Research article Special Issues

Asymptotic behavior of the solutions for a stochastic SIRS model with information intervention


  • Received: 09 April 2022 Revised: 26 April 2022 Accepted: 04 May 2022 Published: 09 May 2022
  • In this paper, a stochastic SIRS epidemic model with information intervention is considered. By constructing an appropriate Lyapunov function, the asymptotic behavior of the solutions for the proposed model around the equilibria of the deterministic model is investigated. We show the average in time of the second moment of the solutions of the stochastic system is bounded for a relatively small noise. Furthermore, we find that information interaction response rate plays an active role in disease control, and as the intensity of the response increases, the number of infected population decreases, which is beneficial for disease control.

    Citation: Tingting Ding, Tongqian Zhang. Asymptotic behavior of the solutions for a stochastic SIRS model with information intervention[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6940-6961. doi: 10.3934/mbe.2022327

    Related Papers:

  • In this paper, a stochastic SIRS epidemic model with information intervention is considered. By constructing an appropriate Lyapunov function, the asymptotic behavior of the solutions for the proposed model around the equilibria of the deterministic model is investigated. We show the average in time of the second moment of the solutions of the stochastic system is bounded for a relatively small noise. Furthermore, we find that information interaction response rate plays an active role in disease control, and as the intensity of the response increases, the number of infected population decreases, which is beneficial for disease control.



    加载中


    [1] World Health Organization, World Health Statistics 2019, 2019. Available from: https://apps.who.int/iris/bitstream/handle/10665/324835/9789241565707-eng.pdf.
    [2] World Health Organization, World Health Statistics 2020, 2020. Available from: https://www.who.int/data/gho/data/themes/tuberculosis.
    [3] World Health Organization, World Health Statistics 2007, 2007. Available from: https://www.who.int/docs/default-source/gho-documents/world-health-statistic-reports/whostat2007.pdf.
    [4] World Health Organization, World Health Statistics 2021, 2021. Available from: https://apps.who.int/iris/bitstream/handle/10665/342703/9789240027053-eng.pdf.
    [5] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, 2021. Available from: https://covid19.who.int/.
    [6] A. d'Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model, Math. Biosci., 179 (2002), 57–72. https://doi.org/10.1016/s0025-5564(02)00095-0 doi: 10.1016/s0025-5564(02)00095-0
    [7] G. Huang, Y. Takeuchi, W. Ma, D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192–1207. https://doi.org/10.1007/s11538-009-9487-6 doi: 10.1007/s11538-009-9487-6
    [8] X. Luo, N. Shao, J. Cheng, W. Chen, Modeling the trend of outbreak of COVID–19 in the diamond princess cruise ship based on a time-delay dynamic system, Math. Model. Appl., 9 (2020), 15–22. https://doi.org/10.3969/j.issn.2095-3070.2020.01.004 doi: 10.3969/j.issn.2095-3070.2020.01.004
    [9] Y. Muroya, Y. Enatsu, T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes, Nonlinear Anal. Real World Appl., 14 (2013), 1693–1704. https://doi.org/10.1016/j.nonrwa.2012.11.005 doi: 10.1016/j.nonrwa.2012.11.005
    [10] Z. Sun, Analysis for the process of preventing and controlling plague, Math. Model. Appl., 9 (2020), 9–14. https://doi.org/10.3969/j.issn.2095-3070.2020.01.003 doi: 10.3969/j.issn.2095-3070.2020.01.003
    [11] R. Xu, Z. Ma, Z. Wang, Global stability of a delayed SIRS epidemic model with saturation incidence and temporary immunity, Comput. Math. Appl., 59 (2010), 3211–3221. https://doi.org/10.1016/j.camwa.2010.03.009 doi: 10.1016/j.camwa.2010.03.009
    [12] F. Zhang, J. Li, J. Li, Epidemic characteristics of two classic SIS models with disease-induced death, J. Theor. Biol., 424 (2017), 73–83. https://doi.org/10.1016/j.jtbi.2017.04.029 doi: 10.1016/j.jtbi.2017.04.029
    [13] J. Deng, S. Tang, H. Shu, Joint impacts of media, vaccination and treatment on an epidemic Filippov model with application to COVID-19, J. Theor. Biol., 523 (2021), 110698. https://doi.org/10.1016/j.jtbi.2021.110698 doi: 10.1016/j.jtbi.2021.110698
    [14] A. Kumar, P. K. Srivastava, Y. Takeuchi, Modeling the role of information and limited optimal treatment on disease prevalence, J. Theor. Biol., 414 (2017), 103–119. https://doi.org/10.1016/j.jtbi.2016.11.016 doi: 10.1016/j.jtbi.2016.11.016
    [15] W. Zhou, A. Wang, F. Xia, Y. Xiao, S. Tang, Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak, Math. Biosci. Eng., 17 (2020), 2693–2707. https://doi.org/10.3934/mbe.2020147 doi: 10.3934/mbe.2020147
    [16] S. Funk, E. Gilad, V. Jansen, Endemic disease, awareness, and local behavioural response, J. Theor. Biol., 264 (2010), 501–509. https://doi.org/10.1016/j.jtbi.2010.02.032 doi: 10.1016/j.jtbi.2010.02.032
    [17] S. Funk, E. Gilad, C. Watkins, V. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 6872–6877. https://doi.org/10.1073/pnas.0810762106 doi: 10.1073/pnas.0810762106
    [18] R. Liu, J. Wu, H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 153–164. https://doi.org/10.1080/17486700701425870 doi: 10.1080/17486700701425870
    [19] J. A. Cui, X. Tao, H. Zhu, An SIS infection model incorporating media coverage, Rocky Mt. J. Math., 38 (2008), 1323–1334. https://doi.org/10.1216/RMJ-2008-38-5-1323 doi: 10.1216/RMJ-2008-38-5-1323
    [20] J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equations, 20 (2008), 31–53. https://doi.org/10.1007/s10884-007-9075-0 doi: 10.1007/s10884-007-9075-0
    [21] H. Joshi, S. Lenhart, K. Albright, K. Gipson, Modeling the effect of information campaigns on the HIV epidemic in Uganda, Math. Biosci. Eng., 5 (2008), 757–770. https://doi.org/10.3934/mbe.2008.5.757 doi: 10.3934/mbe.2008.5.757
    [22] Y. Liu, J. A. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65–74. https://doi.org/10.1142/S1793524508000023 doi: 10.1142/S1793524508000023
    [23] A. Misra, A. Sharma, J. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Modell., 53 (2011), 1221–1228. https://doi.org/10.1016/j.mcm.2010.12.005 doi: 10.1016/j.mcm.2010.12.005
    [24] A. Misra, A. Sharma, V. Singh, Effect of awareness programs in controlling the prevalence of an epidemic with time delay, J. Biol. Syst., 19 (2011), 389–402. https://doi.org/10.1142/S0218339011004020 doi: 10.1142/S0218339011004020
    [25] Y. Xiao, S. Tang, J. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep., 5 (2015), 1–9. https://doi.org/10.1038/srep07838 doi: 10.1038/srep07838
    [26] Y. Xiao, T. Zhao, S. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2013), 445–461. https://doi.org/10.3934/mbe.2013.10.445 doi: 10.3934/mbe.2013.10.445
    [27] A. L. Krause, L. Kurowski, K. Yawar, R. A. V. Gorder, Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies, J. Theor. Biol., 449 (2018), 35–52. https://doi.org/10.1016/j.jtbi.2018.04.023 doi: 10.1016/j.jtbi.2018.04.023
    [28] G. Lan, S. Yuan, B. Song, The impact of hospital resources and environmental perturbations to the dynamics of SIRS model, J. Franklin Inst., 358 (2021), 2405–2433. https://doi.org/10.1016/j.jfranklin.2021.01.015 doi: 10.1016/j.jfranklin.2021.01.015
    [29] Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate, Phys. A, 551 (2020), 124152. https://doi.org/10.1016/j.physa.2020.124152 doi: 10.1016/j.physa.2020.124152
    [30] S. Yan, Y. Zhang, J. Ma, S. Yuan, An edge-based SIR model for sexually transmitted diseases on the contact network, J. Theor. Biol., 439 (2018), 216–225. https://doi.org/10.1016/j.jtbi.2017.12.003 doi: 10.1016/j.jtbi.2017.12.003
    [31] Y. Cai, J. Jiao, Z. Gui, Y. Liu, W. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226. https://doi.org/10.1016/j.amc.2018.02.009 doi: 10.1016/j.amc.2018.02.009
    [32] N. Du, N. Nhu, Permanence and extinction for the stochastic SIR epidemic model, J. Differ. Equations, 269 (2020), 9619–9652. https://doi.org/10.1016/j.jde.2020.06.049 doi: 10.1016/j.jde.2020.06.049
    [33] T. Hou, G. Lan, S. Yuan, T. Zhang, Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate, Math. Biosci. Eng., 19 (2022), 4217–4236. https://doi.org/10.3934/mbe.2022195 doi: 10.3934/mbe.2022195
    [34] D. Zhao, T. Zhang, S. Yuan, The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence, Phys. A, 443 (2016), 372–379. https://doi.org/10.1016/j.physa.2015.09.092 doi: 10.1016/j.physa.2015.09.092
    [35] Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, The threshold of a stochastic SIS epidemic model with imperfect vaccination, Math. Comput. Simul., 144 (2018), 78–90. https://doi.org/10.1016/j.matcom.2017.06.004 doi: 10.1016/j.matcom.2017.06.004
    [36] Y. Zhou, W. Zhang, S. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244 (2014), 118–131. https://doi.org/10.1016/j.amc.2014.06.100 doi: 10.1016/j.amc.2014.06.100
    [37] Y. Zhou, S. Yuan, D. Zhao, Threshold behavior of a stochastic SIS model with Lévy jumps, Appl. Math. Comput., 275 (2016), 255–267. https://doi.org/10.1016/j.amc.2015.11.077 doi: 10.1016/j.amc.2015.11.077
    [38] Y. Zhao, L. Zhang, S. Yuan, The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model, Phys. A, 512 (2018), 248–260. https://doi.org/10.1016/j.physa.2018.08.113 doi: 10.1016/j.physa.2018.08.113
    [39] X. Jin, J. Jia, Qualitative study of a stochastic SIRS epidemic model with information intervention, Phys. A, 547 (2020), 123866. https://doi.org/10.1016/j.physa.2019.123866 doi: 10.1016/j.physa.2019.123866
    [40] J. Yu, D. Jiang, N. Shi, Global stability of two-group SIR model with random perturbation, J. Math. Anal. Appl., 360 (2009), 235–244. https://doi.org/10.1016/j.jmaa.2009.06.050 doi: 10.1016/j.jmaa.2009.06.050
    [41] X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, UK, 2007. https://doi.org/10.1007/978-3-642-11079-5_2
    [42] Q. Yan, Y. Tang, D. Yan, J. Wang, L. Yang, X. Yang, et al., Impact of media reports on the early spread of COVID-19 epidemic, J. Theor. Biol., 502 (2020), 110385. https://doi.org/10.1016/j.jtbi.2020.110385 doi: 10.1016/j.jtbi.2020.110385
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1722) PDF downloads(121) Cited by(2)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog