 doi: 10.3390/math8101821 |
[7] | A. G. Hussien, M. Amin, A self-adaptive harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection, Int. J. Mach. Learn. Cyb., 13 (2022), 309–336. https://doi.org/10.1007/s13042-021-01326-4 doi: 10.1007/s13042-021-01326-4 |
[8] | Q. Liu, N. Li, H. Jia, Q. Qi, L. Abualigah, Modified remora optimization algorithm for global optimization and multilevel thresholding image segmentation, Mathematics, 10 (2022), 1014. https://doi.org/10.3390/math10071014 doi: 10.3390/math10071014 |
[9] | A. A. Ewees, L. Abualigah, D. Yousri, A. T. Sahlol, M. A. Al-qaness, S. Alshathri, et al., Modified artificial ecosystem-based optimization for multilevel thresholding image segmentation, Mathematics, 9 (2021), 2363. https://doi.org/10.3390/math9192363 doi: 10.3390/math9192363 |
[10] | M. Besnassi, N. Neggaz, A. Benyettou, Face detection based on evolutionary haar filter, Pattern Anal. Appl., 23 (2020), 309–330. https://doi.org/10.1007/s10044-019-00784-5 doi: 10.1007/s10044-019-00784-5 |
[11] | E. H. Houssein, M. Amin, A. G. Hussien, A. E. Hassanien, Swarming behaviour of salps algorithm for predicting chemical compound activities, in IEEE 2017 eighth international conference on intelligent computing and information systems (ICICIS), (2017), 315–320. https://doi.org/10.1109/INTELCIS.2017.8260072 |
[12] | H. Fathi, H. AlSalman, A. Gumaei, I. I. Manhrawy, A. G. Hussien, P. El-Kafrawy, An efficient cancer classification model using microarray and high-dimensional data, Comput. Intell. Neurosci., 2021 (2021). https://doi.org/10.1155/2021/7231126 |
[13] | L. Abualigah, A. H. Gandomi, M. A. Elaziz, A. G. Hussien, A. M. Khasawneh, M. Alshinwan, et al., Nature-inspired optimization algorithms for text document clustering—a comprehensive analysis, Algorithms, 13 (2020), 345. https://doi.org/10.3390/a13120345 doi: 10.3390/a13120345 |
[14] | A. S. Sadiq, A. A. Dehkordi, S. Mirjalili, Q. V. Pham, Nonlinear marine predator algorithm: A cost-effective optimizer for fair power allocation in noma-vlc-b5g networks, Expert Syst. Appl., 203 (2022), 117395. https://doi.org/10.1016/j.eswa.2022.117395 doi: 10.1016/j.eswa.2022.117395 |
[15] | A. A. Dehkordi, A. S. Sadiq, S. Mirjalili, K. Z. Ghafoor, Nonlinear-based chaotic harris hawks optimizer: algorithm and internet of vehicles application, Appl. Soft Comput., 109 (2021), 107574. https://doi.org/10.1016/j.asoc.2021.107574 doi: 10.1016/j.asoc.2021.107574 |
[16] | A. S. Sadiq, A. A. Dehkordi, S. Mirjalili, J. Too, P. Pillai, Trustworthy and efficient routing algorithm for iot-fintech applications using non-linear lévy brownian generalized normal distribution optimization, IEEE Internet Things, 2021. https://doi.org/10.1109/JIOT.2021.3109075 |
[17] | H. Faris, S. Mirjalili, I. Aljarah, Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme, Int. J. Mach. Learn. Cyb., 10 (2019), 2901–2920. https://doi.org/10.1007/s13042-018-00913-2 doi: 10.1007/s13042-018-00913-2 |
[18] | B. Cao, J. Zhao, P. Yang, Y. Gu, K. Muhammad, J. J. Rodrigues, et al., Multiobjective 3-d topology optimization of next-generation wireless data center network, IEEE Trans. Ind. Inf., 16 (2019), 3597–3605. https://doi.org/10.1109/TII.2019.2952565 doi: 10.1109/TII.2019.2952565 |
[19] | X. Fu, P. Pace, G. Aloi, L. Yang, G. Fortino, Topology optimization against cascading failures on wireless sensor networks using a memetic algorithm, Comput. Networks, 177 (2020), 107327. https://doi.org/10.1016/j.comnet.2020.107327 doi: 10.1016/j.comnet.2020.107327 |
[20] | L. Abualigah, A. Diabat, A comprehensive survey of the grasshopper optimization algorithm: results, variants, and applications, Neural Comput. Appl., 32 (2020), 15533–15556. https://doi.org/10.1007/s00521-020-04789-8 doi: 10.1007/s00521-020-04789-8 |
[21] | H. Chen, H. Qiao, L. Xu, Q. Feng, K. Cai, A fuzzy optimization strategy for the implementation of rbf lssvr model in vis–nir analysis of pomelo maturity, IEEE Trans. Ind. Inf., 15 (2019), 5971–5979. https://doi.org/10.1109/TII.2019.2933582 doi: 10.1109/TII.2019.2933582 |
[22] | H. G. Beyer, B. Sendhoff, Robust optimization–-a comprehensive survey, Comput. Method Appl. M., 196 (2007), 3190–3218. https://doi.org/10.1016/J.CMA.2007.03.003 doi: 10.1016/J.CMA.2007.03.003 |
[23] | D. Oliva, A. A. Ewees, M. A. E. Aziz, A. E. Hassanien, M. P. Cisneros, A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells, Energies, 10 (2017), 865. https://doi.org/10.3390/en10070865 doi: 10.3390/en10070865 |
[24] | J. Kennedy, R. Eberhart, Particle swarm optimization, in IEEE Proceedings of ICNN'95-International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 |
[25] | D. Karaboga, C. Ozturk, A novel clustering approach: Artificial bee colony (abc) algorithm, Appl. Soft Comput., 11 (2011), 652–657. https://doi.org/10.1016/j.asoc.2009.12.025 doi: 10.1016/j.asoc.2009.12.025 |
[26] | R. R. Mostafa, A. G. Hussien, M. A. Khan, S. Kadry, F. A. Hashim, Enhanced coot optimization algorithm for dimensionality reduction, in IEEE 2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU), (2022), 43–48. https://10.1109/WiDS-PSU54548.2022.00020 |
[27] | J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT press, 1992. |
[28] | A. H. Gandomi, A. H. Alavi, Krill herd: A new bio-inspired optimization algorithm, Commun. Nonlinear Sci., 17 (2012), 4831–4845. https://10.1016/j.cnsns.2012.05.010 doi: 10.1016/j.cnsns.2012.05.010 |
[29] | Z. W. Geem, J. H. Kim, G. V. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation, 76 (2001), 60–68. https://doi.org/0037-5497(2001)l:2<60:ANHOAH>2.0.TX;2-3 |
[30] | F. A. Hashim, A. G. Hussien, Snake optimizer: A novel meta-heuristic optimization algorithm, Knowl.-Based Syst., 242 (2022), 108320. https://doi.org/10.1016/j.knosys.2022.108320 doi: 10.1016/j.knosys.2022.108320 |
[31] | G. G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization, Neural Comput. Appl., 31 (2019), 1995–2014. https://doi.org/10.1007/s00521-015-1923-y doi: 10.1007/s00521-015-1923-y |
[32] | S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055 |
[33] | G. G. Wang, Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems, Memet. Comput., 10 (2018), 151–164. https://doi.org/10.1007/s12293-016-0212-3 doi: 10.1007/s12293-016-0212-3 |
[34] | Y. Yang, H. Chen, A. A. Heidari, A. H. Gandomi, Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177 (2021), 114864. https://doi.org/10.1016/j.eswa.2021.114864 doi: 10.1016/j.eswa.2021.114864 |
[35] | I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, H. Chen, Run beyond the metaphor: An efficient optimization algorithm based on runge kutta method, Expert Syst. Appl., 181 (2021), 115079. https://doi.org/10.1016/j.eswa.2021.115079 doi: 10.1016/j.eswa.2021.115079 |
[36] | I. Ahmadianfar, A. A. Heidari, S. Noshadian, H. Chen, A. H. Gandomi, Info: An efficient optimization algorithm based on weighted mean of vectors, Expert Syst. Appl., 195 (2022), 116516. https://doi.org/10.1016/j.eswa.2022.116516 doi: 10.1016/j.eswa.2022.116516 |
[37] | A. G. Hussien, A. A. Heidari, X. Ye, G. Liang, H. Chen, Z. Pan, Boosting whale optimization with evolution strategy and gaussian random walks: an image segmentation method, Eng. Comput., (2022), 1–45. https://doi.org/10.1007/s00366-021-01542-0 |
