Research article Special Issues

Mathematical analysis of a two-tiered microbial food-web model for the anaerobic digestion process


  • Received: 06 November 2022 Revised: 17 January 2023 Accepted: 27 January 2023 Published: 02 February 2023
  • In this research paper, we presented a four-dimensional mathematical system modeling the anaerobic mineralization of phenol in a two-step microbial food-web. The inflowing concentrations of the hydrogen and the phenol are considered in our model. We considered the case of general class of nonlinear growth kinetics, instead of Monod kinetics. Due to some conservative relations, the proposed model was reduced to a two-dimensional system. The stability of the steady states was carried out. Based on the species growth rates and the three main operating parameters of the model, represented by the dilution rate and input concentrations of the phenol and the hydrogen, we showed that the system can have up to four steady states. We gave the necessary and sufficient conditions ensuring the existence and the stability for each feasible equilibrium state. We showed that in specific cases, the positive steady state exists and is stable. We gave numerical simulations validating the obtained results.

    Citation: Amer Hassan Albargi, Miled El Hajji. Mathematical analysis of a two-tiered microbial food-web model for the anaerobic digestion process[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6591-6611. doi: 10.3934/mbe.2023283

    Related Papers:

  • In this research paper, we presented a four-dimensional mathematical system modeling the anaerobic mineralization of phenol in a two-step microbial food-web. The inflowing concentrations of the hydrogen and the phenol are considered in our model. We considered the case of general class of nonlinear growth kinetics, instead of Monod kinetics. Due to some conservative relations, the proposed model was reduced to a two-dimensional system. The stability of the steady states was carried out. Based on the species growth rates and the three main operating parameters of the model, represented by the dilution rate and input concentrations of the phenol and the hydrogen, we showed that the system can have up to four steady states. We gave the necessary and sufficient conditions ensuring the existence and the stability for each feasible equilibrium state. We showed that in specific cases, the positive steady state exists and is stable. We gave numerical simulations validating the obtained results.



