Citation: Xiawei Yang, Wenya Li, Yaxin Xu, Xiurong Dong, Kaiwei Hu, Yangfan Zou. Performance of two different constitutive models and microstructural evolution of GH4169 superalloy[J]. Mathematical Biosciences and Engineering, 2019, 16(2): 1034-1055. doi: 10.3934/mbe.2019049
[1] | P. H. Geng, G. L. Qin, J. Zhou, and Z. D. Zou, Hot deformation behavior and constitutive model of GH4169 superalloy for linear friction welding process, J. Manuf. Process., 32 (2018), 469–481. |
[2] | X. W. Yang, W. Y. Li, J. L. Li, B. Xiao, T. J. Ma, Z. Huang and J. Guo, Finite element modeling of the linear friction welding of GH4169 superalloy, Mater. Design., 87 (2015), 215–230. |
[3] | P. Maj, M. Koralnik, B. A. Cieslak, B. R. Baishya, S. Kut, T. Pieja, T. Mrugala and J. Mizera, Mechanical properties and microstructure of Inconel 625 cylinders used in aerospace industry subjected to flow forming with laser and standard heat treatment, Int. J. Mater. Form., (2018), https://doi.org/10.1007/s12289-018-1413-8. |
[4] | X. W. Yang and W. Y. Li, Flow behavior and processing maps of a low-carbon steel during hot deformation, Metall. Mater. Trans. A, 46 (2015), 6052–6064. |
[5] | M. Jabbari, R. Bulatova, A. I. Y. Tok, C. R. H. Bahl, E. Mitsoulis and J. H. Hattel, Ceramic tape casting: A review of current methods and trends with emphasis on rheological behaviour and flow analysis, Mater. Sci. Eng. B, 212 (2016), 39–61. |
[6] | M. M. Gurusamy and B. C. Rao, On the performance of modified Zerilli-Armstrong constitutive model in simulating the metal-cutting process, J. Manuf. Process., 28 (2017), 253–265. |
[7] | Y. L. Lin, K. Zhang, Z. B. He, X. B. Fan, Y. D. Yan and S. J. Yuan, Constitutive modeling of the high-temperature flow behavior of α-Ti alloy tube, J. Mater. Eng. Perform., 27 (2018), 2475–2483. |
[8] | X. W. Yang, J. C. Zhu, Z. H. Lai, Y. R. Kong, R. D. Zhao and D. He, Application of artificial neural network to predict flow stress of as quenched A357 alloy, Mater. Sci. Tech., 28 (2012), 151–155. |
[9] | S. Kumar, B. Aashranth, M. A. Davinci, D. Samantaray, U. Borah and A. K. Bhaduri, Assessing constitutive models for prediction of high-temperature flow behavior with a perspective of alloy development. J. Mater. Eng. Perform., 27 (2018), 2024–2037. |
[10] | D. W. Zhao, D. X. Ren, K. M. Zhao, S. Pan and X. L. Guo, Effect of welding parameters on tensile strength of ultrasonic spot welded joints of aluminum to steel-By experimentation and artificial neural network, J. Manuf. Process., 30 (2017), 63–74. |
[11] | I. Balasundar, T. Raghu and B. P. Kashyap, Processing map for a cast and homogenized near alpha titanium alloy, Int. J. Mater. Form., 8 (2015), 85–97. |
[12] | S. Samal, M. R. Rahul, R. S. Kottada and G. Phanikumar, Hot deformation behaviour and processing map of Co-Cu-Fe-Ni-Ti eutectic high entropy alloy, Mater. Sci. Eng. A, 664 (2016), 227–235. |
[13] | H. Rastegari, A. Kermanpurb, A. Najafizadeh, M. Somani, D. Porter, E. Ghassemali and A. Jarfors, Determination of processing maps for the warm working of vanadium microalloyed eutectoid steels, Mater. Sci. Eng. A, 658 (2016), 167–175. |
[14] | D. X. Wen, Y. C. Lin, H. B. Li, X. M. Chen, J. Deng and L. T. Li, Hot deformation behavior and processing map of a typical Ni-based superalloy, Mater. Sci. Eng. A, 591 (2014), 183–192. |
[15] | M. Rakhshkhorshid, Modeling the hot deformation flow curves of API X65 pipeline steel, Int. J. Adv. Manuf. Technol., 77 (2015), 203–210. |
[16] | K. K. Deng, J. C. Li, F. J. Xu, K. B. Nie and W. Liang, Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite, Mater. Des., 67 (2015), 72–81. |
[17] | J. Li, F. G. Li, J. Cai, R. T. Wang, Z .W. Yuan and J. L. Ji, Comparative investigation on the modified zerilli-armstrong model and arrhenius-type model to predict the elevated-temperature flow behaviour of 7050 aluminium alloy, Comp. Mater. Sci., 71 (2013), 56–65. |
[18] | Abaqus Analysis User's Manual, 2013 version 6.13. |