Citation: Maurizio Verri, Giovanna Guidoboni, Lorena Bociu, Riccardo Sacco. The role of structural viscoelasticity in deformable porous media with incompressibleconstituents: Applications in biomechanics[J]. Mathematical Biosciences and Engineering, 2018, 15(4): 933-959. doi: 10.3934/mbe.2018042
[1] | [ P. Augat,S. Schorlemmer, The role of cortical bone and its microstructure in bone strength, Age and Ageing, 35 (2006): ii27-ii31. |
[2] | [ H. T. Banks,K. Bekele-Maxwell,L. Bociu,M. Noorman,G. Guidoboni, Sensitivity analysis in poro-elastic and poro-visco-elastic models with respect to boundary data, Quart. Appl. Math. In press, 75 (2017): 697-735. |
[3] | [ H. Barucq,M. Madaune-Tort,P. Saint-Macary, On nonlinear Biot's consolidation models, Nonlinear Anal Theory Methods Appl., 63 (2005): e985-e995, Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004). |
[4] | [ H. Barucq,M. Madaune-Tort,P. Saint-Macary, Some existence-uniqueness results for a class of one-dimensional nonlinear Biot models, Nonlinear Anal Theory Methods Appl., 61 (2005): 591-612. |
[5] | [ M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941): 155-164. |
[6] | [ L. Bociu,G. Guidoboni,R. Sacco,J. Webster, Analysis of nonlinear poro-elastic and poro-viscoelastic models, Arch. Rational Mech. Anal., 222 (2016): 1445-1519. |
[7] | [ S. Canic,J. Tambaca,G. Guidoboni,A. Mikelic,C. J. Hartley,D. Rosenstrauch, Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow, SIAM J. Appl. Math., 67 (2006): 164-193. |
[8] | [ Y. Cao,S. Chen,A. J. Meir, Analysis and numerical approximations of equations of nonlinear poroelasticity, Discrete Continuous Dyn Syst Ser B, 18 (2013): 1253-1273. |
[9] | [ P. Causin,G. Guidoboni,A. Harris,D. Prada,R. Sacco,S. Terragni, A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head, Math. Biosci., 257 (2014): 33-41. |
[10] | [ P. Causin,R. Sacco,M. Verri, A multiscale approach in the computational modeling of the biophysical environment in artificial cartilage tissue regeneration, Biomech. Model. Mechanobiol, 12 (2013): 763-780. |
[11] | [ D. Chapelle,J. Sainte-Marie,J.-F. Gerbeau,I. Vignon-Clementel, A poroelastic model valid in large strains with applications to perfusion in cardiac modeling, Comput. Mech., 46 (2010): 91-101. |
[12] | [ O. Coussy, Poromechanics, John Wiley & Sons Ltd, 2004. |
[13] | [ S. C. Cowin, Bone poroelasticity, J. Biomech., 32 (1999): 217-238. |
[14] | [ R. de Boer, Theory of Porous Media. Highlights in the Historical Development and Current State, Springer, Berlin/New York, 2000. |
[15] | [ E. Detournay,A. H.-D. Cheng, Poroelastic response of a borehole in a non-hydrostatic stress field, Int J Rock Mech Min Sci Geomech Abstr, 25 (1988): 171-182. |
[16] | [ E. Detournay,A. H.-D. Cheng, Fundamentals of poroelasticity, Comprehensive rock engineering, 2 (1993): 113-171. |
[17] | [ J. C. Downs,J. K. Suh,K. A. Thomas,A. J. Bellezza,R. T. Hart,C. F. Burgoyne, Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes, Invest. Ophthalmol. Vis. Sci., 46 (2005): 540-546. |
[18] | [ J. W. Freeman,M. D. Woods,D. A. Cromer,L. D. Wright,C. T. Laurencin, Tissue engineering of the anterior cruciate ligament: The viscoelastic behavior and cell viability of a novel braid-twist scaffold, J Biomater Sci Polym Ed, 20 (2009): 1709-1728. |
[19] | [ I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Elsevier/Academic Press, Amsterdam, 2015. |
[20] | [ A. P. Guérin,B. Pannier,S. J. Marchais,G. M. London, Arterial structure and function in end-stage renal disease, Curr. Hypertens. Rep., 10 (2008): 107-111. |
[21] | [ W. M. Lai,J. S. Hou,V. C. Mow, A triphasic theory for the swelling and deformation behaviors of articular cartilage, ASME J. Biomech. Eng., 113 (1991): 245-258. |
[22] | [ V. C. Mow,S. C. Kuei,W. M. Lai,C. G. Armstrong, Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments, ASME J. Biomech. Eng., 102 (1980): 73-84. |
[23] | [ H. T. Nia,L. Han,Y. Li,C. Ortiz,A. Grodzinsky, Poroelasticity of cartilage at the nanoscale, Biophys. J., 101 (2011): 2304-2313. |
[24] | [ M. S. Osidak,E. O. Osidak,M. A. Akhmanova,S. P. Domogatsky,A. S. Domogatskaya, Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: Architecture, elasticity and remodeling under stress, Curr. Pharm. Des., 21 (2015): 1124-1133. |
[25] | [ S. Owczarek, A Galerkin method for Biot consolidation model, Math. Mech. Solids, 15 (2010): 42-56. |
[26] | [ N. Özkaya, M. Nordin, D. Goldsheyder and D. Leger, Fundamentals of Biomechanics. Equilibrium, Motion, and Deformation, Springer, New York, 1999. |
[27] | [ P. J. Phillips,M. F. Wheeler, A coupling of mixed and continuous Galerkin finite-element methods for poroelasticity Ⅰ: The continuous in time case, Comput Geosci, 11 (2007): 131-144. |
[28] | [ P. J. Phillips,M. F. Wheeler, A coupling of mixed and continuous Galerkin finite-element methods for poroelasticity Ⅱ: The continuous in time case, Comput Geosci, 11 (2007): 145-158. |
[29] | [ P. J. Phillips,M. F. Wheeler, A coupling of mixed and continuous Galerkin finite-element methods for poroelasticity, Comput Geosci, 12 (2008): 417-435. |
[30] | [ L. Recha-Sancho, F. T. Moutos, J. Abell, F. Guilak and C. E. Semino, Dedifferentiated human articular chondrocytes redifferentiate to a cartilage-like tissue phenotype in a poly($\varepsilon$-caprolactone)/self-assembling peptide composite scaffold, Materials, 9 (2016), p472. |
[31] | [ R. Sacco,P. Causin,P. Zunino,M. T. Raimondi, A multiphysics/multiscale 2D numerical simulation of scaffold-based cartilage regeneration under interstitial perfusion in a bioreactor, Biomech. Model. Mechanobiol., 10 (2011): 577-589. |
[32] | [ I. Sack,B. Beierbach,J. Wuerfel,D. Klatt,U. Hamhaber,S. Papazoglou,P. Martus,J. Braun, The impact of aging and gender on brain viscoelasticity, NeuroImage, 46 (2009): 652-657. |
[33] | [ A. P. S. Selvadurai, On the mechanics of damage-susceptible poroelastic media, Key Engineering Materials, 251/252 (2003): 363-374. |
[34] | [ A. Settari and D. A. Walters, Advances in Coupled Geomechanical and Reservoir Modeling with Applications to Reservoir Compaction, Technical report, SPE Reservoir Simulation Symposium, 1999. |
[35] | [ R. E. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251 (2000): 310-340. |
[36] | [ R. E. Showalter,N. Su, Partially saturated flow in a poroelastic medium, Discrete Continuous Dyn Syst Ser B, 1 (2001): 403-420. |
[37] | [ M. A. Soltz,G. A. Ateshian, Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression, J. Biomech., 31 (1998): 927-934. |
[38] | [ K. Terzaghi, Erdbaumechanik auf Bodenphysikalischer Grundlage, Deuticke, Wien, 1925. |
[39] | [ A. A. Tofangchi Mahyari, Computational Modelling of Fracture and Damage in Poroelastic Media, PhD thesis, Department of Civil Engineering and Applied Mechanics, McGill University, 1997. |
[40] | [ A. Zenisek, The existence and uniqueness theorem in Biot's consolidation theory, Apl Mat, 29 (1984): 194-211. |