Research article

Optimal control in HIV chemotherapy with termination viral load and latent reservoir

  • Received: 06 February 2018 Accepted: 12 October 2018 Published: 14 January 2019
  • Although a number of cost-e ective strategies have been proposed for the chemotherapy of HIV infection, the termination level of viral load and latent reservoir is barely considered. However, the viral load at the termination time is an important biomarker because suppressing viral load to below the detection limit is a major objective of current antiretroviral therapy. The pool size of latently infected cells at the termination time may also play a critical role in predicting a rapid viral rebound to the pretreatment level or post-treatment control. In this work, we formulate an optimal control problem by incorporating the termination level in terms of viral load, latently and productively infected T cells into an existing HIV model. The necessary condition for this optimal system is derived using the Pontryagin's maximum principle. Numerical analysis is carried out using Runge-Kutta 4 method for the forward-backward sweep. Our results suggest that introducing the termination viral load into the control provides a better strategy in HIV chemotherapy.

    Citation: Damilola Olabode, Libin Rong, Xueying Wang. Optimal control in HIV chemotherapy with termination viral load and latent reservoir[J]. Mathematical Biosciences and Engineering, 2019, 16(2): 619-635. doi: 10.3934/mbe.2019030

    Related Papers:

  • Although a number of cost-e ective strategies have been proposed for the chemotherapy of HIV infection, the termination level of viral load and latent reservoir is barely considered. However, the viral load at the termination time is an important biomarker because suppressing viral load to below the detection limit is a major objective of current antiretroviral therapy. The pool size of latently infected cells at the termination time may also play a critical role in predicting a rapid viral rebound to the pretreatment level or post-treatment control. In this work, we formulate an optimal control problem by incorporating the termination level in terms of viral load, latently and productively infected T cells into an existing HIV model. The necessary condition for this optimal system is derived using the Pontryagin's maximum principle. Numerical analysis is carried out using Runge-Kutta 4 method for the forward-backward sweep. Our results suggest that introducing the termination viral load into the control provides a better strategy in HIV chemotherapy.


    加载中


    [1] B. M. Adams, H. T. Banks, M. Davidian, H. D. Kwon, H. T. Tran, S. N. Wynne and E. S. Rosenberg, HIV dynamics: modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., 185 (2005), 10–49.
    [2] S. Alizon and C. Magnus, Modeling the course of HIV infection: Insight from ecology and evolution, Viruses, 4 (2012), 1984–2013.
    [3] E. J. Arts and D. J. Hazuda, HIV-1 antiretroviral drug therapy, Cold Spring Harb. Perspect. Med., 2 (2012), a007161.
    [4] E. Asano, L. J. Gross, S. Lenhart and L. A. Real, Optimal control of vaccine distribution in a rabies metapopulation model, Math. Biosci. Eng., 5 (2008), 219–238.
    [5] K. Brinkman, H. J. M.Ter Hofstede, D. M. Burger, J. A. M. Smeitink and P. P. Koopmans, Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway, AIDS, 12 (1998), 1735–1744.
    [6] D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29–64.
    [7] T. W. Chun, L. Stuyver, S. B. Mizell, L. A. Ehler, J. A. Mican, M. Baseler, A. L. Lloyd, M. A. Nowak and A. S. Fauci, Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 13193–13197.
    [8] J. M. Conway and A. S. Perelson, Post-treatment control of HIV infection, Proc. Natl. Acad. Sci. USA, 112 (2015), 5467–5472.
    [9] A. M. Croicu, Short and long term optimal control of a mathematical model for HIV infection of CD4+ T cells, Bull. Math. Biol., 77 (2015), 2035–2071.
    [10] N. Dorratoltaj, R. Nikin-Beers, S. M. Ciupe, S. G. Eubank and K. M. Abbas, Multi-scale immunoepidemiological modeling of within-host and between-host HIV dynamics: systematic review of math model, Peer J, 5 (2017), e3877.
    [11] D. Finzi, M. Hermankova, T. Pierson, L. M. Carruth, C. Buck, R. E. Chaisson, T. C. Quinn, K. Chadwick, J. Margolick, R. Brookmeyer, J. Gallant, M. Markowitz, D. D. Ho, D. D. Richman and R. F. Siliciano, Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy, Science, 278 (1997), 1295–1300.
    [12] K. R. Fister, S. Lenhart and J. McNally, Optimizing chemotherapy in an HIV model, Electron. J. Differ. Equ., 32 (1998), 1–12.
    [13] W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal control, 1st edition, Springer-Verlag, New York, 1975.
    [14] W. K. Hackbush, A numerical method for solving parabolic equations in opposite orientations, Computing, 20 (1978), 229–240.
    [15] H. R. Joshi, Optimal control of an HIV immunology model, Optim. Control Appl. Methods, 23 (2002), 199–213.
    [16] J. Karrakchou, M. Rachik and S. Gourari, Optimal control and infectiology: Application to an HIV/AIDS model, Appl. Math. Comput., 177 (2006), 807–818.
    [17] D. Kirshner, S. Lenhart and S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775–792.
    [18] H. Mohri, S. Bonhoeffer, S. Monard, A. S. Perelson and D. D. Ho, Rapid turnover of T lymphocytes in SIV-infected rhesus macaques, Science 279 (1998), 1223–1227.
    [19] D. Morgan, C. Mahe, B. Mayanja, J. Okongo and R. Lubega, HIV-1 infection in rural Africa: Is there a difference in median time to aids and survival compared with that in industrialized countries?, AIDS, 16 (2002), 597–632.
    [20] M. J. Pace, L. Agosto, E. H. Graf and U. O'Doherty, HIV reservoirs and latency models, Virology, 411 (2011), 344–354.
    [21] S. Pankavish, The effects of latent Infection on the dynamics of HIV, Differ. Equ. Dyn. Syst., 24 (2016), 281–303.
    [22] A. Pegu, M. Asokan, L. Wu, K. Wang, Activation and lysis of Human CD4 cells latently infected with HIV-1, Nat. Commun., 6 (2015).
    [23] A. S. Perelson and P. Nelson, Mathematical analysis of HIV–1 in vivo, SIAM Rev., 41 (1998), 3–44.
    [24] A. S. Perelson, D. E. Kirschner and R. D. Boer, Dynamics of HIV infection CD4 T cells, Math. Biosci., 114 (1993), 81–125.
    [25] N. Perera, Deterministic and stochastic models of virus dynamics, Ph.D. Thesis, Texas Tech University, 2003.
    [26] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical theory of optimal processes, 1st edition, John Wiley, 1962.
    [27] L. Rong and A. S. Perelson, Modeling latently infected cell activation: Viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput. Biol., 5(10) (2009), 1000533.
    [28] L. Rong and A. S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theort. Biol., 260 (2009), 308–331.
    [29] L. Rong and A. S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blip, Math. Biosci., 217 (2009), 77–87.
    [30] M. Roshanfekr, M. H. Farahi and R. Rahbarian, A different approach of optimal control on an HIV immunology model, Ain. Shams. Eng. J., 5 (2014), 213–219.
    [31] R. F. Siliciano and W. C. Greene, HIV latency, Cold Spring Harb. Perspect. Med., 1 (2011), a007096.
    [32] L. E. Jones, A. S. Perelson, Transient viremia, plasma viral load, and reservoir replenishment in HIV-infected patients on antiretroviral therapy. J Acquir. Immune. Defic. Syndr., 45 (2007), 483–493.
    [33] U.S. Department of health and human services AIDSinfo, Antiretroviral Therapy-Associated Common and/or Severe Adverse Effects, Available from: https://aidsinfo.nih.gov/ guidelines/htmltables/1/5551
    [34] X. Wang, S. Tang, X. Song and L. Rong, Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission, J. Biol. Dynam., 11(sup2) (2016), 455–483.
    [35] M. Markowitz, M. Louie, A. Hurley, E. Sun, M. Di Mascio, A. S. Perelson and D. D. Ho, A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo, J. Virol., 77 (2003), 5037–5038.
    [36] B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J. E. Mittler, M. Markowitz, J. P. Moore, A. S. Perelson and D. D. Ho, Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet, 354 (1999), 1782–1785.
    [37] H. Kim and A. S. Perelson. Viral and latent reservoir persistence in HIV-1- infected patients on therapy, PLoS Comput. Biol., 2 (2006), e135.
    [38] J. K. Wong, M. Hezareh, H. F. Gunthard, D. V. Havlir, C. C. Ignacio, C. A. Spina and D. D. Richman, Recovery of replication-competent HIV despite prolonged suppression of plasma viremia, Science, 278 (1997), 1291–1295.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3943) PDF downloads(659) Cited by(4)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog