Theoretical analysis of physical characteristics of unsteady, squeezing nanofluid flow is studied. The flow of nanofluid between two plates that placed parallel in a rotating system by keeping the variable physical properties: viscosity and thermal conductivity. It is analyzed by using Navier Stokes Equation, Energy Equation and Concentration equation. The prominent equations are transformed by virtue of suitable similarity transformation. Nanofluid model includes the important effects of Thermophoresis and Brownian motion. For analysis graphical results are drawn for verity parameters of our interest i.e., Injection parameter, Squeezing number, Prandtle number and Schmidt number are investigated for the Velocity field, Temperature variation and Concentration profile numerically. The findings underline that the parameter of skin friction increases when the Squeezing Reynolds number, Injection parameter and Prandtle number increases. However, it shows inverse relationship with Schmidt number and Rotation parameter. Furthermore, direct relationship of Nusselt number with injection parameter and Reynolds number is observed while its relation with Schmidt number, Rotation parameter, Brownian parameter and Thermophoretic parameter shows an opposite trend. The results are thus obtained through Parametric Continuation Method (PCM) which is further validated through BVP4c. Moreover, the results are tabulated and set forth for comparison of findings through PCM and BVP4c which shows that the obtained results correspond to each other.
Citation: Aamir Saeed, Rehan Ali Shah, Muhammad Sohail Khan, Unai Fernandez-Gamiz, Mutasem Z. Bani-Fwaz, Samad Noeiaghdam, Ahmed M. Galal. Theoretical analysis of unsteady squeezing nanofluid flow with physical properties[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10176-10191. doi: 10.3934/mbe.2022477
Theoretical analysis of physical characteristics of unsteady, squeezing nanofluid flow is studied. The flow of nanofluid between two plates that placed parallel in a rotating system by keeping the variable physical properties: viscosity and thermal conductivity. It is analyzed by using Navier Stokes Equation, Energy Equation and Concentration equation. The prominent equations are transformed by virtue of suitable similarity transformation. Nanofluid model includes the important effects of Thermophoresis and Brownian motion. For analysis graphical results are drawn for verity parameters of our interest i.e., Injection parameter, Squeezing number, Prandtle number and Schmidt number are investigated for the Velocity field, Temperature variation and Concentration profile numerically. The findings underline that the parameter of skin friction increases when the Squeezing Reynolds number, Injection parameter and Prandtle number increases. However, it shows inverse relationship with Schmidt number and Rotation parameter. Furthermore, direct relationship of Nusselt number with injection parameter and Reynolds number is observed while its relation with Schmidt number, Rotation parameter, Brownian parameter and Thermophoretic parameter shows an opposite trend. The results are thus obtained through Parametric Continuation Method (PCM) which is further validated through BVP4c. Moreover, the results are tabulated and set forth for comparison of findings through PCM and BVP4c which shows that the obtained results correspond to each other.
[1] | M. J. Stefan, Versuch Uber die scheinbare adhesion, Akademie der wissenschaften in wien, Math. Nat., 69 (1874), 713. |
[2] | O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp tower's experiments, including an experimental determination of the viscosity of olive oil, Philos. Trans. R. Soc. London, 177 (1886), 157–234. |
[3] | F. R. Archibald, Load capacity and time relations for squeeze films, Trans. Am. Soc. Mech. Eng., 78 (1956), 29–35. https://doi.org/10.1098/rstl.1886.0005 doi: 10.1098/rstl.1886.0005 |
[4] | T. V. Kármán, About laminar and turbulent friction, Z. Angew. Math. Mech., 1 (1921), 233–252. |
[5] | W. G. Cochran, The flow due to a rotating disc, in Mathematical proceedings of the Cambridge philosophical society, 30 (1934) 365–375. https://doi.org/10.1017/S0305004100012561 |
[6] | E. A. Hamza, D. A. MacDonald, A similar flow between two rotating disks, Q. Appl. Math., 41 (1984), 495–511. https://doi.org/10.1090/qam/724059 doi: 10.1090/qam/724059 |
[7] | F. N. Ibrahim, Unsteady flow between two rotating discs with heat transfer, J. Phys. D: Appl. Phys., 24 (1991), 1293. https://doi.org/10.1088/0022-3727/24/8/010 doi: 10.1088/0022-3727/24/8/010 |
[8] | M. Mustafa, T. Hayat, S. Obaidat, On heat and mass transfer in the unsteady squeezing flow between parallel plates, Meccanica, 47 (2012), 1581–1589. https://doi.org/10.1007/s11012-012-9536-3 doi: 10.1007/s11012-012-9536-3 |
[9] | M. Turkyilmazoglu, Three dimensional MHD stagnation flow due to a stretchable rotating disk, Int. J. Heat Mass Transfer., 55 (2012), 6959–6965. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.089 doi: 10.1016/j.ijheatmasstransfer.2012.05.089 |
[10] | M. Turkyilmazoglu, Nanofluid flow and heat transfer due to a rotating disk, Comput. Fluids, 94 (2014), 139–146. https://doi.org/10.1016/j.compfluid.2014.02.009 doi: 10.1016/j.compfluid.2014.02.009 |
[11] | K. X. Hu, M. He, Q. S. Chen, Instabilities of thermo capillary flows between counter-rotating disks, Procedia Eng., 126 (2015), 54–57. https://doi.org/10.1016/j.proeng.2015.11.177 doi: 10.1016/j.proeng.2015.11.177 |
[12] | T. Hayat, Tasawar, S. Qayyum, M. Imtiaz, A. Alsaedi, Flow between two stretchable rotating disks with Cattaneo-Christov heat flux model, Results Phys., 7 (2017), 126–133. https://doi.org/10.1016/j.rinp.2016.12.007 doi: 10.1016/j.rinp.2016.12.007 |
[13] | T. Hayat, T. Nasir, M. I. Khan, A. Alsaedi, Non-Darcy flow of water-based single (SWCNTs) and multiple (MWCNTs) walls carbon nanotubes with multiple slip conditions due to rotating disk, Results Phys., 9 (2018), 390–399. https://doi.org/10.1016/j.rinp.2018.02.044 doi: 10.1016/j.rinp.2018.02.044 |
[14] | R. M. Mehdi, H. Shahmohamadi, S. Dinarvand, Analytic approximate solutions for unsteady two-dimensional and axisymmetric squeezing flows between parallel plates, Math. Probl. Eng., 2008 (2008). http://dx.doi.org/10.1155/2008/935095 doi: 10.1155/2008/935095 |
[15] | D. P. Kavenuke, E. Massawe, O. D. Makinde, Modeling laminar flow between a fixed impermeable disk and a porous rotating disk, Afr. J. Math. Comput. Sci. Res., 2 (2009), 157–162. |
[16] | M. M. Rashidi,, S. Abelman, N. F. Mehr, Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transfer, 62 (2013), 515–525. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004 doi: 10.1016/j.ijheatmasstransfer.2013.03.004 |
[17] | M. Sheikholeslami, S. Abelman, D. D. Ganji, Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation, Int. J. Heat Mass Transfer, 79 (2014), 212–222. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.004 doi: 10.1016/j.ijheatmasstransfer.2014.08.004 |
[18] | M. Sheikholeslami, D. D Ganji, Magnetohydrodynamic flow in a permeable channel filled with nanofluid, Sci. Iran., 21, (2014): 203–212. |
[19] | M. Sheikholeslami, D. D. Ganji, Numerical investigation for two phase modeling of nanofluid in a rotating system with permeable sheet, J. Mol. Liquids, 194 (2014), 13–19. |
[20] | S. Usha, N. B. Naduvinamani, Magnetized impacts of Brownian motion and thermophoresis on unsteady squeezing flow of nanofluid between two parallel plates with chemical reaction and Joule heating, Heat Transf. Asian Res., 48 (2019), 4174–4202. https://doi.org/10.1002/htj.21587 doi: 10.1002/htj.21587 |
[21] | D. P. Bhatta, S. R. Mishra, J. K. Dash, Unsteady squeezing flow of water-based nanofluid between two parallel disks with slip effects: Analytical approach, Heat Transfer Asian Res., 48 (2019), 1575–1594. https://doi.org/10.1002/htj.21447 doi: 10.1002/htj.21447 |
[22] | G. K. Ramesh, G. S. Roopa, A. Rauf, S. A. Shehzad, F. M. Abbasi, Time-dependent squeezing flow of Casson-micropolar nanofluid with injection/suction and slip effects, Int. Commun. Heat Mass Transfer, 126 (2021), 105470. https://doi.org/10.1016/j.icheatmasstransfer.2021.105470 doi: 10.1016/j.icheatmasstransfer.2021.105470 |
[23] | A. K. Gupta, S. S. Ray, Numerical treatment for investigation of squeezing unsteady nanofluid flow between two parallel plates, Powder Technol., 279 (2015), 282–289. https://doi.org/10.1016/j.powtec.2015.04.018 doi: 10.1016/j.powtec.2015.04.018 |
[24] | U. Rashid, T. Abdeljawad, H. Liang, A. Iqbal, M. Abbas, M. Siddiqui, The shape effect of gold nanoparticles on squeezing nanofluid flow and heat transfer between parallel plates, Math. Probl. Eng., 2020 (2020). https://doi.org/10.1155/2020/9584854 doi: 10.1155/2020/9584854 |
[25] | M. Bilal, H. Arshad, M. Ramzan, Z. Shah, P. Kumam, Unsteady hybrid-nanofluid flow comprising ferrousoxide and CNTs through porous horizontal channel with dilating/squeezing walls, Sci. Rep., 11 (2021), 1–16. https://doi.org/10.1038/s41598-021-91188-1 doi: 10.1038/s41598-021-91188-1 |
[26] | M. B. Arain, M. M. Bhatti, A. Zeeshan, F. S. Alzahrani, Bioconvection reiner-rivlin nanofluid flow between rotating circular plates with induced magnetic effects, activation energy and squeezing phenomena, Mathematics, 9 (2021), 2139. https://doi.org/10.3390/math9172139 doi: 10.3390/math9172139 |
[27] | A. Nouar, A. Dib, M. Kezzar, M. R. Sari, M. R. Eid, Numerical treatment of squeezing unsteady nanofluid flow using optimized stochastic algorithm, Zeitschrift für Naturforschung A, 76 (2021), 933–946. https://doi.org/10.1515/zna-2021-0163 doi: 10.1515/zna-2021-0163 |
[28] | M. S. Khan, S. Mei, U. F. Gamiz, S. Noeiaghdam, A. Khan, S. A. Shah, Electroviscous effect of water-base nanofluid flow between two parallel disks with suction/injection effect, Mathematics, 10 (2022), 956. https://doi.org/10.3390/math10060956 doi: 10.3390/math10060956 |
[29] | H. Upreti, A. K. Pandey, M. Kumar, Unsteady squeezing flow of magnetic hybrid nanofluids within parallel plates and entropy generation, Heat Transfer, 50 (2021), 105–125. https://doi.org/10.1002/htj.21994 doi: 10.1002/htj.21994 |
[30] | Li, Y. M., I. Ullah, N. A. Ahammad, I. Ullah, T. Muhammad, S. A. Asiri, Approximation of unsteady squeezing flow through porous space with slip effect: DJM approach, Waves in Random and Complex Media, (2022), 1–15. |