    加载中


    [1] IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes, Anaerobic digestion model no.1 (adm1), IWA publishing, London, UK, 2002.
    [2] A. Bornhoft, R. Hanke-Rauschenbach, K. Sundmacher, Steady-state analysis of the anaerobic digestion model no. 1 (ADM1), Nonlinear Dyn., 73 (2013), 535–549. https://doi.org/10.1007/s11071-013-0807-x doi: 10.1007/s11071-013-0807-x
    [3] M. El Hajji, F. Mazenc, J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process, Math. Biosci. Eng., 7 (2010), 641–656. https://doi.org/10.3934/mbe.2010.7.641 doi: 10.3934/mbe.2010.7.641
    [4] A. Xu, J. Dolfing, T. Curtis, G. Montague, E. Martin, Maintenance affects the stability of a two-tiered microbial 'food chain'?, J. Theor. Biol., 276 (2011), 35–41. https://doi.org/10.1016/j.jtbi.2011.01.026 doi: 10.1016/j.jtbi.2011.01.026
    [5] T. Sari, J. Harmand, A model of a syntrophic relationship between two microbial species in a chemostat including maintenance, Math. Biosci., 275 (2016), 1–9. https://doi.org/10.1016/j.mbs.2016.02.008 doi: 10.1016/j.mbs.2016.02.008
    [6] Y. Daoud, N. Abdellatif, T. Sari, J. Harmand, Steady state analysis of a syntrophic model: The effect of a new input substrate concentration, Math. Model. Nat. Phenom., 13 (2018), 31. https://doi.org/10.1051/mmnp/2018037 doi: 10.1051/mmnp/2018037
    [7] R. Fekih-Salem, Y. Daoud, N. Abdellatif, T. Sari, A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates, SIAM J. Appl. Dyn. Syst., 20 (2020), 1621–1654. https://doi.org/10.1137/20M1376480 doi: 10.1137/20M1376480
    [8] M. J. Wade, R. Pattinson, N. Parker, J. Dolfing, Emergent behaviour in a chlorophenol35 mineralising three-tiered microbial 'food web', J. Theor. Biol., 389 (2016), 171–186. https://doi.org/10.1016/j.jtbi.2015.10.032 doi: 10.1016/j.jtbi.2015.10.032
    [9] T. Sari, M. E. Hajji, J. Harmand, The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat, Math. Biosci. Eng., 9 (2012), 627–645. https://doi.org/10.3934/mbe.2012.9.627 doi: 10.3934/mbe.2012.9.627
    [10] M. E. Hajji, How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat, Int. J. Biomath., 11 (2018), 1850111. https://doi.org/10.1142/S1793524518501115 doi: 10.1142/S1793524518501115
    [11] H. L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.
    [12] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763. https://doi.org/10.1007/BF00173267 doi: 10.1007/BF00173267
    [13] R. Saidi, P. Liebgott, M. Hamdi, R. Auria, H. Bouallagui, Enhancement of fermentative hydrogen production by thermotoga maritima through hyperthermophilic anaerobic co-digestion of fruit-vegetable and fish wastes, Int. J. Hydrogen Energy, 43 (2018), 23168–23177. https://doi.org/10.1016/j.ijhydene.2018.10.208 doi: 10.1016/j.ijhydene.2018.10.208
    [14] M. Sakarika, K. Stavropoulos, A. Kopsahelis, E. Koutra, C. Zafiri, M. Kornaros, Twostage anaerobic digestion harnesses more energy from the co-digestion of end-oflife dairy products with agro-industrial waste compared to the single-stage process, Biochem. Eng. J., 153 (2020). https://doi.org/10.1016/j.bej.2019.107404 doi: 10.1016/j.bej.2019.107404
    [15] A. Marone, O. Ayala-Campos, E. Trably, A. Carmona-Martinez, R. Moscoviz, E. Latrille, et al., Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agroindustrial wastewaters and by-products in a bio-refinery framework, Int. J. Hydrogen Energy, 42 (2017), 1609–1621. https://doi.org/10.1016/j.ijhydene.2016.09.166 doi: 10.1016/j.ijhydene.2016.09.166
    [16] A. Xia, A. Jacob, C. Herrmann, J. Murphy, Fermentative bio-hydrogen production from galactose, Energy, 96 (2016), 346–354. https://doi.org/10.1016/j.energy.2015.12.087 doi: 10.1016/j.energy.2015.12.087
    [17] R. Saidi, P. Liebgott, H. Gannoun, L. B. Gaida, B. Miladi, M. Hamdi, et al., Biohydrogen production from hyperthermophilic anaerobic digestion of fruit and vegetable wastes in seawater: simplification of the culture medium of thermotoga maritima, Waste Manage., 71 (2018), 474–484. https://doi.org/10.1016/j.wasman.2017.09.042 doi: 10.1016/j.wasman.2017.09.042
    [18] M. Yahya, C. Herrmann, S.Ismaili, C. Jost, I. Truppel, A. Ghorbal, Development and optimization of an innovative three-stage bioprocess for converting food wastes to hydrogen and methane, Biochem. Eng. J., 170 (2021), 107992.
    [19] M. Yahya, C. Herrmann, S.Ismaili, C. Jost, I. Truppel, A. Ghorbal, Kinetic studies for hydrogen and methane co-production from food wastes using multiple models, Biomass Bioenergy, 13 (2022), 106449. https://doi.org/10.1016/j.bej.2021.107992 doi: 10.1016/j.bej.2021.107992
    [20] W. Fleming, R. Rishel, Deterministic and Stochastic Optimal Control, Springer Verlag, New York, 1975.
    [21] S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall, 2007.
    [22] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, K. N. Trirogoff, L. W. Neustadt, The Mathematical Theory of Optimal Processes. CRC Press, 2000.
    [23] M. E. Hajji, A. H. Albargi, A mathematical investigation of an "SVEIR" epidemic model for the measles transmission, Math. Biosci. Eng., 19 (2022), 2853–2875. https://doi.org/10.3934/mbe.2022131 doi: 10.3934/mbe.2022131
    [24] A. Alshehri, M. El Hajji, Mathematical study for zika virus transmission with general incidence rate, AIMS Math., 7 (2022), 7117–7142. https://doi.org/10.3934/math.2022397 doi: 10.3934/math.2022397
    [25] M. E. Hajji, Modelling and optimal control for Chikungunya disease, Theory Biosci., 140 (2021), 27–44. https://doi.org/10.1007/s12064-020-00324-4 doi: 10.1007/s12064-020-00324-4
    [26] M. E. Hajji, A. Zaghdani, S. Sayari, Mathematical analysis and optimal control for Chikungunya virus with two routes of infection with nonlinear incidence rate, Int. J. Biomath., 15 (2022), 2150088. https://doi.org/10.1142/S1793524521500881 doi: 10.1142/S1793524521500881
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1301) PDF downloads(127) Cited by(1)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog