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Abstract: Although a number of cost-effective strategies have been proposed for the chemotherapy of
HIV infection, the termination level of viral load and latent reservoir is barely considered. However, the
viral load at the termination time is an important biomarker because suppressing viral load to below the
detection limit is a major objective of current antiretroviral therapy. The pool size of latently infected
cells at the termination time may also play a critical role in predicting a rapid viral rebound to the
pretreatment level or post-treatment control. In this work, we formulate an optimal control problem
by incorporating the termination level in terms of viral load, latently and productively infected T cells
into an existing HIV model. The necessary condition for this optimal system is derived using the
Pontryagin’s maximum principle. Numerical analysis is carried out using Runge-Kutta 4 method for
the forward-backward sweep. Our results suggest that introducing the termination viral load into the
control provides a better strategy in HIV chemotherapy.
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1. Introduction

The human immuno-deficiency virus (HIV) infection has been a most significant infectious disease
seen in the history of human health. Since the inception of the disease in the 1980s, the high spreading
speed of infection around the world has been a great concern to the public. By the end of 2016,
approximately 36.7 million people have been reported worldwide to be living with HIV, and about 1
million people died from HIV related illnesses [19]. Although tremendous efforts have been made in
the prevention, intervention and control of HIV, its pandemic remains a major socio-economic burden
particularly in underdeveloped countries. Without any treatment, it has been shown that the progression
of HIV to AIDS (acquired immune deficiency syndrome) usually takes about 10 years on average [19].
It is extremely challenging to eradicate the disease. Some studies indicate that the infection may lay
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dormant in reserviors [7, 11, 38]. One popular treatment that came up to help manage the infection is
known as highly active antiretroviral therapy (HAART). The HAART is a combination of antiretroviral
agents∗. This therapy has been utilized to suppress viral replication in the bloodstream for decades
thereby increasing the life expectancy of individual living with HIV [3].

Mathematical modeling, analysis and simulations for HIV have long provided useful insights into
disease dynamics that could guide the public health administration for designing effective prevention
and control measures against the disease (e.g., see [2, 10, 20, 22–25, 28, 29, 31] and the references
therein). Most of the modeling work is built on a system of ordinary differential equations (ODEs).
For instance, in 1993, Perelson et al. used an ODE model of HIV to study the effects of azidothymidine
(AZT), a nucleoside reverse transcriptase inhibitor, on the viral growth and the T-cell population dy-
namics by showing the dependence of endemic level of infected T cells on the model parameters [24].
In 2009, Rong and Perelson proposed a model that included a logistic term representing homeostatic
proliferation of latently infected cells and then investigated the quantitative and integrated prospective
in terms of long-term dynamics of HIV and the latent reservoir under a potent antiretroviral ther-
apy [27]. In 2016, Wang et al. developed an HIV latent model with two modes of transmission and
they analyzed the local and global dynamics of the system [34].

It is crucial to study the treatment from the control perspective. First of all, the virus can be-
come drug resistant overtime. Secondly, the drugs used in the therapy can be dangerous to patients’
health if the dosage is not well proportioned. For example, one of such drugs is the reverse tran-
scriptase inhibitors (RTIs)†. These types of drugs can lead to a harmful side effect in patients such as
cardiovascular problems, lactic acidosis and mitochondrial damage due to uncontrolled dosage over-
time [5, 33]. A number of mathematical models have been developed to study optimal control of HIV
infection [12,13,15,16,30]. In 1997, Kirschner et al. used an existing ODE model from [24] to inves-
tigate an optimal chemotherapy strategy for HIV infection, and their objective function was based on
the number of T-cell counts and the systemic cost in the optimality system [17]. In 2015, Ana-Maria
Croicu considered an objective function that aims to minimize both the viral load in the blood stream
and the control cost [9]. To the best of our knowledge, few works have taken the termination viral load
and latent reservoir into account in the control of HIV infection.

In this paper, we incorporate the termination level and the running cost of viral load, latently and
actively infected T cells over the treatments into the objective function. Our goal is to decrease the
infected T cells (both latently and actively infected T cells), the viral load in the blood stream (which
will cause an increase in the number of CD4+ T cells) and to reduce the cost of treatment. Specifically,
we consider two drug classes, the RTIs and the protease inhibitor (PIs)‡.

The rest of the paper is organized as follows. Section 2 introduces the model we used. Section 3
presents the basic reproduction number and summarizes the local and global dynamics of the system
obtained in [21]. Section 4 defines the objective function, verifies the necessary condition of the opti-
mal system and presents the existence and uniqueness of the optimal solution. Section 5 is devoted to
our numerical results. Final concluding remark and discussions are provided in Section 6.

∗These drugs are classed as nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase
inhibitors (NNRTIs), protease inhibitors, entry inhibitors (including fusion inhibitors), integrase inhibitors, chemokine co-receptor an-
tagonists (CCR5 antagonists), cytochrome P4503A (CYP3A) inhibitors.

†They are used to interfere with the process of the HIV, an RNA virus, to be reverse transcribed from RNA to DNA with the help of
the enzyme reverse transcriptase.

‡These drugs act on infected cells by inhibiting the cleavage of protein precursors with the help of enzyme protease, which is required
to produce and package new viruses that emerge from an infected cell and can infect other susceptible T cells.
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2. Model

The model we will study in the paper can be written as a system of ODEs:
dT
dt

= λ − dT T − (1 − εRT )kVIT,

dL
dt

= αL(1 − εRT )kVIT − dLL − aL,

dT ∗

dt
= (1 − αL)(1 − εRT )kVIT − δT ∗ + aL,

dVI

dt
= (1 − εPI)NδT ∗ − cVI .

(1)

The variable T represents the number the susceptible CD4+ T cells, L (resp. T ∗) measures the num-
ber of the latently (resp. productively) infected CD4+ T cells, and VI is the concentration of free
virus in the blood stream. εRT (t) and εPI(t) capture the time-dependent efficacy of of RT and protease
inhibitors, respectively. The definition of model parameters is provided in Appendix A. For simplic-
ity, let X = (T, L,T ∗,VI)T and F denote the right hand of (1). Hence, system (1) is of the form
dX/dt = F(X, εRT , εPI).

3. Global dynamics of system (1)

With constant controls, the dynamics of this system have been analyzed by Pankavish in [21] based
on the basic reproduction number R0, which is defined as the expected number of secondary cases
produced by one primary case in an otherwise susceptible population.

It follows from [21] that the basic reproduction number associated with system (1) is given by

R0 =
dL(1 − ε)kλN(1 − αL) + a(1 − ε)kλN

cdT (dL + a)
,

where (1− ε) = (1− εRT )(1− εPI). Moreover, system (1) has at most two biologically feasible equilibria
which depend on the value of R0. The non infectious equilibrium (NIE) (T, L,T ∗,VI) =

(
λ

dT
, 0, 0, 0

)
always exists, and the endemic equilibrium (EE)

(T, L,T ∗,VI) =

(
λ

dTR0
,

αL

R0(dL + a)
λ(R0 − 1),

dT c
(1 − ε)kNδ

(R0 − 1),
(1 − εPI)dT

k(1 − ε)
(R0 − 1)

)
is the only feasible and nontrivial equilibrium when R0 > 1. The following summarizes Pankavich’s
results in [21], which establish the local and global dynamics of system (1).

Theorem 3.1. If R0 ≤ 1, then the NIE is locally asymptotically stable. If R0 > 1 then the NIE is an
unstable saddle point, and the EE is locally asymptotically stable.

Theorem 3.2. If R0 ≤ 1, then the NIE is globally asymptotically stable. If R0 > 1, then the EE is
globally asymptotically stable.

These results show that R0 serves as a sharp infection threshold; specifically, if the basic reproduc-
tion number is less than or equal to the unity, the infection dies out, whereas if the basic reproduction
number is above the unity, the infection will persist and become established.

The disease threshold dynamics are numerically verified in terms of the basic reproduction number
R0. The result is illustrated in Figure 1.
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Figure 1. The time evolution of (a) uninfected T cells and (b) viral load. The black (resp.
red) curves illustrate the case when R0 < 1 (resp. R0 > 1). In the examples displayed in
Figure 1, R0 = 0.97 and R0 = 7.20.

4. Optimal control problem

In this section, we introduce and analyze an optimal control problem for HIV infection. Our goal is
to find an effective control treatment. Let t f denote the termination time of investigation. We consider
the model on the time interval [0, t f ]. The objective functional we consider is given by

J =

∫ t f

t0
A1VI(t) dt +

∫ t f

t0
A2L(t) dt +

∫ t f

t0
A3T ∗(t) dt + A4VI(t f ) + A5L(t f )

+ A6T ∗(t f ) +

∫ t f

t0

(
B1εRT (t) + B2ε

2
RT (t)

)
dt +

∫ t f

t0

(
C1εPI(t) + C2ε

2
PI(t)

)
dt.

(2)

The first three integrals measure the total number of The first three integrals measure the total num-
ber of viral load, latently and productively infected cells, respectively, over the entire investigation
time. VI(t f ), L(t f ) and T ∗(t f ) are the corresponding termination level of each population. The last
two integrals consist of the overall cost of two types of antiretroviral drugs, where the quadratic terms
are introduced to account for the nonlinear cost potentially arising at high treatment levels [4]. The
constants A1, A2, A3, A4, A5, A6, B1, B2,C1, and C2 define the weights associated with the corresponding
controls.

Our major goal is to minimize the total viral load, the termination viral load and latent reservoir,
and the control cost over the investigation time. To that end, we consider

min
(εRT ,εPI )∈U

J(εRT , εPI),

Mathematical Biosciences and Engineering Volume 16, Issue 2, 619–635.
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subject to
dX
dt

= F(X, εRT , εPI),

where U = {ε(t) = (εRT (t), εPI(t)) : ε is measurable, aRT ≤ εRT (t) ≤ bRT , aPI ≤ εPI(t) ≤ bPI , t ∈ [0, t f ]}
is the control set. Here aRT , bRT , aPI and bPI are nonnegative constants with aRT < bRT and aPI < bPI .

4.1. Necessary condition for optimality system

In this section, we will focus on the necessary condition for the optimality system. To proceed, we
will use the Pontryagin’s Maximum Principle [26] to seek the optimal control solution. This method
introduces the adjoint variables and represents the optimal control solution in terms of state and ad-
joint variables, which transfers the problem of minimizing the objective functional into a problem that
minimizes the Hamiltonian in terms of controls.

Theorem 4.1. Assume that B2 > 0 and C2 > 0. Given the optimal control ε∗RT and ε∗PI , and the solution
X∗ of the corresponding state system in (1), there exists the adjoint variable Ψ = (ψ1, ψ2, ψ3, ψ4)T

satisfying:

ψ′1 = ψ1(dT + (1 − εRT )kVI) − ψ2(αL(1 − εRT )kVI) − ψ3((1 − αL)(1 − εRT )kVI),
ψ′2 = −A2 + ψ2(dL + a) − ψ3a,

ψ′3 = −A3 + ψ3δ − ψ4(1 − εPI)Nδ,
ψ′4 = ψ1(dT + (1 − εRT )kT ) − ψ2(αL(1 − εRT )kT ) − ψ3((1 − αL)(1 − εRT )kT ) + ψ4c,

with
Ψ(t f ) = (0, A5, A6, A4).

Moreover, the optimal control is given by

ε∗RT = min
{

max
{
aRT ,

(
(ψ2 − ψ3)αLkVIT + (ψ3 − ψ1)kVIT − B1

)
2B2

}
, bRT

}
and

ε∗PI = min
{

max
{
aPI ,

(
ψ4(NδT ∗) −C1

)
2C2

}
, bPI

}
.

Proof. Based on the result from Pontryagrin’s Maximum principle, we will construct an Hamiltonian.
LetH be the Hamiltonian of the optimality system given by

H = H(t,T, L,T ∗,VI , ψ1, ψ2, ψ3, ψ4, εRT , εPI)
= A1VI + A2L + A3T ∗ + B1εRT + B2ε

2
RT + C1εPI + C2ε

2
PI

+ ψ1 [λ − dT T − (1 − εRT )kVIT ] + ψ2 [αL(1 − εRT )kVIT − dLL − aL]
+ ψ3 [(1 − αL)(1 − εRT )kVIT − δT ∗ + aL] + ψ4 [(1 − εPI)NδT ∗ − cVI] .

To solve the optimal control, the adjoint variable must satisfy the following system, Ψ′ = −∇XH ;
that is,

Mathematical Biosciences and Engineering Volume 16, Issue 2, 619–635.
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ψ
′

1 = −
∂H

∂T
= ψ1(dT + (1 − εRT )kVI) − ψ2(αL(1 − εRT )kVI) − ψ3((1 − αL(1 − εRT )kVI),

ψ
′

2 = −
∂H

∂L
= −A2 + ψ2(dL + a) − ψ3(a),

ψ
′

3 = −
∂H

∂T ∗
= −A3 + ψ3(δ) − ψ4((1 − εPI)Nδ),

ψ
′

4 = −
∂H

∂VI
= −A1 + ψ1((1 − εRT )kT ) − ψ2(αL(1 − εRT )kT ) − ψ3((1 − αL)(1 − εRT )kT ) + ψ4(c).

Using the transversality condition, we have(
T (t f ), L(t f ),T ∗(t f ),VI(t f )

)
=

(
0, A5, A6, A4

)
.

The optimal solution in the interior of the control set U is determined by

∂H

∂εRT
= B1 + 2B2εRT + ψ1kVIT − ψ2αLkVIT − ψ3(1 − αL)kVIT = 0,

∂H

∂εPI
= C1 + 2C2εPI − ψ4(NδT ∗) = 0.

Thus in the interior of U, we get

ε∗RT =
(ψ2 − ψ3)αLkVIT + (ψ3 − ψ1)kVIT − B1

2B2
, (3)

ε∗PI =
ψ4NδT ∗ −C1

2C2
. (4)

Furthermore, by the classical control argument that involves bounds on controls, we conclude that,

ε∗RT =


(ψ2−ψ3)αLkVIT+(ψ3−ψ1)kVIT−B1

2B2
=: vRT if aRT < vRT < bRT ,

aRT if vRT ≤ aRT ,

bRT if vRT ≥ bRT .

Thus,

ε∗RT = min
{

max
{
aRT ,

(
(ψ2 − ψ3)αLkVIT + (ψ3 − ψ1)kVIT − B1

)
2B2

}
, bRT

}
.

Similarly for the second control we have

ε∗PI =


ψ4NδT ∗−C1

2C2
=: vPI if aPI < vPI < bPI ,

aPI if vPI ≤ aPI ,

bPI if vPI ≥ bPI ,

and hence

ε∗PI = min
{

max
{
aPI ,

(
ψ4(NδT ∗) −C1

)
2C2

}
, bPI

}
.

In addition, the Hessian matrix of Hamiltonian in term of εRT and εPI is positively definite, which
ensures that (3) is a minimizer. It completes the proof. �
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4.2. Existence and uniqueness of the optimality system

In this section, our investigation will be focused on the existence and uniqueness of our optimal
control problem.

4.2.1. Existence of the optimality system

Theorem 4.2. Consider the control problem with the state equations (1), there exists an ε∗ =

(ε∗RT , ε
∗
PI) ∈ U such that

min
(εRT ,εPI )∈U

J(εRT , εPI) = J(ε∗RT , ε
∗
PI),

where U = {ε(t) = (εRT (t), εPI(t)) : ε is measurable, aRT ≤ εRT (t) ≤ bRT , aPI ≤ εPI(t) ≤ bPI , t ∈ [0, t f ]}
is the control set.

Proof. By Theorem 4.1 [13], our assertion on the existence of the optimality system holds if the fol-
lowing conditions are satisfied:

C1. {(X(0), ε∗) : ε(t) ∈ U} , ∅;

C2. The admissible control set U is closed and convex;

C3. The right hand side of the state system is bounded by a linear function in the state and control
variable.

C4. The integrand of the objective functional J
(
i.e., A1VI +A2L+A3T ∗+B1εRT +B2ε

2
RT +C1εPI +C2ε

2
PI
)

is convex on U.

C5. There exist constants K1 and K2 such that the integrand of the objective function is bounded below
by K1(|εRT |

β + |εPI |
β) − K2 where K1 > 0 and β > 1.

The verification of C1 and C3 for the state equation follows directly from the result of [21, Theorem
3.1] for the existence, positivity and the boundedness of the ODE solutions. The verification of C2
follows directly from the construction and definition of the optimal control, which ensures the com-
pactness required for the optimal control. C4 is satisfied since the integrand is convex on the control
set. C5 follows immediately by taking K1 = min{(B1 + B2), (C1 + C2)}, K2 = 0 and β = 2. Hence, the
existence of the optimal control pair is proved. �

4.2.2. Uniqueness of the Optimality System

To prove the uniqueness of the system we shall invoke the lemma below.

Lemma 4.3. Let the function ε∗(s) be defined as ε∗(s) = min(max(s, a), b) for some positive constants
a < b. Then ε∗(s) is Liptschitz continuous in s.

Proof. Let s1, s2 ∈ R and a, b be positive constant. To prove the assertion for min(max(s, a), b), it
suffices to show that Liptchitz continuity holds for max(s, a).

1. s1 ≥ a, s2 ≥ a; |max(s1, a) −max(s2, a)| = |s1 − s2|.

2. s1 ≥ a, s2 ≤ a; |max(s1, a) −max(s2, a)| = |s1 − a| ≤ |s1 − s2|.

Mathematical Biosciences and Engineering Volume 16, Issue 2, 619–635.
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3. s1 ≤ a, s2 ≥ a; |max(s1, a) −max(s2, a)| = |a − s2| ≤ |s1 − s2|.

4. s1 ≤ a, s2 ≤ a; |max(s1, a) −max(s2, a)| = |a − a| = 0 ≤ |s1 − s2|.

Since this is true for all cases, hence the Lipschitz continuity is satisfied for ε∗ in s. �

Theorem 4.4. Given that t f is sufficiently small, the solution to the bounded optimality system is
unique.

This theorem can be proved by the classical energy method [12, 15].

5. Numerical analysis

The standard forward-backward sweep method is used to solve the optimality system in an iterative
manner [14]. In this paper we adopt the Runge-Kutta 4 for the sweep method. This method solves the
state system with an initial guess forward in time and then solves the adjoint system backward in time
using the transversality condition as the initial guess, the controls are then updated after each iteration
using the formulas for the optimal control derived in Theorem 4.1. This iteration is continued until
convergence is achieved.

Table 1. Definition of parameter and values in our models and simulation.

Variable Units Discription Value Ref.
λ mL−1 day−1 recruitment rate of 10000 [6]

T from the thymus
dT day−1 death rate of T 0.01 [18]
dL day−1 death rate of L 0.004 [6]
δ day−1 death rate of T ∗ 1 [35]
c day−1 clearance rate of V 23 [36]
N RNA copies cell−1 burst rate of T ∗ 3000 [24, 29]
a day−1 activation rate of L 0.1 [28]
αL day−1 proportion of L 0.001 [32]
k mL day−1 rate of infection of T 2.4 × 10−8 [24]

T0 cell mL−1 initial value of T 600000 [37]
T ∗0 cell mL−1 initial value of T ∗ 0.3 [28]
L0 cell mL−1 initial value of L 2 [28]
VI0 RNA copies mL−1 initial value of VI 50 [28]

In what follows, we compare the results by using two objective functionals. The first objective
function has been introduced in previous research [9] in the optimal control of HIV infection. Note
that the model in [9] is a basic viral dynamic model without consideration of latently infected CD4+

T cells, and it uses a different objective functional. We want to compare the optimal control with and
without including the termination level of viral load and latent reservoir.

J∗ =

∫ t f

t0
Ã1VI(t)dt +

∫ t f

t0

(
B̃1εRT (t) + B̃2ε

2
RT (t)

)
dt +

∫ t f

t0

(
C̃1εPI(t) + C̃2ε

2
PI(t)

)
dt. (5)
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The parameter values used in the numerical simulations are provided in Table 1. The time unit is
the day. The weight factors are set as follows: Ã1 = A1 = 0.02, A2 = 10, A3 = 10, A4 = 10, A5 =

10, A6 = 20 with B̃1 = B1 = 8, B̃2 = B2 = 9, C̃1 = C1 = 11, C̃2 = C2 = 13. These values are chosen to
balance the weights of variables in the objective function to be minimized. For example, because the
magnitude of the viral load in the objective function is significantly greater than the magnitude of the
drug efficacy, the choice of weights is chosen to balance the difference. Weights for the termination
terms are chosen as a result of emphasis made for the viral load and the level of latently infected cells
in the termination. The weights for the running cost and productively infected cells are based on the
size of infected cells (both latent and active) [1,9]. Here the weight parameters with and without tilde
are for the objective functionals (5) and (2), respectively.

Unlike the objective functional J∗ defined in (5), the objective function J presented in this paper
defined in (2) includes the termination level. The viral load at the termination time is of great interest
because suppressing the viral load to below the detection limit is a major objective of current antiretro-
viral treatment. The pool size of latently infected cells at the termination time may also play a vital role
in predicting a rapid viral rebound to the pretreatment level or post-treatment control [8], i.e., patients
can maintain undetectable viral load for a prolonged time without a therapeutic treatment. As seen in
Figure 2, for the first 40 days of treatment period, both objective functionals were able to increase the
number of T cells. However, using objective functional J, the T-cell count keeps increasing, whereas
the number of T cells using the objective functional J∗ fluctuated through the rest of the treatment pe-
riod. Regarding the viral load in the blood stream, the objective functional J resulted in a very low level
of virus by the end of the treatment period and the decrease was consistent throughout the treatment
period, while with J∗, the level of viral load fluctuated and between 55th day and the 70th day behaved
almost the same as no treatment. The dynamics of the latently and productively infected cells had
the similar results to the viral load for the two objective functions (see Figure 2). The corresponding
controls are displayed in Figure 3. It shows that the amount of drug used for J is higher than that of
J∗ from day 1 till day 59, but between the 60th day and 118th day of the regimen, the amount of drug
given for J was less than that of J∗. Overall, the effort on the control for J∗ is more than that of J.

Using the objective functional presented in this paper and the combination weight factor A1 =

0.02, A2 = 10, A3 = 10, A4 = 10, A5 = 10, A6 = 20, B1 = 8, B2 = 9,C1 = 11,C2 = 13. we study the
optimal control problem for t f = 30 days, 60 days, and 120 days. The obtained results are plotted in
Figures 4–9.

In what follows, for simplicity, the first (resp. second) control is referred to as the control using the
RTIs (resp. PIs). In the 30-day period of treatment, it is observed from Figure 4 that the susceptible
T cells increased, whereas the latently infected cells, the actively infected cells and the viral load
decreased throughout the treatment. This is consistent with the result of the controls. The first control
started out with an efficacy averaging 70 percent for the first 5 days, while the second control was not
administered for that period of time. Then, over the course of the treatment, the efficacy of the first
control decreased averaging 55 percent till the end of the regimen, while the efficacy of the second
control increased. The highest efficacy for the second control over this treatment period was about 35
percent. The increase in the second control agrees with the fact that it was needed to incapacitate the
virus in the blood stream so that the virions will not be able to successfully infect cells in the body.
This treatment was able to consistently increase the number of T cells in the body with the viral load
in the blood stream at 29 RNA copies/mL which is below the detection level.
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Figure 7. Optimal control in the 60-day treatment period.
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Figure 8. Predicted dynamics of uninfected cells, latently and productively infected cells
and viral load in the 120-day treatment period.

We compare this with the 60-day treatment (see Figures 6 and 7) and the following were observed.
The number of T cells consistently increased throughout the treatment period, the number of the la-
tently infected cells decreased, the actively infected cells and the viral load all decreased till the end of
the treatment period. The level of actively infected cells was very low with the viral load in the blood-
stream at about 0.15 RNA copies/mL by the end of the treatment, which is much less than that of the
30-day treatment period. In the control used in the 60-day treatment period, the first control started out
by averaging 70 percent in the first 5 days at this time and the second drug was again not administered.
Between the 5th and the 10th day, the first control averaged about 65 percent and the second control
averaged about 10 percent. From the 10th day till the end of the treatment period, the first control
averaged about 40 percent while the second control increased and averaged about 35 percent till the
end of the treatment period.

Lastly, we considered a longer period of time 120 days (see Figures 8 and 9). In this case, the
number of T cells increased throughout the treatment period, while the latently infected cells, actively
infected cells, viral load all decreased throughout the treatment period. By the end of the treatment, the
viral load was about 0.00083 RNA copies/mL. In the control for the 120 days, the first control started
out by averaging 55 percent in the first 10 days, and the second control averaging out 30 percent. By
the 30th day of the treatment, both controls were maintained at about 36 percent till the end of the
treatment period.
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Figure 9. Optimal control in the 120-day treatment period.

6. Conclusion and discussion

In this paper, we formulate an optimal control problem for the chemotherapy treatment in HIV pa-
tients by deriving the necessary condition of the optimal control pair, using the Pontryagin’s maximum
principle. Our result shows that including the terminal state of virus and infected cells in the objective
functional, particularly the viral load and latent reservoir at the termination time, leads to an effective
optimal control in two folds: (1) It causes the number of uninfected T cells in the blood stream to
increase consistently; (2) it also decreases the level of free virus in the bloodstream and keeps the viral
load below the detection level (50 RNA copies/mL). Moreover, the obtained optimal control indicates
that the RT inhibitor should begin with strong dosing scheme while the protease inhibitor can start
with little or no dosage for the first few days of the treatment period. In the days following, the dosage
for RI inhibitor can decrease while that of the protease inhibitor should increase, and they should be
averaged about the same level till the end of the treatment period.

There are a couple of limitations in our work. Firstly, the control in this study is continuous over
time and thus it not very practical since the implementation cost will be high ,which we did not in-
corporate in our study. A way to handle this is to introduce a piece-wise linear control for the model.
Secondly, the model we consider in this paper is a basic model with HIV latency. For instance, taking
multi-scale (within host and between host) and mutation of the virus into account in the model formu-
lation will better reflect HIV dynamics over a longer time interval or when drug resistance emerges in
patients. It would be interesting to compare the corresponding difference in optimal controls.
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