Research article Special Issues

Threshold behaviour of a stochastic SIRS $ \mathrm {L\acute{e}vy} $ jump model with saturated incidence and vaccination


  • Received: 25 August 2022 Revised: 14 October 2022 Accepted: 20 October 2022 Published: 28 October 2022
  • A stochastic SIRS system with $ \mathrm {L\acute{e}vy} $ process is formulated in this paper, and the model incorporates the saturated incidence and vaccination strategies. Due to the introduction of $ \mathrm {L\acute{e}vy} $ jump, the jump stochastic integral process is a discontinuous martingale. Then the Kunita's inequality is used to estimate the asymptotic pathwise of the solution for the proposed model, instead of Burkholder-Davis-Gundy inequality which is suitable for continuous martingales. The basic reproduction number $ R_{0}^{s} $ of the system is also derived, and the sufficient conditions are provided for the persistence and extinction of SIRS disease. In addition, the numerical simulations are carried out to illustrate the theoretical results. Theoretical and numerical results both show that $ \mathrm {L\acute{e}vy} $ process can suppress the outbreak of the disease.

    Citation: Yu Zhu, Liang Wang, Zhipeng Qiu. Threshold behaviour of a stochastic SIRS $ \mathrm {L\acute{e}vy} $ jump model with saturated incidence and vaccination[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 1402-1419. doi: 10.3934/mbe.2023063

    Related Papers:

  • A stochastic SIRS system with $ \mathrm {L\acute{e}vy} $ process is formulated in this paper, and the model incorporates the saturated incidence and vaccination strategies. Due to the introduction of $ \mathrm {L\acute{e}vy} $ jump, the jump stochastic integral process is a discontinuous martingale. Then the Kunita's inequality is used to estimate the asymptotic pathwise of the solution for the proposed model, instead of Burkholder-Davis-Gundy inequality which is suitable for continuous martingales. The basic reproduction number $ R_{0}^{s} $ of the system is also derived, and the sufficient conditions are provided for the persistence and extinction of SIRS disease. In addition, the numerical simulations are carried out to illustrate the theoretical results. Theoretical and numerical results both show that $ \mathrm {L\acute{e}vy} $ process can suppress the outbreak of the disease.



    加载中


    [1] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics-I, Bltn. Mathcal. Biology, 53 (1991), 33–55. https://doi.org/10.1007/bf02464423 doi: 10.1007/bf02464423
    [2] M. Fan, M. Y. Li, K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math. Biosci., 170 (2011), 199–208. https://doi.org/10.1016/S0025-5564(00)00067-5 doi: 10.1016/S0025-5564(00)00067-5
    [3] S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equations, 188 (2003), 135–163. https://doi.org/10.1016/S0022-0396(02)00089-X doi: 10.1016/S0022-0396(02)00089-X
    [4] Z. Qiu, M. Y. Li, Z. Shen, Global dynamics of an infinite dimensional epidemic model with nonlocal state structures, J. Differ. Equations, 265 (2018), 5262–5296. https://doi.org/10.1016/j.jde.2018.06.036 doi: 10.1016/j.jde.2018.06.036
    [5] D. Bichara, Y. Kang, C. Castillo-Chavez, R. Horan, C. Perrings, SIS and SIR epidemic models under virtual dispersal, Bull. Math. Biol., 77 (2015), 2004–2034. https://doi.org/10.1007/s11538-015-0113-5 doi: 10.1007/s11538-015-0113-5
    [6] A. Lahrouz, L. Omari, D. Kiouach, Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, Appl. Math. Comput., 218 (2012), 6519–6525. https://doi.org/10.1016/j.amc.2011.12.024 doi: 10.1016/j.amc.2011.12.024
    [7] X. Zhang, D. Jiang, A. Alsaedi, T. Hayat, Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Appl. Math. Lett., 59 (2016), 87–93. https://doi.org/10.1016/j.aml.2016.03.010 doi: 10.1016/j.aml.2016.03.010
    [8] X. B. Zhang, Q. Shi, S. H. Ma, H. F. Huo, D. Li, Dynamic behavior of a stochastic SIQS epidemic model with $\mathrm {L\acute{e}vy}$ jumps, Nonlinear Dyn., 93 (2018), 1481–1493. https://doi.org/10.1007/s11071-018-4272-4 doi: 10.1007/s11071-018-4272-4
    [9] T. Feng, Z. Qiu, M. Xin, B. Li, Analysis of a stochastic HIV-1 infection model with degenerate diffusion, Appl. Math. Comput., 348 (2019), 437–455. https://doi.org/10.1016/j.amc.2018.12.007 doi: 10.1016/j.amc.2018.12.007
    [10] S. Zhao, S. Yuan, H. Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, J. Differ. Equations, 268 (2020), 5113–5139. https://doi.org/10.1016/j.jde.2019.11.004 doi: 10.1016/j.jde.2019.11.004
    [11] L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations, 217 (2005), 26–53. https://doi.org/10.1016/j.jde.2005.06.017 doi: 10.1016/j.jde.2005.06.017
    [12] X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
    [13] X. Yu, S. Yuan, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete. Contin. Dyn. Syst. Ser B, 25 (2020), 2373–2390. https://doi.org/10.3934/dcdsb.2020014 doi: 10.3934/dcdsb.2020014
    [14] J. Bao, C. Yuan, Stochastic population dynamics driven by $\mathrm {L\acute{e}vy}$ noise, J. Math. Anal. Appl., 391 (2012), 363–375. https://doi.org/10.1016/j.jmaa.2012.02.043 doi: 10.1016/j.jmaa.2012.02.043
    [15] N. Privault, L. Wang, Stochastic SIR $\mathrm {L\acute{e}vy}$ jump model with heavy-tailed increments, J. Nonlinear Sci., 31 (2021), 1–28. https://doi.org/10.1007/s00332-020-09670-5 doi: 10.1007/s00332-020-09670-5
    [16] D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge University Press, New York, 2009. https://doi.org/10.1017/CBO9780511809781
    [17] Y. Zhou, W. Zhang, Threshold of a stochastic SIR epidemic model with $\mathrm {L\acute{e}vy}$ jumps, Phys. A, 446 (2016), 204–216. https://doi.org/10.1016/j.physa.2015.11.023 doi: 10.1016/j.physa.2015.11.023
    [18] Y. Zhao, D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718–727. https://doi.org/10.1016/j.amc.2014.05.124 doi: 10.1016/j.amc.2014.05.124
    [19] X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2008.
    [20] R. Liptser, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217–228. https://doi.org/10.1080/17442508008833146 doi: 10.1080/17442508008833146
    [21] M. Liu, K. Wang, Stochastic Lotka-Volterra systems with $\mathrm {L\acute{e}vy}$ noise, J. Math. Anal. Appl., 410 (2014), 750–763. https://doi.org/10.1016/j.jmaa.2013.07.078 doi: 10.1016/j.jmaa.2013.07.078
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1570) PDF downloads(117) Cited by(1)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog