Research article Special Issues

Threshold dynamics of a stochastic general SIRS epidemic model with migration


  • Received: 02 December 2022 Revised: 27 March 2023 Accepted: 14 April 2023 Published: 25 April 2023
  • In this study, a stochastic SIRS epidemic model that features constant immigration and general incidence rate is investigated. Our findings show that the dynamical behaviors of the stochastic system can be predicted using the stochastic threshold $ R_0^S $. If $ R_0^S < 1 $, the disease will become extinct with certainty, given additional conditions. Conversely, if $ R_0^S > 1 $, the disease has the potential to persist. Moreover, the necessary conditions for the existence of the stationary distribution of positive solution in the event of disease persistence is determined. Our theoretical findings are validated through numerical simulations.

    Citation: Zhongwei Cao, Jian Zhang, Huishuang Su, Li Zu. Threshold dynamics of a stochastic general SIRS epidemic model with migration[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 11212-11237. doi: 10.3934/mbe.2023497

    Related Papers:

  • In this study, a stochastic SIRS epidemic model that features constant immigration and general incidence rate is investigated. Our findings show that the dynamical behaviors of the stochastic system can be predicted using the stochastic threshold $ R_0^S $. If $ R_0^S < 1 $, the disease will become extinct with certainty, given additional conditions. Conversely, if $ R_0^S > 1 $, the disease has the potential to persist. Moreover, the necessary conditions for the existence of the stationary distribution of positive solution in the event of disease persistence is determined. Our theoretical findings are validated through numerical simulations.



    加载中


    [1] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics-I, Bltn. Mathcal. Biology, 53 (1991), 33–55. https://doi.org/10.1007/bf02464423 doi: 10.1007/bf02464423
    [2] Z. Ma, Y. Zhou, J. Wu, Modeling and dynamics of infectious diseases, World Scientific Publishing, New Jersey, 2009. https://doi.org/10.1142/7223
    [3] J. Li, J. Zhang, Z. Ma, Global analysis of some epidemic models with general contact rate and constant immigration, Appl. Math. Mech., 25 (2004), 396–404. https://doi.org/10.1007/bf02437523 doi: 10.1007/bf02437523
    [4] Y. Cai, Y. Kang, M. Banerjee, W. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equations, 259 (2015), 7463–7502. https://doi.org/10.1016/j.jde.2015.08.024 doi: 10.1016/j.jde.2015.08.024
    [5] Y. Cai, Y. Kang, M. Banerjee, W. Wang, A stochastic epidemic model incorporating media coverage, Commun. Math. Sci., 14 (2016), 893–910. https://doi.org/10.4310/CMS.2016.v14.n4.a1 doi: 10.4310/CMS.2016.v14.n4.a1
    [6] B. Cao, M. Shan, Q. Zhang, W. Wang, A stochastic SIS epidemic model with vaccination, Phys. A, 485 (2017), 127–143. https://doi.org/10.1016/j.physa.2017.05.083 doi: 10.1016/j.physa.2017.05.083
    [7] Y. Cai, Y. Kang, W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221–240. https://doi.org/10.1016/j.amc.2017.02.003 doi: 10.1016/j.amc.2017.02.003
    [8] M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976. https://doi.org/10.1016/j.amc.2015.08.099 doi: 10.1016/j.amc.2015.08.099
    [9] W. Weera, T. Botmart, T. La-inchua, Z. Sabir, R. Núñez, M. Abukhaled, et al., A stochastic computational scheme for the computer epidemic virus with delay effects, AIMS Math., 8 (2023), 148–163. https://doi.org/10.3934/math.2023007 doi: 10.3934/math.2023007
    [10] T. Britton, D. Lindenstrand, Epidemic modelling: aspects where stochasticity matters, Math. Biosci., 222 (2009), 109–116. https://doi.org/10.1016/j.mbs.2009.10.001 doi: 10.1016/j.mbs.2009.10.001
    [11] F. Wang, X. Wang, S. Zhang, C. Ding, On pulse vaccine strategy in a periodic stochastic SIR epidemic model, Chaos, Solitons Fractals, 66 (2014), 127–135. https://doi.org/10.1016/j.chaos.2014.06.003 doi: 10.1016/j.chaos.2014.06.003
    [12] Z. Shi, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, The impact of nonlinear perturbation to the dynamics of HIV model, Math. Methods Appl. Sci., 45 (2022), 2542–2562. https://doi.org/10.1002/mma.7939 doi: 10.1002/mma.7939
    [13] Z. Shi, D. Jiang, N. Shi, A. Alsaedi, Virus infection model under nonlinear perturbation: Ergodic stationary distribution and extinction, J. Franklin Inst., 359 (2022), 11039–11067. https://doi.org/10.1016/j.jfranklin.2022.03.035 doi: 10.1016/j.jfranklin.2022.03.035
    [14] L. Wang, H. Huang, A. Xu, W. Wang, Stochastic extinction in an SIRS epidemic model incorporating media coverage, Abstr. Appl. Anal., 2013 (2013), 891765. https://doi.org/10.1155/2013/891765 doi: 10.1155/2013/891765
    [15] Y. Lin, D. Jiang, Long-time behaviour of a perturbed SIR model by white noise, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1873–1887. https://doi.org/10.3934/dcdsb.2013.18.1873 doi: 10.3934/dcdsb.2013.18.1873
    [16] Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2479–2500. https://doi.org/10.3934/dcdsb.2017127 doi: 10.3934/dcdsb.2017127
    [17] Y. Zhao, D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718–727. https://doi.org/10.1016/j.amc.2014.05.124 doi: 10.1016/j.amc.2014.05.124
    [18] Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence, Phys. A, 469 (2017), 510–517. https://doi.org/10.1016/j.physa.2016.11.077 doi: 10.1016/j.physa.2016.11.077
    [19] Z. Shi, X. Zhang, D. Jiang, Dynamics of an avian influenza model with half-saturated incidence, Appl. Math. Comput., 355 (2019), 399–416. https://doi.org/10.1016/j.amc.2019.02.070 doi: 10.1016/j.amc.2019.02.070
    [20] X. Zhang, D. Jiang, T. Hayat, B. Ahmad, Dynamical behavior of a stochastic SVIR epidemic model with vaccination, Phys. A, 483 (2017), 94–108. https://doi.org/10.1016/j.physa.2017.04.173 doi: 10.1016/j.physa.2017.04.173
    [21] Z. Shi, D. Jiang, Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein-Uhlenbeck process, Chaos, Solitons Fractals, 165 (2022), 112789. https://doi.org/10.1016/j.chaos.2022.112789 doi: 10.1016/j.chaos.2022.112789
    [22] Y. Lin, D. Jiang, Threshold behavior in a stochastic SIS epidemic model with standard incidence, J. Dyn. Differ. Equations, 26 (2014), 1079–1094. https://doi.org/10.1007/s10884-014-9408-8 doi: 10.1007/s10884-014-9408-8
    [23] X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Processes Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
    [24] A. Friedman, Stochastic differential equations and applications, in Stochastic Differential Equations, Springer, Berlin, 2010. https://doi.org/10.1007/978-3-642-11079-5_2
    [25] D. W. Stroock, S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 3 (1972), 333–359.
    [26] G. B. Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Th. Rel. Fields, 90 (1991), 377–402. https://doi.org/10.1007/BF01193751 doi: 10.1007/BF01193751
    [27] K. Pichór, R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997), 56–74. https://doi.org/10.1006/jmaa.1997.5609 doi: 10.1006/jmaa.1997.5609
    [28] R. Rudnicki, Long-time behaviour of a stochastic prey-predator model, Stoch. Processes Appl., 108 (2003), 93–107. https://doi.org/10.1016/S0304-4149(03)00090-5 doi: 10.1016/S0304-4149(03)00090-5
    [29] R. Rudnicki, K. Pichór, Influence of stochastic perturbation on prey-predator systems, Math. Biosci., 206 (2007), 108–119. https://doi.org/10.1016/j.mbs.2006.03.006 doi: 10.1016/j.mbs.2006.03.006
    [30] R. Rudnicki, K. Pichór, M. Tyran-Kamińska, Markov semigroups and their applications, in Dynamics of Dissipation, Springer, Berlin, 2022. https://doi.org/10.1007/3-540-46122-1_9
    [31] X. Mu, D. Jiang, A. Alsaedi, Analysis of a stochastic phytoplankton Czooplankton model under non-degenerate and degenerate diffusions, J. Nonlinear Sci., 32 (2022), 35. https://doi.org/10.1007/s00332-022-09787-9 doi: 10.1007/s00332-022-09787-9
    [32] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/s0036144500378302 doi: 10.1137/s0036144500378302
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1398) PDF downloads(74) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog