A new swarm-based optimization algorithm called the Aquila optimizer (AO) was just proposed recently with promising better performance. However, as reported by the proposer, it almost remains unchanged for almost half of the convergence curves at the latter iterations. Considering the better performance and the lazy latter convergence rates of the AO algorithm in optimization, the multiple updating principle is introduced and the heterogeneous AO called HAO is proposed in this paper. Simulation experiments were carried out on both unimodal and multimodal benchmark functions, and comparison with other capable algorithms were also made, most of the results confirmed the better performance with better intensification and diversification capabilities, fast convergence rate, low residual errors, strong scalabilities, and convinced verification results. Further application in optimizing three benchmark real-world engineering problems were also carried out, the overall better performance in optimizing was confirmed without any other equations introduced for improvement.
Citation: Juan ZHAO, Zheng-Ming GAO. The heterogeneous Aquila optimization algorithm[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 5867-5904. doi: 10.3934/mbe.2022275
A new swarm-based optimization algorithm called the Aquila optimizer (AO) was just proposed recently with promising better performance. However, as reported by the proposer, it almost remains unchanged for almost half of the convergence curves at the latter iterations. Considering the better performance and the lazy latter convergence rates of the AO algorithm in optimization, the multiple updating principle is introduced and the heterogeneous AO called HAO is proposed in this paper. Simulation experiments were carried out on both unimodal and multimodal benchmark functions, and comparison with other capable algorithms were also made, most of the results confirmed the better performance with better intensification and diversification capabilities, fast convergence rate, low residual errors, strong scalabilities, and convinced verification results. Further application in optimizing three benchmark real-world engineering problems were also carried out, the overall better performance in optimizing was confirmed without any other equations introduced for improvement.
[1] | D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989. |
[2] | M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Trans. Syst. Man Cybern. B Cybern., 26 (1996), 29–41. https://doi.org/10.1109/3477.484436 doi: 10.1109/3477.484436 |
[3] | R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, (1995), 39–43. https://doi.org/10.1109/MHS.1995.494215 |
[4] | M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evolut. Comput., 6 (2002), 58–73. https://doi.org/10.1109/4235.985692 doi: 10.1109/4235.985692 |
[5] | R. C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 1 (2000), 16–19. https://doi.org/10.1109/CEC.2000.870279 |
[6] | M. E. H. Pedersen, A. J. Chipperfield, Simplifying Particle Swarm Optimization, Appl. Soft Comput., 10 (2010), 618–628. https://doi.org/10.1016/j.asoc.2009.08.029 doi: 10.1016/j.asoc.2009.08.029 |
[7] | G. I. Evers, M. B. Ghalia, Regrouping particle swarm optimization: A new global optimization algorithm with improved performance consistency across benchmarks, in 2009 IEEE International Conference on Systems, Man and Cybernetics, (2009), 3901–3908. https://doi.org/10.1109/ICSMC.2009.5346625 |
[8] | F. v. d. Bergh, A. P. Engelbrecht, A new locally convergent particle swarm optimiser, in IEEE International Conference on Systems, Man and Cybernetics, 3 (2002). https://doi.org/10.1109/ICSMC.2002.1176018. |
[9] | T. Xiang, X. Liao, K. W. Wong, An improved particle swarm optimization algorithm combined with piecewise linear chaotic map, Appl. Math. Comput., 190 (2007), 1637–1645. https://doi.org/10.1016/j.amc.2007.02.103 doi: 10.1016/j.amc.2007.02.103 |
[10] | H. Haklı, H. Uğuz, A novel particle swarm optimization algorithm with Levy flight, Appl. Soft Comput., 23 (2014), 333–345. http://dx.doi.org/10.1016/j.asoc.2014.06.034 doi: 10.1016/j.asoc.2014.06.034 |
[11] | H. Garg, A hybrid PSO-GA algorithm for constrained optimization problems, Appl. Math. Comput., 274 (2016), 292–305. https://doi.org/10.1016/j.amc.2015.11.001 doi: 10.1016/j.amc.2015.11.001 |
[12] | N. Holden, A. A. Freitas, A hybrid PSO/ACO algorithm for discovering classification rules in data mining, J.Artif. Evolut. Appl., (2008), 316145. https://doi.org/10.1155/2008/316145 doi: 10.1155/2008/316145 |
[13] | A. P. Engelbrecht, Heterogeneous particle swarm optimization, in Swarm Intelligence (eds. M. Dorigo et al.), Springer Berlin Heidelberg, (2010), 191–202. |
[14] | X. S. Yang, A New Metaheuristic Bat-Inspired Algorithm, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer Berlin Heidelberg, (2010), 65–74. |
[15] | Z. M. Gao, J. Zhao, X. R. Li, Y. R. Hu, An improved sine cosine algorithm with multiple updating ways for individuals, J. Phys. Conf. Ser., 1678 (2020), 012079. https://doi.org/10.1088/17426596/1678/1/012079 doi: 10.1088/17426596/1678/1/012079 |
[16] | J. Zhao, Z. M. Gao, An improved grey wolf optimization algorithm with multiple tunnels for updating, J. Phys. Conf. Ser., 1678 (2020), 012096. https://doi.org/10.1088/17426596/1678/1/012096 doi: 10.1088/17426596/1678/1/012096 |
[17] | S. Mirjalili, SCA: A Sine Cosine algorithm for solving optimization problems, Knowl. Based Syst., 96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022 |
[18] | L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609 |
[19] | L. Abualigaha, D. Yousrib, M. A. Elazizc, A. A. Eweesd, M. A. A. Al-qanesse, A. H. Gandomif, Aquila optimizer: a novel meta-heuristic optimization algorithm, Comput. Indust. Eng., 157 (2021), 107250. https://doi.org/10.1016/j.cie.2021.107250 doi: 10.1016/j.cie.2021.107250 |
[20] | A. Fatani, A. Dahou, M. A. A. Al-qaness, S. Lu, M. Abd Elaziz, Advanced feature extraction and selection approach using deep learning and Aquila optimizer for IoT intrusion detection system, Sensors, 22 (2022), 140. https://doi.org/10.3390/s22010140 doi: 10.3390/s22010140 |
[21] | A. M. AlRassas, M. A. A. Al-qaness, A. A. Ewees, S. Ren, M. Abd Elaziz, Optimized ANFIS model using Aquila optimizer for oil production forecasting, Processes, 9 (2021). https://doi.org/10.3390/pr9071194 doi: 10.3390/pr9071194 |
[22] | S. Mirjalili, The ant lion optimizer, Adv. Eng. Soft., 83 (2015), 80–98. http://dx.doi.org/10.1016/j.advengsoft.2015.01.010 doi: 10.1016/j.advengsoft.2015.01.010 |
[23] | B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems, Comput. Indust. Eng., 158 (2021), 107408. https://doi.org/10.1016/j.cie.2021.107408 doi: 10.1016/j.cie.2021.107408 |
[24] | A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowl. Based Syst., (2019), 105190. https://doi.org/10.1016/j.knosys.2019.105190 doi: 10.1016/j.knosys.2019.105190 |
[25] | S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimisation algorithm: theory and application, Adv. Eng. Soft., 105 (2017), 30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004 doi: 10.1016/j.advengsoft.2017.01.004 |
[26] | S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, " Adv. Eng. Soft., 69 (2014), 46–61. http://dx.doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007 |
[27] | A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comp. Syst., 2019. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028 |
[28] | S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl. based syst., 89 (2015), 228. https://doi.org/10.1016/j.knosys.2015.07.006 doi: 10.1016/j.knosys.2015.07.006 |
[29] | K. Zervoudakis, S. Tsafarakis, A mayfly optimization algorithm, Comput. Indust. Eng., 145 (2020), 106559. https://doi.org/10.1016/j.cie.2020.106559 doi: 10.1016/j.cie.2020.106559 |
[30] | S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw., 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008 |
[31] | Z. M. Gao, J. Zhao, Benchmark functions with Python, Golden Light Academic Publishing, (2020), 3–5. |
[32] | S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-Verse Optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27 (2016), 495–513. https://doi.org/10.1007/s00521-015-1870-7 doi: 10.1007/s00521-015-1870-7 |
[33] | A. D. Laith Abualigah, S. Mirjalilid, M. Abd Elazizf, A. H. Gandomih, The Arithmetic Optimization Algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609 |
[34] | A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi, Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13 (2013), 2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026 doi: 10.1016/j.asoc.2012.11.026 |
[35] | S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114 (2017), 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002 doi: 10.1016/j.advengsoft.2017.07.002 |
[36] | M. Zhang, W. Luo, X. Wang, Differential evolution with dynamic stochastic selection for constrained optimization, Inform. Sci., 178 (2008), 3043–3074. https://doi.org/10.1016/j.ins.2008.02.014 doi: 10.1016/j.ins.2008.02.014 |
[37] | V. Bhargava, S. E. K. Fateen, A. Bonilla-Petriciolet, Cuckoo Search: A new nature-inspired optimization method for phase equilibrium calculations, Fluid Phase Equilibr., 337 (2013), 191–200. http://dx.doi.org/10.1016/j.fluid.2012.09.018 doi: 10.1016/j.fluid.2012.09.018 |
[38] | J. F. Tsai, Global optimization of nonlinear fractional programming problems in engineering design, Eng. Optimiz., 37 (2005), 399–409. https://doi.org/10.1080/03052150500066737 doi: 10.1080/03052150500066737 |
[39] | A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H.Gandomic, Marine predators algorithm: A nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. https://doi.org/10.1016/j.eswa.2020.113377 doi: 10.1016/j.eswa.2020.113377 |
[40] | J. M. Czerniak, H. Zarzycki, D. Ewald, AAO as a new strategy in modeling and simulation of constructional problems optimization, Simul. Model. Pract. Theory, 76 (2017), 22–33. https://doi.org/10.1016/j.simpat.2017.04.001 doi: 10.1016/j.simpat.2017.04.001 |
[41] | S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055 |