[38] | L. Abualigah, M. A. Elaziz, A. G. Hussien, B. Alsalibi, S. M. J. Jalali, A. H. Gandomi, Lightning search algorithm: A comprehensive survey, Appl. Intell., 51 (2021), 2353–23760. https://doi.org/10.1007/s10489-020-01947-2 doi: 10.1007/s10489-020-01947-2 |
[39] | A. S. Assiri, A. G. Hussien, M. Amin, Ant lion optimization: variants, hybrids, and applications, IEEE Access, 8 (2020), 77746–77764. https://doi.org/10.1109/ACCESS.2020.2990338 doi: 10.1109/ACCESS.2020.2990338 |
[40] | A. G. Hussien, M. Amin, M. Wang, G. Liang, A. Alsanad, A. Gumaei, et al., Crow search algorithm: Theory, recent advances, and applications, IEEE Access, 8 (2020), 173548–173565. https://doi.org/10.1109/ACCESS.2020.3024108 doi: 10.1109/ACCESS.2020.3024108 |
[41] | A. G. Hussien, M. Amin, M. A. E. Aziz, A comprehensive review of moth-flame optimisation: variants, hybrids, and applications, J. Exp. Theor. Artif., 32 (2020), 705–725. https://doi.org/10.1080/0952813X.2020.1737246 doi: 10.1080/0952813X.2020.1737246 |
[42] | R. Zheng, A. G. Hussien, H. M. Jia, L. Abualigah, S. Wang, D. Wu, An improved wild horse optimizer for solving optimization problems, Mathematics, 10 (2022), 1311. https://doi.org/10.3390/math10081311 doi: 10.3390/math10081311 |
[43] | S. Wang, A. G. Hussien, H. Jia, L. Abualigah, R. Zheng, Enhanced remora optimization algorithm for solving constrained engineering optimization problems, Mathematics, 10 (2022), 1696. https://doi.org/10.3390/math10101696 doi: 10.3390/math10101696 |
[44] | L. Wang, Q. Cao, Z. Zhang, S. Mirjalili, W. Zhao, Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems, Eng. Appl. Artif. Intell., 114 (2022), 105082. https://doi.org/10.1016/j.engappai.2022.105082 doi: 10.1016/j.engappai.2022.105082 |
[45] | W. Zhao, Z. Zhang, S. Mirjalili, L. Wang, N. Khodadadi, S. M. Mirjalili, An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems, Comput. Method. Appl. M., 398 (2022), 115223. https://doi.org/10.1016/j.cma.2022.115223 doi: 10.1016/j.cma.2022.115223 |
[46] | S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimisation algorithm: theory and application, Adv. Eng. Software., 105 (2017), 30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004 doi: 10.1016/j.advengsoft.2017.01.004 |
[47] | S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007 |
[48] | E. H. Houssein, A. G. Hussien, A. E. Hassanien, S. Bhattacharyya, M. Amin, S-shaped binary whale optimization algorithm for feature selection, in First International Symposium on Signal and Image Processing (ISSIP 2017), 2017. 79–87. |
[49] | L. Abualigah, D. Yousri, M. A. Elaziz, A. A. Ewees, M. A. Al-Qaness, A. H. Gandomi, Aquila optimizer: a novel meta-heuristic optimization algorithm, Comput. Ind. Eng., 157 (2021), 107250. https://doi.org/10.1016/j.cie.2021.107250 doi: 10.1016/j.cie.2021.107250 |
[50] | S. Wang, H. Jia, L. Abualigah, Q. Liu, R. Zheng, An improved hybrid aquila optimizer and harris hawks algorithm for solving industrial engineering optimization problems, Processes, 9 (2021), 1551. https://doi.org/10.3934/mbe.2021352 doi: 10.3934/mbe.2021352 |
[51] | S. Mahajan, L. Abualigah, A. K. Pandit, M. Altalhi, Hybrid aquila optimizer with arithmetic optimization algorithm for global optimization tasks, Soft Comput., 26 (2022), 4863–4881. https://doi.org/10.1007/s00500-022-06873-8 doi: 10.1007/s00500-022-06873-8 |
[52] | L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609 |
[53] | Y. J. Zhang, Y. X. Yan, J. Zhao, Z. M. Gao, Aoaao: The hybrid algorithm of arithmetic optimization algorithm with aquila optimizer, IEEE Access, 10 (2022), 10907–10933. https://doi.org/10.1109/ACCESS.2022.3144431 doi: 10.1109/ACCESS.2022.3144431 |
[54] | J. Zhao, Z. M. Gao, H. F. Chen, The simplified aquila optimization algorithm, IEEE Access, 10 (2022), 22487–22515. https://doi.org/10.1109/ACCESS.2022.3153727 doi: 10.1109/ACCESS.2022.3153727 |
[55] | C. Ma, H. Huang, Q. Fan, J. Wei, Y. Du, W. Gao, Grey wolf optimizer based on aquila exploration method, Expert Syst. Appl., 205 (2022), 117629. https://doi.org/10.1016/j.eswa.2022.117629 doi: 10.1016/j.eswa.2022.117629 |
[56] | B. Gao, Y. Shi, F. Xu, X. Xu, An improved aquila optimizer based on search control factor and mutations, Processes, 10 (2022), 1451. https://doi.org/10.3390/pr10081451 doi: 10.3390/pr10081451 |
[57] | A. M. AlRassas, M. A. Al-qaness, A. A. Ewees, S. Ren, M. A. Elaziz, R. Damaševičius, et al., Optimized anfis model using aquila optimizer for oil production forecasting, Processes, 9 (2021), 1194. https://doi.org/10.3390/pr9071194 doi: 10.3390/pr9071194 |
[58] | M. A. Elaziz, A. Dahou, N. A. Alsaleh, A. H. Elsheikh, A. I. Saba, M. Ahmadein, Boosting covid-19 image classification using mobilenetv3 and aquila optimizer algorithm, Entropy, 23 (2021), 1383. https://doi.org/10.3390/e23111383 doi: 10.3390/e23111383 |
[59] | A. Fatani, A. Dahou, M. A. Al-Qaness, S. Lu, M. A. Elaziz, Advanced feature extraction and selection approach using deep learning and aquila optimizer for iot intrusion detection system, Sensors, 22 (2021), 140. https://doi.org/10.3390/s22010140 doi: 10.3390/s22010140 |
[60] | G. G. Wang, S. Deb, L. D. S. Coelho, Elephant herding optimization, in IEEE 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), (2015), 1–5. https://doi.org/10.1109/ISCBI.2015.8 |
[61] | R. Tanabe, A. S. Fukunaga, Improving the search performance of shade using linear population size reduction, in 2014 IEEE Congress on Evolutionary Computation (CEC), (2014), 1658–1665. https://doi.org/10.1109/CEC.2014.6900380 |
[62] | N. H. Awad, M. Z. Ali, P. N. Suganthan, Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving cec2017 benchmark problems, in 2017 IEEE Congress on Evolutionary Computation (CEC), (2017), 372–379. https://doi.org/10.1109/CEC.2017.7969336 |
[63] | S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89 (2015), 228–249. https://doi.org/10.1016/j.knosys.2015.07.006 doi: 10.1016/j.knosys.2015.07.006 |
[64] | S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27 (2016), 495–513. https://doi.org/10.1007/s00521-015-1870-7 doi: 10.1007/s00521-015-1870-7 |
[65] | K. Steenhof, M. N. Kochert, T. L. Mcdonald, Interactive effects of prey and weather on golden eagle reproduction, J. Anim. Ecol., 66 (1997), 350–362. |
[66] | H. R. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, in IEEE International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), 1 (2005), 695–701. https://doi.org/10.1109/CIMCA.2005.1631345 |
[67] | A. G. Hussien, An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems, J. Amb. Intell. Hum. Comput., 13 (2022), 129–150. https://doi.org/10.1007/s12652-021-02892-9 doi: 10.1007/s12652-021-02892-9 |
[68] | H. Chen, Y. Xu, M. Wang, X. Zhao, A balanced whale optimization algorithm for constrained engineering design problems, Appl. Math. Modell., 71 (2019), 45–59. https://doi.org/10.1016/j.apm.2019.02.004 doi: 10.1016/j.apm.2019.02.004 |
[69] | Y. Yu, S. Gao, S. Cheng, Y. Wang, S. Song, F. Yuan, Cbso: A memetic brain storm optimization with chaotic local search, Memet. Comput., 10 (2018), 353–367. https://doi.org/10.1007/s12293-017-0247-0 doi: 10.1007/s12293-017-0247-0 |
[70] | J. Zhao, Y. Zhang, S. Li, Y. Wang, Y. Yan, Z. Gao, A chaotic self-adaptive jaya algorithm for parameter extraction of photovoltaic models, Math. Biosci. Eng., 19 (2022), 5638–5670. https://doi.org/10.3934/mbe.2022264 doi: 10.3934/mbe.2022264 |
[71] | H. Zhang, Z. Wang, W. Chen, A. A. Heidari, M. Wang, X. Zhao, et al., Ensemble mutation-driven salp swarm algorithm with restart mechanism: Framework and fundamental analysis, Expert Syst. Appl., 165 (2021), 113897. https://doi.org/10.1016/j.eswa.2020.113897 doi: 10.1016/j.eswa.2020.113897 |
[72] | Y. Zhang, Y. Wang, S. Li, F. Yao, L. Tao, Y. Yan, et al., An enhanced adaptive comprehensive learning hybrid algorithm of rao-1 and jaya algorithm for parameter extraction of photovoltaic models, Math. Biosci. Eng., 19 (2022), 5610–5637. https://doi.org/10.3934/mbe.2022263 doi: 10.3934/mbe.2022263 |
[73] | Y. J. Zhang, Y. X. Yan, J. Zhao, Z. M. Gao, Cscahho: Chaotic hybridization algorithm of the sine cosine with harris hawk optimization algorithms for solving global optimization problems, Plos One, 17 (2022), e0263387. https://doi.org/10.1371/journal.pone.0263387 doi: 10.1371/journal.pone.0263387 |
[74] | M. Y. Cheng, D. Prayogo, A novel fuzzy adaptive teaching–learning-based optimization (fatlbo) for solving structural optimization problems, Eng. Comput., 33 (2017), 55–69. https://doi.org/10.1007/s00366-016-0456-z doi: 10.1007/s00366-016-0456-z |
[75] | H. Samma, J. Mohamad-Saleh, S. A. Suandi, B. Lahasan, Q-learning-based simulated annealing algorithm for constrained engineering design problems, Neural Comput. Appl., 32 (2020), 5147–5161. https://doi.org/10.1007/s00521-019-04008-z doi: 10.1007/s00521-019-04008-z |
[76] | C. A. C. Coello, Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41 (2000), 113–127. https://doi.org/10.1016/S0166-3615(99)00046-9 doi: 10.1016/S0166-3615(99)00046-9 |
[77] | K. Deb, Optimal design of a welded beam via genetic algorithms, AIAA J., 29 (1991), 2013–2015. https://doi.org/10.2514/3.10834 doi: 10.2514/3.10834 |
[78] | S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114 (2017), 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002 doi: 10.1016/j.advengsoft.2017.07.002 |
[79] | A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine predators algorithm: A nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. https://doi.org/10.1016/j.eswa.2020.113377 doi: 10.1016/j.eswa.2020.113377 |
[80] | A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028 |
[81] | A. G. Hussien, L. Abualigah, R. A. Zitar, F. A. Hashim, M. Amin, A. Saber, et al., Recent advances in harris hawks optimization: A comparative study and applications, Electronics, 11 (2022), 1919. https://doi.org/10.3390/electronics11121919 doi: 10.3390/electronics11121919 |
[82] | S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008 |
[83] | B. Kannan, S. N. Kramer, An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, J. Mech. Design, 116 (1994), 405–411. https://doi.org/10.1115/1.2919393 doi: 10.1115/1.2919393 |
[84] | H. Liu, Z. Cai, Y. Wang, Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Appl. Soft Comput., 10 (2010), 629–640. https://doi.org/10.1016/j.asoc.2009.08.031 doi: 10.1016/j.asoc.2009.08.031 |
[85] | M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput., 188 (2007), 1567–1579. https://doi.org/10.1016/j.amc.2006.11.033 doi: 10.1016/j.amc.2006.11.033 |
[86] | J. Zhao, Z. M. Gao, W. Sun, The improved slime mould algorithm with levy flight, in Journal of Physics: Conference Series, 1617 (2020), 012033. https://doi.org/10.1088/1742-6596/1617/1/012033 |
[87] | Q. He, L. Wang, An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng. Appl. Artif. Intell., 20 (2007), 89–99. https://doi.org/10.1016/j.engappai.2006.03.003 doi: 10.1016/j.engappai.2006.03.003 |
[88] | A. Kaveh, A. Dadras, A novel meta-heuristic optimization algorithm: Thermal exchange optimization, Adv. Eng. Software, 110 (2017), 69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014 doi: 10.1016/j.advengsoft.2017.03.014 |
[89] | J. S. Arora, Introduction to optimum design, Elsevier, 2004. |
[90] | A. Kaveh, M. Khayatazad, A new meta-heuristic method: Ray optimization, Comput. Struct., 112 (2012), 283–294. https://doi.org/10.1016/j.compstruc.2012.09.003 doi: 10.1016/j.compstruc.2012.09.003 |
[91] | E. Mezura-Montes, C. A. C. Coello, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, Int. J. Gen. Syst., 37 (2008), 443–473. https://doi.org/10.1080/03081070701303470 doi: 10.1080/03081070701303470 |
[92] | M. A. Elaziz, D. Oliva, S. Xiong, An improved opposition-based sine cosine algorithm for global optimization, Expert Syst. Appl., 90 (2017), 484–500. https://doi.org/10.1016/j.eswa.2017.07.043 doi: 10.1016/j.eswa.2017.07.043 |
[93] | E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, Gsa: A gravitational search algorithm, Inf. Sci, 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004 |
[94] | E. Mezura-Montes, C. A. C. Coello, Useful infeasible solutions in engineering optimization with evolutionary algorithms, in Mexican International Conference on Artificial Intelligence, 3789 (2005), 652–662. https://doi.org/10.1007/11579427_66 |
[95] | S. Stephen, D. Christu, A. Dalvi, Design optimization of weight of speed reducer problem through matlab and simulation using ansys, Int. J. Mech. Eng. Technol., 9 (2018), 339–349. |
[96] | S. Lu, H. M. Kim, A regularized inexact penalty decomposition algorithm for multidisciplinary design optimization problems with complementarity constraints, J. Mech. Design, 132 (2010), 041005. https://doi.org/10.1115/1.4001206 doi: 10.1115/1.4001206 |
[97] | S. Mirjalili, Sca: A sine cosine algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022 |
[98] | E. Mezura-Montes, C. C. Coello, R. Landa-Becerra, Engineering optimization using simple evolutionary algorithm, in Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence, (2003), 149–156. https://doi.org/10.1109/TAI.2003.1250183 |
[99] | S. Akhtar, K. Tai, T. Ray, A socio-behavioural simulation model for engineering design optimization, Eng. Optimiz., 34 (2002), 341–354. https://doi.org/10.1080/03052150212723 doi: 10.1080/03052150212723 |
[100] | V. K. Kamboj, A. Nandi, A. Bhadoria, S. Sehgal, An intensify harris hawks optimizer for numerical and engineering optimization problems, Appl. Soft Comput., 89 (2020), 106018. https://doi.org/10.1016/j.asoc.2019.106018 doi: 10.1016/j.asoc.2019.106018 |
[101] | H. Nowacki, Optimization in pre-contract ship design, In International Conference on Computer Applications in the Automation of Shipyard Operation and Ship Design, 1973. |
[102] | A. H. Gandomi, X. S. Yang, A. H. Alavi, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., 29 (2013), 17–35. https://doi.org/10.1007/s00366-011-0241-y doi: 10.1007/s00366-011-0241-y |
[103] | M. Zhang, W. Luo, X. Wang, Differential evolution with dynamic stochastic selection for constrained optimization, Inf. Sci., 178 (2008), 3043–3074. https://doi.org/10.1016/j.ins.2008.02.014 doi: 10.1016/j.ins.2008.02.014 |
[104] | A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi, Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13 (2013), 2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026 doi: 10.1016/j.asoc.2012.11.026 |
[105] | A. E. YILDIRIM, A. Karci, Application of three bar truss problem among engineering design optimization problems using artificial atom algorithm, in IEEE 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), (2018), 1–5. https://doi.org/10.1109/IDAP.2018.8620762 |