Research article Special Issues

A boundary value problem of heat transfer within DBD-based plasma jet setups


  • Received: 01 April 2023 Revised: 15 September 2023 Accepted: 20 September 2023 Published: 25 September 2023
  • We claim an analytical solution for the thermal boundary value problem that arises in DBD-based plasma jet systems as a preliminary and consistent approach to a simplified geometry. This approach involves the outline of a coaxial plasma jet reactor and the consideration of the heat transfer to the reactor solids, namely, the dielectric barrier and the grounded electrode. The non-homogeneous initial and boundary value thermal problem is solved analytically, while a simple cut-off technique is applied to deal with the appearance of infinite series relationships, being the outcome of merging dual expressions. The results are also implemented numerically, supporting the analytical solution, while a Finite Integration Technique (FIT) is used for the validation. Both the analytical and numerical data reveal the temperature pattern at the cross-section of the solids in perfect agreement. This analytical approach could be of importance for the optimization of plasma jet systems employed in tailored applications where temperature-sensitive materials are involved, like in plasma biomedicine.

    Citation: P. Vafeas, A. Skarlatos, P. K. Papadopoulos, P. Svarnas, N. Sarmas. A boundary value problem of heat transfer within DBD-based plasma jet setups[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18345-18367. doi: 10.3934/mbe.2023815

    Related Papers:

  • We claim an analytical solution for the thermal boundary value problem that arises in DBD-based plasma jet systems as a preliminary and consistent approach to a simplified geometry. This approach involves the outline of a coaxial plasma jet reactor and the consideration of the heat transfer to the reactor solids, namely, the dielectric barrier and the grounded electrode. The non-homogeneous initial and boundary value thermal problem is solved analytically, while a simple cut-off technique is applied to deal with the appearance of infinite series relationships, being the outcome of merging dual expressions. The results are also implemented numerically, supporting the analytical solution, while a Finite Integration Technique (FIT) is used for the validation. Both the analytical and numerical data reveal the temperature pattern at the cross-section of the solids in perfect agreement. This analytical approach could be of importance for the optimization of plasma jet systems employed in tailored applications where temperature-sensitive materials are involved, like in plasma biomedicine.



    加载中


    [1] V. Papadimas, C. Doudesis, P. Svarnas, P. K. Papadopoulos, G. P. Vafakos, P. Vafeas, SDBD flexible plasma actuator with Ag-Ink electrodes: experimental assessment, Appl. Sci., 11 (2021), 11930. https://doi.org/10.3390/app112411930 doi: 10.3390/app112411930
    [2] P. Svarnas, E. Giannakopoulos, I. Kalavrouziotis, C. Krontiras, S. Georga, R. S. Pasolari, et al., Sanitary effect of FE-DBD cold plasma in ambient air on sewage biosolids, Sci. Total Environ., 705 (2020), 135940. https://doi.org/10.1016/j.scitotenv.2019.135940 doi: 10.1016/j.scitotenv.2019.135940
    [3] P. Svarnas, A. Spiliopoulou, P. G. Koutsoukos, K. Gazeli, E. D. Anastassiou, Acinetobacter baumannii deactivation by means of DBD-Based helium plasma jet, Plasma, 2 (2019), 77-90. https://doi.org/10.3390/plasma2020008 doi: 10.3390/plasma2020008
    [4] K. Pefani-Antimisiari, D. K. Athanasopoulos, A. Marazioti, K. Sklias, M. Rodi, A. L. de Lastic, et al., Synergistic effect of cold atmospheric pressure plasma and free or liposomal doxorubicin on melanoma cells, Sci. Rep., 11 (2021), 14788. https://doi.org/10.1038/s41598-021-94130-7 doi: 10.1038/s41598-021-94130-7
    [5] K. Gazeli, P. Svarnas, P. Vafeas, P. K. Papadopoulos, A. Gkelios, F. Clément, Investigation on streamers propagating into a helium jet in air at atmospheric pressure: Electrical and optical emission analysis, J. Appl. Phys., 114 (2013), 103304. https://doi.org/10.1063/1.4820570 doi: 10.1063/1.4820570
    [6] P. Vafeas, P. K. Papadopoulos, G. P. Vafakos, P. Svarnas, M. Doschoris, Modelling the electric field in reactors yielding cold atmospheric-pressure plasma jets, Sci. Rep., 10 (2020), 5694. https://doi.org/10.1038/s41598-020-61939-7 doi: 10.1038/s41598-020-61939-7
    [7] P. K. Papadopoulos, P. Vafeas, P. Svarnas, K. Gazeli, P. M. Hatzikonstantinou, A. Gkelios, et al., Interpretation of the gas flow field modification induced by guided streamer ('plasma bullet') propagation, J. Phys. D: Appl. Phys., 47 (2014), 425203. https://doi.org/10.1088/0022-3727/47/42/425203 doi: 10.1088/0022-3727/47/42/425203
    [8] P. Svarnas, P. K. Papadopoulos, P. Vafeas, A. Gkelios, F. Clément, A. Mavon, Influence of atmospheric pressure guided streamers (plasma bullets) on the working gas pattern in air, IEEE Trans. Plasma Sci., 42 (2014), 2430-2431. https://doi.org/10.1109/TPS.2014.2322098 doi: 10.1109/TPS.2014.2322098
    [9] D. K. Logothetis, P. K. Papadopoulos, P. Svarnas, P. Vafeas, Numerical simulation of the interaction between helium jet flow and an atmospheric-pressure "plasma jet", Comput. Fluids, 140 (2016), 11-18. https://doi.org/10.1016/j.compfluid.2016.09.006 doi: 10.1016/j.compfluid.2016.09.006
    [10] P. K. Papadopoulos, D. K. Athanasopoulos, K. Sklias, P. Svarnas, N. Mourousias, K. Vratsinis, et al., Generic residual charge based model for the interpretation of the electro-hydrodynamic effects in cold atmospheric pressure plasmas, Plasma Sources Sci. Technol., 28 (2019), 065005. https://doi.org/10.1088/1361-6595/ab0a3c doi: 10.1088/1361-6595/ab0a3c
    [11] P. Svarnas, P. K. Papadopoulos, D. Athanasopoulos, K. Sklias, K. Gazeli, P. Vafeas, Parametric study of thermal effects in a capillary dielectric-barrier discharge related to plasma jet production: Experiments and numerical modelling, J. Appl. Phys., 124 (2018), 064902. https://doi.org/10.1063/1.5037141 doi: 10.1063/1.5037141
    [12] T. Nozaki, Y. Miyazaki, Y. Unno, K. Okazaki, Energy distribution and heat transfer mechanisms in atmospheric pressure non-equilibrium plasmas, J. Phys. D: Appl. Phys., 34 (2001), 3383-3390. https://doi.org/10.1088/0022-3727/34/23/310 doi: 10.1088/0022-3727/34/23/310
    [13] S. Y. Moon, W. A. Choe, Comparative study of rotational temperatures using diatomic OH, O2 and N2+ molecular spectra emitted from atmospheric plasmas, Spectrochim. Acta, Part B, 58 (2003), 249-257. https://doi.org/10.1016/S0584-8547(02)00259-8 doi: 10.1016/S0584-8547(02)00259-8
    [14] J. H. Kim, Y. H. Kim, Y. H. Choi, W. Choe, J. J. Choi, Y. S. Hwang, Optical measurements of gas temperatures in atmospheric pressure RF cold plasmas, Surf. Coat. Technol., 171 (2003), 211-215. https://doi.org/10.1016/S0257-8972(03)00273-1 doi: 10.1016/S0257-8972(03)00273-1
    [15] C. Yubero, M. S. Dimitrijević, M. C. García, M. D. Calzada, Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure, Spectrochim. Acta, Part B, 62 (2007), 169-176. https://doi.org/10.1016/j.sab.2007.02.008 doi: 10.1016/j.sab.2007.02.008
    [16] A. Ionascut-Nedelcescu, C. Carlone, U. Kogelschatz, D. V. Gravelle, M. I. Boulos, Calculation of the gas temperature in a throughflow atmospheric pressure dielectric barrier discharge torch by spectral line shape analysis, J. Appl. Phys., 103 (2008), 063305. https://doi.org/10.1063/1.2891419 doi: 10.1063/1.2891419
    [17] S. Hofmann, A. F. H. van Gessel, T. Verreycken, P. Bruggeman, Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets, Plasma Sources Sci. Technol., 20 (2011), 065010. https://doi.org/10.1088/0963-0252/20/6/065010 doi: 10.1088/0963-0252/20/6/065010
    [18] Z. S. Chang, G. J. Zhang, X. J. Shao, Z. H. Zhang, Diagnosis of gas temperature, electron temperature, and electron density in helium atmospheric pressure plasma jet, Phys. Plasmas, 19 (2012), 073513. https://doi.org/10.1063/1.4739060 doi: 10.1063/1.4739060
    [19] S. J. Doyle, K. G. Xu, Usof thermocouples and argon line broadening for gas temperature measurement in a radio frequency atmospheric microplasma jet, Rev. Sci. Instrum., 88 (2017), 023114. https://doi.org/10.1063/1.4976683 doi: 10.1063/1.4976683
    [20] C. Yubero, A. Rodero, M. S. Dimitrijevic, A. Gamero, M. C. García, Gas temperature determination in an argon non-thermal plasma at atmospheric pressure from broadenings of atomic emission lines, Spectrochim. Acta, Part B, 129 (2017), 14-20. https://doi.org/10.1016/j.sab.2017.01.002 doi: 10.1016/j.sab.2017.01.002
    [21] P. Moon, E. Spencer, Field Theory Handbook, Springer-Verlag, Berlin, Heidelberg, 1988. https://doi.org/10.1007/978-3-642-83243-7
    [22] G. Nellis, S. Klein, Heat Transfer, Cambridge University Press, Cambridge, 2012. https://doi.org/10.1017/CBO9780511841606
    [23] E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Company, New York, 1965.
    [24] I. N. Sneddon, R. P. Srivastav, Dual series relations I – Dual relations involving Fourier-Bessel series, in Proceedings of the Royal Society of Edinburg, 66 (1963), 150-160. https://doi.org/10.1017/S0080454100007809
    [25] T. Theodoulidis, A. Skarlatos, Efficient calculation of transient eddy current response from multilayer cylindrical conductive media, Phil. Trans. R. Soc. A, 378 (2020), 20190588. https://doi.org/10.1098/rsta.2019.0588 doi: 10.1098/rsta.2019.0588
    [26] A. Ratsakou, A. Skarlatos, C. Reboud, D. Lesselier, Shape reconstruction of delamination defects using thermographic infrared signals based on an enhanced Canny approach, Infrared Phys. Technol., 111 (2020), 103527. https://doi.org/10.1016/j.infrared.2020.103527 doi: 10.1016/j.infrared.2020.103527
    [27] T. Weiland, Time domain electromagnetic field computation with the finite difference methods, Int. J. Numer. Modell. Electron. Networks Devices Fields, 9 (1996), 295-319. https://doi.org/10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 doi: 10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8
    [28] R. Marklein, The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields, in Review of Radio Science, (1999), 201-244. Available from: https://www.researchgate.net/publication/228540772.
    [29] A. Ratsakou, C. Reboud, A. Skarlatos, D. Lesselier, Fast models dedicated to simulation of eddy current thermography, in Electromagnetic Nondestructive Evaluation (XXI), 43 (2018), 175-182. https://doi.org/10.3233/978-1-61499-836-5-175
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1056) PDF downloads(38) Cited by(0)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog