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Abstract: In this research paper, we presented a four-dimensional mathematical system modeling the
anaerobic mineralization of phenol in a two-step microbial food-web. The inflowing concentrations of
the hydrogen and the phenol are considered in our model. We considered the case of general class of
nonlinear growth kinetics, instead of Monod kinetics. Due to some conservative relations, the proposed
model was reduced to a two-dimensional system. The stability of the steady states was carried out.
Based on the species growth rates and the three main operating parameters of the model, represented
by the dilution rate and input concentrations of the phenol and the hydrogen, we showed that the
system can have up to four steady states. We gave the necessary and sufficient conditions ensuring
the existence and the stability for each feasible equilibrium state. We showed that in specific cases,
the positive steady state exists and is stable. We gave numerical simulations validating the obtained
results.
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1. Introduction

Methanisation (also called biomethanisation or anaerobic digestion) is the natural biological process
of degradation of organic matter in the absence of oxygen (anaerobic). It occurs naturally in certain
sediments, marshes, rice fields, landfills, as well as in the digestive tract of certain animals, such as
insects (termites) or ruminants. Part of the organic matter is broken down into methane, and another
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part is used by methanogenic microorganisms for their growth and reproduction. The decomposition
is not complete, and leaves the ”digestate” (partly comparable to a compost).

Methanization is also a technique implemented in methanizers, where the process is accelerated and
maintained to produce usable methane (biogas, called biomethane after purification). Organic waste
(or products from energy crops, solid, or liquid) can thus be recovered in the form of energy.

Microbial anaerobic digestion plays an important role in the carbon cycle in nature with an advan-
tage of producing hydrogen and methane. Methanisation results from the action of certain groups of
interacting microbial microorganisms constituting a food web. We classically distinguish four succes-
sive phases: hydrolysis, acidogenesis, acetogenesis and methanogenesis.

Since the Anaerobic Digestion Model No.1.(ADM1) [1] is highly parametrized, only some nu-
merical investigations are done [2]. More simpler mathematical models of microbial interaction are
studied [3–9] in order to understand this microbial process.

In this paper, we consider a two-tiered model including substrate inhibition of the second pop-
ulation. The organisms involved in the resulting two-tiered model are the phenol degrader and the
hydrogenotrophic methanogen. The phenol degrader grows on the phenol to form hydrogen, which
inhibits its growth. The hydrogenotrophic methanogen grows on the produced hydrogen. This work
is a generalization of a previous study [3]. An analytical approach, using a general representation of
the specific growth rates, is given in [3], in the particular case with only influent phenol in the model.
We included the inflow of hydrogen into the model, which was assumed to be equal to 0 in [3]. When
there is no influent phenol and influent hydrogen, the system has only three steady states. However,
the model in [3] was previously extended into several directions in the existing literature. Xu et
al. [4] considered the same model but with the specific growth functions of type Monod (Holding
type 2) and without inflow of hydrogen where the authors added decay terms of the species. Sari
and Harmand [5] extended [3] by considering general growth functions. They extended also [4] by
considering decay terms. Daoud et al. [6] extended [5] by adding the infow of hydrogen. Fekih-Salem
et al. [7] extended [6] by considering the case where the rate of consumption of hydrogen is not
necessarily an increasing function. The operating diagrams that show how the system behaves when
varying the two control parameters (the dilution rate and the influent phenol) were obtained in [4–7].
We have, then, generalized the approach presented in [3] by including multiple substrate inflow into
the model, and characterizing the stability of steady state. We have extended [3] by giving analytic
results on the existence and stability of the four steady states and with general growth functions.

This paper is organized as the following: in Section 2, we present the mathematical model with a
two-tiered microbial food-web, which takes into account the phenol and the hydrogen inflowing con-
centrations. We give the general assumptions on the microbial growth functions and some preliminary
results on positivity and boundedness of solutions. Next, in Section 3, the model was reduced to a
two-dimensional system. The necessary and sufficient conditions of existence, and local and global
stability of the steady states are determined using the operating parameters and the species growth
rates. In Section 4, we give the global behaviour of the main four-dimensional model. In Section 5,
we propose an optimal strategy to maximise the size of both populations while minimising the input
concentration of the hydrogen. In Section 6, we discuss some numerical simulations confirming the
obtained theoretical results.
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2. Mathematical model and properties

2.1. Mathematical model

The proposed normalised mathematical model is given by
ẋ1 = (θ f1(p, h) − D)x1,

ẋ2 = ( f2(h) − D)x2,

ṗ = D(pin − p) − f1(p, h)x1,

ḣ = D(hin − h) + (1 − θ) f1(p, h)x1 − f2(h)x2,

(2.1)

where pin and hin are the input concentrations of phenol and hydrogen into the chemostat, respectively.
D is the dilution rate. θ ∈ (0, 1) is the part of the phenol consumed by the species 1, which is devoted
to the growth of the species, the other part is transformed into hydrogen. p(t) and h(t) are the concen-
trations of phenol and hydrogen in the chemostat at time t, respectively. xi(t), i = 1, 2 is the ith species
concentration in the chemostat at time t.

p, h x1, x2

pin, hin x1, x2, p, h

Figure 1. A chemostat is a continuous stirring mechanism (bioreactor) to which a limiting
phenol concentration (pin) and hydrogen concentration (hin) are continuously added, while
culture liquid (x1, x2, p, h) is continuously removed at the same flow rate (D) [10].

x1

p h x2

θ f 1(
p,

h)
x 1

(1 − θ) f1(p, h)x1 f2(h)x2Dpin

Dhin
Inhibition

Dp

Dx1

Dh Dx2

Figure 2. Two-tiered microbial food-web diagram.
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f1(p, h): is the rate of consumption of phenol by species 1, depending on phenol and hydrogen.
f2(h): is the species 2 growth rate, depending only on hydrogen.
The functional responses f1 : R2

+ → R+ and f2 : R+ → R+ are of class C1, and satisfy

A1 f1(0, h) = f2(0) = 0, ∀ h ∈ R+ ,

A2
∂ f1

∂p
(p, h) > 0, and

∂ f1

∂h
(p, h) < 0, ∀ (p, h) ∈ R2

+ .

A3 f ′2(h) > 0, ∀ h ∈ R+.

Hypothesis A1 expresses that no growth can take place without phenol for species 1, and no growth
can take place without hydrogen for species 2; hypothesis A2 expresses that species 1 growth increases
with the phenol concentration, but is inhibited by the hydrogen concentration. Hypothesis A3 expresses
that the species 2 growth increases with the hydrogen concentration.

Note that our model is a special case of the model considered by Sari et al. [9] when neglecting the
dependence of the growth of species 2 on the phenol, and is also a special case of the model considered
by Daoud et al. [6] when neglecting the decay terms.

2.2. General properties

Let us recall two fundamental well-known properties of the model of the chemostat [11].

Proposition 1. 1) For every initial condition (x1(0), x2(0), p(0), h(0)) ∈ R4
+, the corresponding solution

admits positive and bounded components, and is then definite for all t ≥ 0.
2) The set Ω = {(x1, x2, p, h) ∈ R4

+ /x1 + x2 + p + h = pin + hin; x1 + θp = θpin; x2 + (1 − θ)p + h =

(1 − θ)pin + hin} is invariant and is an attractor of all solutions of system (2.1).

Proof. The positivity of the solution is proved by the fact that:
If xi = 0, then ẋi = 0 for i = 1, 2. If p = 0, then ṗ = Dpin > 0, and if h = 0, then ḣ = Dhin > 0.
Next, we have to prove the boundedness of solutions of (2.1). Consider T1(t) = x1(t) + x2(t) + p(t) +

h(t) − pin − hin, T2(t) = x1(t) + θp(t) − θpin and T3(t) = x2(t) + (1 − θ)p(t) + h(t) − (1 − θ)pin − hin.

Ṫ1(t) = ẋ1(t) + ẋ2(t) + ṗ(t) + ḣ(t) = D
(
pin + hin − x1(t) − x2(t) − p(t) − h(t)

)
= −DT1(t),

Ṫ2(t) = ẋ1(t) + θ ṗ(t) = D
(
θpin − x1(t) − θp(t)

)
= −DT2(t)

and

Ṫ3(t) = ẋ2(t) + (1 − θ) ṗ(t) + ḣ(t) = D
(
(1 − θ)pin + hin − x2(t) − (1 − θ)p(t) − h(t)

)
= −DT3(t)

then

T1(t) = T1(0)e−Dt,T2(t) = T2(0)e−Dt and T3(t) = T3(0)e−Dt.

Therefore,

x1(t) + x2(t) + p(t) + h(t) = pin + hin + (x1(0) + x2(0) + p(0) + h(0) − pin − hin)e−Dt, (2.2)
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x1(t) + θp(t) = θpin + (x1(0) + θp(0) − θpin)e−Dt, (2.3)

and

x2(t) + (1 − θ)p(t) + h(t) = (1 − θ)pin + hin + (x2(0) + (1 − θ)p(0) + h(0) − (1 − θ)pin − hin)e−Dt. (2.4)

Since all terms of the sum are positive, then the solution of system (2.1) is bounded.
The second point is a direct consequence of Eqs (2.2)–(2.4).

3. Reduction to the two-dimensional space

The solutions of the model (2.1) converge exponentially into the set Ω, and since we aim to study
the asymptotic behavior of the system (2.1), it is sufficient to only study the asymptotic behavior of the
restriction (2.1) on Ω. Therefore, thanks to Thieme’s results [12], we can conclude on the asymptotic
behavior of the complete system (2.1). Thus, in this section, we will study the restriction of system
(2.1) on Ω which is simply the projection on the plane (x1, x2).

ẋ1 = (θ f1(pin −
x1

θ
, hin − x2 +

1 − θ
θ

x1) − D)x1,

ẋ2 = ( f2(hin − x2 +
1 − θ
θ

x1) − D)x2 ,
(3.1)

where the solution (x1, x2) of the reduced system (3.1) belongs to the following two-dimensional set:

S =

{
(x1, x2) ∈ R+

2 : 0 ≤ x1 ≤ θpin; 0 ≤ x2 ≤ hin +
1 − θ
θ

x1

}
.

3.1. Local analysis

Define D1 = θ f1(pin, hin) and D2 = f2(hin).

Lemma 1. If D < D1, then there exists a unique value x̄1 ∈ (0, θpin) solution of the following equation:

θ f1(pin −
x1

θ
, hin +

1 − θ
θ

x1) = D . (3.2)

Proof. Let ψ1(x1) = θ f1(pin−
x1

θ
, hin +

1 − θ
θ

x1)−D. Since ψ′1(x1) = −
∂ f1

∂p
(pin−

x1

θ
, hin +

1 − θ
θ

x1)+ (1−

θ)
∂ f1

∂h
(pin −

x1

θ
, hin +

1 − θ
θ

x1) < 0, ψ1(0) = D1 − D, ψ1(θpin) = θ f1(0, hin + (1 − θ)pin) − D = −D < 0,
equation (3.2) admits a positive solution x̄1 ∈ (0, θpin), if and only if, D < D1. If this condition is
satisfied, then (3.2) admits a unique solution since the function ψ1(.) is decreasing.

Lemma 2. If D < D2, then the equation f2(h) = D admits a unique solution h∗ ∈ (0, hin).

Proof. The proof is evident since f2 : R+ → R+ is a continuous increasing function, and f2(0) = 0 <

D < D2 = f2(hin), meaning there exists a unique value h∗ ∈ (0, hin) solution of f2(h) = D.
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Let D3 = θ f1(pin, h∗) and D4 = f2(hin +
1 − θ
θ

x̄1). Note that D1 < D3 and D2 < D4.
The equilibrium points of system (3.1) are given by F0 = (0, 0), F1 = (x̄1, 0), F2 = (0, hin − h∗) and

F∗ = (x∗1, x
∗
2), where x∗1 and x∗2 satisfy

θ f1(pin −
x∗1
θ
, hin − x∗2 +

1 − θ
θ

x∗1) = D,

f2(hin − x∗2 +
1 − θ
θ

x∗1) = f2(h∗) = D.
(3.3)

The Jacobian matrix J of system (3.1) on a point (x1, x2) is given by :

J =


θ f1 − D −

∂ f1

∂p
x1 + (1 − θ)

∂ f1

∂h
x1 −θ

∂ f1

∂h
x1

1 − θ
θ

f ′2 x2 f2 − D − f ′2 x2

 (3.4)

where f1 is evaluated at (pin −
x1

θ
, hin − x2 +

1 − θ
θ

x1) and f2 is evaluated at hin − x2 +
1 − θ
θ

x1.
The conditions of existence of the equilibria are stated in the following lemmas.

Lemma 3. The trivial equilibrium point F0 exists always. F0 is an unstable node if D < min(D1,D2).
F0 is a saddle point if min(D1,D2) < D < max(D1,D2). It is a stable node if D > max(D1,D2).

Proof. The Jacobian matrix J0 of system (3.1) on F0 = (0, 0) is then given by :

J0 =

[
θ f1(pin, hin) − D 0

0 f2(hin) − D

]
=

[
D1 − D 0

0 D2 − D

]
.

Their eigenvalues are given by λ1 = D1 − D and λ2 = D2 − D. Therefore, if D < min(D1,D2),
then F0 is an unstable node, and if min(D1,D2) < D < max(D1,D2), then F0 is a saddle point, and if
D > max(D1,D2), then F0 is a stable node.

Lemma 4. The equilibrium point F1 exists if, and only if, D < D1. If F1 exists, then it is a stable node
if D > D4, and it is a saddle point if D < D4.

Proof. An equilibrium F1 exists, if and only if, x̄1 ∈]0, θpin[ is a solution of Eq (3.2), which admits a
unique positive solution, if and only if, D < D1.

Assume that F1 exists (D < D1). The Jacobian matrix J1 of system (3.1) at F1 = (x̄1, 0) is given by:

J1 =

 −∂ f1

∂p
x̄1 + (1 − θ)

∂ f1

∂h
x̄1 −θ

∂ f1

∂h
x̄1

0 f2 − D

 =

 −∂ f1

∂p
x̄1 + (1 − θ)

∂ f1

∂h
x̄1 −θ

∂ f1

∂h
x̄1

0 D4 − D

 ,
where the partial derivatives are evaluated at p = pin −

x̄1

θ
and h = hin +

1 − θ
θ

x̄1. J1 admits two

eigenvalues given by λ1 = −
∂ f1

∂p
x̄1 + (1 − θ)

∂ f1

∂h
x̄1 < 0 and λ2 = D4 − D. It follows that F1 is a stable

node if D > D4, and it is a saddle point if D < D4.
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Lemma 5. The equilibrium point F2 exists if, and only if, D < D2. If F2 exists, then it is a stable node
if D > D3, and it is a saddle point if D < D3.

Proof. An equilibrium F2 exists if, and only if h∗ ∈]0, hin[ is a solution of the equation f2(h) = D,
which admits a unique positive solution if, and only if, D < D2.

Assume that F2 exists (D < D2). The Jacobian matrix J2 of system (3.1) at F2 = (0, hin − h∗) is

J2 =

 θ f1 − D 0
1 − θ
θ

(hin − h∗) f ′2 −(hin − h∗) f ′2

 =

 D3 − D 0
1 − θ
θ

(hin − h∗) f ′2 −(hin − h∗) f ′2

 ,
where the partial derivatives are evaluated at p = pin and h = h∗. J2 admits two eigenvalues given by
λ1 = D3 − D and λ2 = − f ′2(h∗)(hin − h∗) < 0. It follows that F2 is a stable node if D > D3, and it is a
saddle point if D < D3.

Lemma 6. If equilibria F1, F2 and F∗ exist, then they satisfy x∗1 > x̄1 and x∗2 > hin − h∗.

Proof. Using the function ψ1 one has :

ψ1(x∗1) = θ f1(pin −
x∗1
θ
, hin +

1 − θ
θ

x∗1) − D < θ f1(pin −
x∗1
θ
, hin − x∗2 +

1 − θ
θ

x∗1) − D = 0 = ψ1(x̄1)

then ψ1(x∗1) < ψ1(x̄1) from where x∗1 > x̄1, since the ψ1(.) is decreasing. In the same way,

f2(hin − x∗2) < f2(hin − x∗2 +
1 − θ
θ

x∗1) = D = f2(hin − (hin − h∗)),

then x∗2 > hin − h∗ since the function f2(.) is increasing.

Lemma 7. The equilibrium point F∗ exists if, and only if, D < min(D3,D4). If F∗ exists, then it is
always a stable node.

Proof. An equilibrium F∗ exists if, and only if, the following holds
D = θ f1(pin −

x∗1
θ
, hin − x∗2 +

1 − θ
θ

x∗1) = θ f1(p∗, h∗),

D = f2(hin − x∗2 +
1 − θ
θ

x∗1) = f2(h∗).
(3.5)

Since the function f2 is increasing, then the equation f2(h) = D admits a unique solution h∗ ∈

(0, hin+
1 − θ
θ

x̄1) if, and only if, D < D4 = f2(hin+
1 − θ
θ

x̄1). Now, since f1 is an increasing function with
respect to its first variable, p, then the equation θ f1(p, h∗) = D admits a unique solution p∗ ∈ (0, pin)
if, and only if, D < D3 = θ f1(pin, h∗). Since p∗ ∈ (0, pin), therefore 0 < x∗1 = θ(pin − p∗) < θpin.

Similarly, since D = f2(h∗) < D4 = f2(hin +
1 − θ
θ

x̄1) < f2(hin +
1 − θ
θ

x∗1) by Lemma 6. Therefore,

h∗ < hin +
1 − θ
θ

x∗1, since f2 is an increasing function. Then, x∗2 = hin +
1 − θ
θ

x∗1 − h∗ > 0. Therefore, the
equilibrium point F∗ exists if, and only if, D < min(D3,D4).
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Assume that F∗ exists. The Jacobian matrix J∗ of system (3.1) at F∗ = (x∗1, x
∗
2) is:

J∗ =


−
∂ f1

∂p
x∗1 + (1 − θ)

∂ f1

∂h
x∗1 −θ

∂ f1

∂h
x∗1

1 − θ
θ

f ′2 x∗2 − f ′2 x∗2

 ,
where the partial derivatives are evaluated at p = pin −

x∗1
θ

and h = h∗. Note that trace(J∗)= −
∂ f1

∂p
x∗1 +

(1 − θ)
∂ f1

∂h
x∗1 − f ′2 x∗2 < 0 and det(J∗)=

∂ f1

∂p
f ′2 x∗1x∗2 > 0. Then, J∗ admits two eigenvalues with negative

real parts. It follows that, if it exists, F∗ is a stable node.

The Lemmas 3–7 are summarized in Table 1. The number of equilibrium points of system (3.1) and
their nature are given hereafter.

Table 1. Existence and local stability of steady-states.
Steady-state Existence condition Stability condition
F0 Always exists max(D1,D2) < D
F1 D < D1 D4 < D
F2 D < D2 D3 < D
F∗ D < min(D3,D4) Always stable

Theorem 1.
1) If D < min(D1,D2), then system (3.1) admits four equilibria F0, F1, F2 and F∗. F0 is an unstable

node, F1 and F2 are saddle points, and F∗ is a stable node.
2) If D2 < D < min(D1,D4), then system (3.1) admits three equilibria F0, F1 and F∗. F0 and F1 are

saddle points, and F∗ is a stable node.
3) If D1 < D < min(D2,D3), then system (3.1) admits three equilibria F0, F2 and F∗. F0 and F2 are

saddle points, and F∗ is a stable node.
4) If D4 < D < D1, then then system (3.1) admits two equilibria F0, and F1. F0 is a saddle point

and F1 is a stable node.
5) If D3 < D < D2, then system (3.1) admits two equilibria F0 and F2. F0 is a saddle point, and F2

is a stable node.
6) If max(D1,D2) < D, then system (3.1) admits a unique equilibrium point, F0, which is a stable

node.

3.2. Global analysis

We first prove that the reduced system (3.1) hasn’t no periodic orbit nor poly-cycle on S.

Theorem 2. System (3.1) has no periodic orbits nor poly-cycles on S.

Proof. Consider a solution of system (3.1) on S. Let ξ1 = ln(x1) and ξ2 = ln(x2), then the transforma-
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tion of (3.1) gives the following new system:
ξ̇1 = h1(ξ1, ξ2) := θ f1(pin −

eξ1

θ
, hin − eξ2 +

1 − θ
θ

eξ1) − D,

ξ̇2 = h2(ξ1, ξ2) := f2(hin − eξ2 +
1 − θ
θ

eξ1) − D.
(3.6)

We have
∂h1

∂ξ1
+
∂h2

∂ξ2
= −eξ1

∂ f1

∂p
+ (1 − θ)eξ1

∂ f1

∂h
− eξ2 f ′2 < 0.

Thus, using Dulac criterion [11], system (3.6) has no periodic trajectory. Therefore, system (3.1)
has no periodic orbit inside S.

Theorem 3. The solution of (3.1) converges asymptotically to :

• F∗ if D < min(D3,D4).

• F1 if D4 < D < D1.

• F2 if D3 < D < D2.

• F0 if max(D1,D2) < D.

Proof. We restrict the proof to the case where D < min(D1,D2). The other cases can be done similarly.
The system (3.1) admits four equilibrium points F0, F1, F2 and F∗. F0 is an unstable node, F1 and F2

are two saddle points, and only F∗ is a stable node. We aim to prove that F∗ is globally asymptotically
stable. Let x1(0) > 0, x2(0) > 0 and ω, the ω-limit set of (x1(0), x2(0)). ω is an invariant compact set
and ω ⊂ S̄. Assume that ω contains a point M on the x1x2 axis :

• M can’t be F0 because F0 is an unstable node and can’t be a part of theω-limit set of (x1(0), x2(0)),

• If M ∈]x̄1, θpin] × {0} (respectively, M ∈ {0}×]hin − h∗, hin + (1 − θ)pin]). As ω is invariant, then
γ(M) ⊂ ω which is impossible because ω is bounded and γ(M) =]x̄1,+∞[×{0} (respectively,
γ(M) = {0}×]hin − h∗,+∞[),

• If M ∈]0, x̄1[×{0} (respectively, M ∈ {0} ,×]0, hin − h∗[). ω contains γ(M) =]0, x̄1[×{0} (respec-
tively, γ(M) = {0}×]0, hin − h∗[). As ω is a compact, then it contains the adherence of γ(M),
[0, x̄1] × {0} (respectively {0} × [0, hin − h∗]). In particular, ω contains F0, which is impossible,

• If M = F1 (respectively, M = F2), then ω is not reduced to F1 (respectively, to F2). By the
Butler-McGehee theorem, ω contains a point P of (0,+∞) × {0} other that F1 (respectively, of
{0} × (0,+∞) other that F2) which is impossible.

Finally, the ω-limit set does not contain any point on the x1x2 axis. System (3.1) has no periodic
orbit inside S. Using the Poincaré-Bendixon Theorem [11], F∗ is a globally asymptotically stable
equilibrium point for system (3.1).
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4. Back to the four-dimensional space

In this section, we state and prove the main results of the paper. The equilibrium points of system
(2.1) are E0 = (0, 0, pin, hin), E1 = (x̄1, 0, p̄, h̄), E2 = (0, hin − h∗, pin, h∗) and E∗ = (x∗1, x

∗
2, p∗, h∗), where

p̄ = pin −
x̄1

θ
and h̄ = hin +

1 − θ
θ

x̄1.

Theorem 4. For every initial condition in R4
+, the trajectories of (2.1) converge asymptotically to :

• E∗ if D < min(D3,D4).

• E1 if D4 < D < D1.

• E2 if D3 < D < D2.

• E0 if max(D1,D2) < D.

Proof. Let (x1(t), x2(t), p(t), h(t)) be a solution of (2.1). From (2.3) and (2.4), we deduce that

p(t) = pin −
x1

θ
+ K1e−Dt and h(t) = hin − x2 +

1 − θ
θ

x1 + K2e−Dt,

where K1 = p(0)+
x1(0)
θ
− pin and K2 = h(0)+ x2(0)−

1 − θ
θ

x1(0)−hin. Hence, (x1(t), x2(t)) is a solution
of the non-autonomous system of two differential equations :

ẋ1 =

(
θ f1(pin −

x1

θ
+ K1e−Dt, hin − x2 +

1 − θ
θ

x1 + K2e−Dt) − D
)

x1,

ẋ2 =

(
f2(hin − x2 +

1 − θ
θ

x1 + K2e−Dt) − D
)

x2.
(4.1)

This system (4.1) is an asymptotically, non-autonomous differential system that converges to the
autonomous system (3.1). It turns out that system (3.1) contains only, locally exponentially stable and
unstable equilibria, and neither periodic orbits nor cyclic chains. Thus, Thiemes’s results [12] can be
applied to deduce the asymptotic behaviours of the solutions of the complete system (4.1) from the
asymptotic behaviours of the solutions of the reduced system (3.1).

Recall that our model is a special case of the model considered by Daoud et al. [6] when neglecting
the decay terms. In order to prove that the existence and stability results obtained in Theorem 1 agree
with those in [6, Proposition 3.2 and Theorem 5.2], we first scale system (2.1) using the following

change of variables and notations : s0 = p, sin
0 = pin, x0 =

x1

θ
, x1 =

x2

1 − θ
, s1 =

h
1 − θ

, sin
1 =

hin

1 − θ
.

The dimensionless system thus obtained is :
ṡ0 = D(sin

0 − s0) − µ0(s0, s1)x0 ,

ẋ0 = µ0(s0, s1)x0 − Dx0 ,

ṡ1 = D(sin
1 − s1) − µ1(s1)x1 + µ0(s0, s1)x0 ,

ẋ1 = µ1(s1)x1 − Dx1 ,

(4.2)

where µ0(s0, s1) = θ f1(p, h) and µ1(s1) = f2(h). This is exactly the model considered by Daoud et
al. [6] when neglecting the decay terms.
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In Table 2, we will give a comparison of existence and stability results with those of [6] using the
notations of [6]. Firstly, note that the equilibrium points of system (2.1) given by E0, E1, E2 and E∗ are
equivalent to those of [6] noted by S S 0, S S 1, S S 3 and S S 2, respectively.

Note that sin
0 < F0(D) (respectively, sin

0 > F0(D)) in [6] is equivalent to D1 < D (respectively, D1 >

D) in our case. sin
0 < F2(D) (respectively, sin

0 > F2(D)) in [6] is equivalent to D3 < D (respectively,
D3 > D) in our case. F1(D) < sin

0 + sin
1 (respectively, F1(D) > sin

0 + sin
1 ) in [6] is equivalent to D < D4

(respectively, D4 < D) in our case.

Table 2. Comparison of existence and stability results with those of [6].

Existence and stability conditions Equilibria Stable Unstable
Our case D < min(D1,D2) E0, E1, E2, E∗ E∗ E0, E1, E2

In [6] D < D̄, F0(D) < sin
0 S S 0, S S 1, S S 3, S S 2 S S 2 S S 0, S S 1, S S 3

Our case D2 < D < min(D1,D4) E0, E1, E∗ E∗ E0, E1

In [6] D̄ < D, F1(D) < sin
0 + sin

1 , F0(D) < sin
0 S S 0, S S 1, S S 2 S S 2 S S 0, S S 1

Our case D1 < D < min(D2,D3) E0, E2, E∗ E∗ E0, E2

In [6] D < D̄, F2(D) < sin
0 < F0(D) S S 0, S S 3, S S 2 S S 2 S S 0, S S 3

Our case D4 < D < D1 E0, E1 E1 E0

In [6] D̄ < D, F0(D) < sin
0 < F1(D) − sin

1 S S 0, S S 1 S S 1 S S 0
Our case D3 < D < D2 E0, E2 E2 E0

In [6] D < D̄, sin
0 < F2(D) S S 0, S S 3 S S 3 S S 0

Our case max(D1,D2) < D E0 E0

In [6] D̄ < D, sin
0 < F0(D) S S 0 S S 0

5. Optimal control problem via input concentration of hydrogen

Over the last few years, there is an increasing focus on alternative energy sources to reduce reliance
on fossil fuels [13]. Fermentative biogas rich in either hydrogen or methane from organic wastes is
widely considered as a clean and environmentally-friendly source of energy [14, 15], as it combines
waste treatment and renewable energy production [16]. Further, it can be produced by several methods
comprising biological and electrochemical processes. Bio-photolysis of water, photo fermentation, and
dark fermentation have grown in popularity in bio-hydrogen production. Such interest is due to their
low investment costs compared with photocatalytic, oxidation, and other chemical technologies [17].
Several studies were designed to assess the applicability of various modeling tools for representing
hydrogen and methane co-production kinetics from food waste [18, 19]. The goal of this section,
based on the considered model (2.1), is to propose an optimal strategy to maximise the size of both
populations while minimising the input concentration of the hydrogen.

Let us consider an optimal strategy using a time-varying control function hin(t) expressing the input
concentration of hydrogen. Assume that f1 and f2 are globally Lipschitz with an upper bounds f̄1 =

sup
p,h>0

f1(p, h) and f̄2 = sup
h>0

f2(h), and Lipschitz constants L1 and L2, respectively. For finite final time T ,

the control set Pad is

Pad = {hin(t) : 0 ≤ hmin
in ≤ hin(t) ≤ hmax

in , 0 ≤ t ≤ T, hin(t) is Lebesgue measurable}.
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The goal is to find the control hin(t) and the associated state variables x1(t), x2(t), p(t) and h(t) to
minimize the following objective functional:

J(hin) =

∫ T

0

(
− α1x1(t) − α2x2(t) +

α3

2
h2

in(t)
)

dt.

By choosing appropriate positive balancing constants, α1, α2 and α3, the goal is to maximize the
size of the two populations while minimizing the cost of the control. One can show by standard results
that an optimal control and corresponding optimal states exist [20]. For ϕ = (x1, x2, p, h)t, the model
(2.1) can be written as follows

ϕ̇ = Aϕ + F(ϕ) = G(ϕ) (5.1)

where A =


−D 0 0 0
0 −D 0 0
0 0 −D 0
0 0 0 −D

 and F(ϕ) =


θ f1(p, h)x1

f2(h)x2

Dpin − f1(p, h)x1

Dhin + (1 − θ) f1(p, h)x1 − f2(h)x2

.
Proposition 2. G is a uniformly Lipschitz continuous function.

Proof. F is a uniformly Lipschitz continuous function since∥∥∥F(ϕ′) − F(ϕ)
∥∥∥

1
=

∣∣∣∣θ f1(p′, h′)x′1 − θ f1(p, h)x1

∣∣∣∣ +
∣∣∣∣ f2(h′)x′2 − f2(h)x2

∣∣∣∣ +
∣∣∣∣ − f1(p′, h′)x′1 + f1(p, h)x1

∣∣∣∣
+
∣∣∣∣(1 − θ) f1(p′, h′)x′1 − f2(h′)x′2 − (1 − θ) f1(p, h)x1 + f2(h)x2

∣∣∣∣
≤ θ

∣∣∣∣ f1(p′, h′)x′1 − f1(p, h)x1

∣∣∣∣ +
∣∣∣∣ f2(h′)x′2 − f2(h)x2

∣∣∣∣ +
∣∣∣∣ f1(p′, h′)x′1 − f1(p, h)x1

∣∣∣∣
+(1 − θ)

∣∣∣∣ f1(p′, h′)x′1 − f1(p, h)x1

∣∣∣∣ +
∣∣∣∣ f2(h′)x′2 − f2(h)x2

∣∣∣∣
= 2

∣∣∣∣ f1(p′, h′)x′1 − f1(p, h)x1

∣∣∣∣ + 2
∣∣∣∣ f2(h′)x′2 − f2(h)x2

∣∣∣∣
= 2

∣∣∣∣ f1(p′, h′)x′1 − f1(p′, h′)x1 + f1(p′, h′)x1 − f1(p, h)x1

∣∣∣∣
+2

∣∣∣∣ f2(h′)x′2 − f2(h′)x2 + f2(h′)x2 − f2(h)x2

∣∣∣∣
≤ 2 f1(p′, h′)|x′1 − x1| + 2x1

∣∣∣∣ f1(p′, h′) − f1(p, h)
∣∣∣∣ + 2 f2(h′)|x′2 − x2| + 2x2

∣∣∣∣ f2(h′) − f2(h)
∣∣∣∣

≤ 2 f̄1|x′1 − x1| + 2θpinL1‖(p′, h′) − (p, h)‖1 + 2 f̄2|x′2 − x2| + 2((1 − θ)pin + hin)L2|h′ − h|
≤ M

∥∥∥ϕ1 − ϕ2

∥∥∥
1

where M = 2 max( f̄1, θpinL1, f̄2, ((1 − θ)pin + hin)L2). Since
∥∥∥Aϕ1 − Aϕ2

∥∥∥
1
≤ D

∥∥∥ϕ1 − ϕ2

∥∥∥
1
, therefore∥∥∥G(ϕ1) − G(ϕ2)

∥∥∥
1
≤ K

∥∥∥ϕ1 − ϕ2

∥∥∥
1

with K = max(M,D), and therefore G is a uniformly Lipschitz
continuous function.

Therefore, system (5.1) admits a unique solution. Let’s apply Pontryagin’s Maximum Principle
[20–22] in order to obtain necessary conditions for the optimal strategy. The Hamiltonian is

H = −α1x1 − α2x2 +
α3

2
h2

in + λ1 ẋ1 + λ2 ẋ2 + λ3 ṗ + λ4ḣ

= −α1x1 − α2x2 +
α3

2
h2

in + λ1((θ f1(p, h) − D)x1) + λ2(( f2(h) − D)x2)

+λ3(D(pin − p) − f1(p, h)x1) + λ4(D(hin − h) + (1 − θ) f1(p, h)x1 − f2(h)x2).

(5.2)

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6591–6611.



6603

For a given optimal control h∗in, there exist adjoint functions λ1, λ2, λ3 and λ4 corresponding to the
states x1, x2, p and h, such that:



λ̇1 = −
∂H
∂x1

= α1 − λ1(θ f1(p, h) − D) + λ3 f1(p, h) − λ4(1 − θ) f1(p, h),

λ̇2 = −
∂H
∂x2

= α2 − λ2( f2(h) − D) + λ4 f2(h),

λ̇3 = −
∂H
∂p

= −λ1θ
∂ f1

∂p
(p, h)x1 − λ3

(
−D −

∂ f1

∂p
(p, h)x1

)
− λ4(1 − θ)

∂ f1

∂p
(p, h)x1,

λ̇4 = −
∂H
∂h

= −λ1
∂ f1

∂h
(p, h)x1 − λ2 f ′2(h)x2 + λ3

∂ f1

∂h
(p, h)x1 − λ4

(
−D + (1 − θ)

∂ f1

∂h
(p, h)x1 − f ′2(h)x2

)
,

(5.3)

where λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0 and λ4(T ) = 0 are the transversality conditions.
The Hamiltonian is minimized with respect to the control variable at h∗in. Since the Hamiltonian is

quadratic in the control, its derivative is, then, given by
∂H
∂hin

= α3hin +λ4D. Therefore,
∂H
∂hin

= 0 admits

the solution hin(t) = −
Dλ4

α3
provided that α3 , 0 and hmin

in ≤ −
Dλ4

α3
≤ hmax

in . To summarize, the control

characterization is: 
if
∂H
∂hin

< 0 at t, then hin(t) = hmax
in ,

if
∂H
∂hin

> 0 at t, then hin(t) = hmin
in ,

if
∂H
∂hin

= 0 at t, then hin(t) = −
Dλ4

α3
.

6. Numerical results and conclusions

We performed numerical results on a system that uses Monod functions to express growth rates

taking into account of the hydrogen inhibition of species 1 growth: f1(p, h) =
f̄1 p

(k1 + p)(1 + mh)
and

f2(h) =
f̄2h

(k2 + h)
, where k1, k2 and m are constants. f1 and f2 are globally Lipschitz and continuous on

R+ with Lipschitz constants f̄1/k1 and f̄2/k2, respectively. One can readily check that the functions f1

and f2 satisfy Assumptions A1–A3.

6.1. Numerical results for the direct problem

Note that the numerical simulations presented here are done for the non-reduced system (2.1), and
not for the reduced one. Let k1 = k2 = 2 and m = 1 f̄1 = 9 f̄2 = 4, θ = 0.6, pin = 4 and hin = 2,
then D1 = f1(pin, hin) = 1.2 and D2 = f2(hin) = 2. In Figure 3, if D = 0.8, which satisfies D <

min(D3 = 2.4,D4 = 2.28), the trajectories filling the whole domain are converging to the equilibrium
E∗ whence the persistence of both species. In Figure 4, if D = 1.8, which satisfies D3 = 1.37 < D <

D2 = 2, the trajectories filling the whole domain are converging to the equilibrium E2, from where the
persistence of species 2 and the extinction of species 1 are seen. In Figure 5, if D = 2.5, which satisfies
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max(D1,D2) < D, the trajectories filling the whole domain are converging to the equilibrium E0 from
where the extinction of both species.

Figure 3. x1 − x2 behaviour for D = 0.8 < min(D3 = 2.4,D4 = 2.28). The trajectories of
system (2.1) converge asymptotically to E∗.

Figure 4. x1 − x2 behaviour for D3 = 1.37 < D = 1.8 < D2 = 2. The trajectories of system
(2.1) converge asymptotically to E2.
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Figure 5. x1− x2 behaviour for max(D1 = 1.2,D2 = 2) < D = 2.5. The trajectories of system
(2.1) converge asymptotically to E0.

Figure 6. Dynamics of the states (right) and the cost (left) where the balancing constants are
given by α1 = 10, α2 = 10, α3 = 1 for a final time T = 20. The functional value J is about
−1847 and the final value of the state variable (x1, x2, p, h) is about (2.06, 10.87, 0, 0).

6.2. Numerical results for the optimal strategy

An improved Gauss-Seidel implicit finite-difference method was used for the state system and a
first-order backward-difference was used for the adjoint system (see Appendix A). The used parameters
values are the same as for the first case of the direct problem (2.1), where we have coexistence of both
species and are given by: k1 = k2 = 2 and m = 1 f̄1 = 9 f̄2 = 4, θ = 0.6, D = 0.8, pin = 4, and hin

is a variable such that the initial condition hin(0) = 15 and with bounds hmin
in = 0 and hmax

in = 20. We
plot, in Figures 6–9, the behaviours of hin (left), x1(t), x2(t), p(t) and h(t) (right) with respect to time
for different values of α1, α2 and α3 which clearly influenced both the control and the behaviour of the
solution. It can be seen that the control values are not the same for the different simulations and the
same thing for the state variables. In particular, a periodic behavior can be seen in Figure 8.

The three balancing constants α1, α2 and α3 are the weighted states and the weighted cost associated
with the use of the states x1(t) and x2(t) and the control hin, respectively. The main idea developed here
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Figure 7. Dynamics of the states (right) and the cost (left) where the balancing constants are
given by α1 = 1, α2 = 1, α3 = 1 for a final time T = 20. The functional value J is about
−110.16 and the final value of the state variable (x1, x2, p, h) is about (2.06, 1.87, 0.57, 0.498).

Figure 8. Dynamics of the states (right) and the cost (left) where the balancing constants are
given by α1 = 10, α2 = 1, α3 = 1 for a final time T = 250. The functional value J is about
−1742.1.

is the optimal control in order to search among the available strategies, and to the most efficiency in
increasing the biomass inside the reactor while optimizing the cost (input concentration of hydrogen).
In conclusion, observing the figures, a biologist has the choice to choose the best strategy leading to
his priorities. For example, one can choose which biomass to increase more, or both of them by acting
on the values of α1, α2 and α3. For example, by comparing the final value of x2, which is equal to 10.87
for α2 = 10 (Figures 6 and 9), and about 1.87 for α2 = 1 (Figure 7), we can deduce that the α2-value
affects the x2-final value by the intermediate of hin, which depends indirectly on α2-value.
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Figure 9. Dynamics of the states (right) and the cost (left) where the balancing constants are
given by α1 = 1, α2 = 10, α3 = 1 for a final time T = 20. The functional value J is about
−1274.6 and the final value of the state variable (x1, x2, p, h) is about (2.06, 10.87, 0, 57, 0.5).

7. Conclusions

In this work, we proposed a simplified model of a phenol- mineralising two-tiered microbial ‘food
web’, where the growth rates are general smooth functions. Our study considers the phenol and hydro-
gen as input matters. More precisely, we have proposed a mathematical model involving a syntrophic
relationship of two bacteria. For one of the populations, one resource is needed for its growth, and the
other is inhibitory for the other population growth. One of the populations produces, as a by-product,
the resource that is inhibitory to itself but needed for growth by the other population. Extending the
model studied in [3], it is considered that there is hydrogen influent at the input.

Our first aim was the theoretical analysis of the two-tiered model by providing a complete study
on the existence and local stability of all steady states. Our mathematical analysis of the model has
revealed several possible asymptotic behaviours. Due to some conservative relations, the proposed
model was reduced to a two-dimensional system. In fact, since the solutions of the proposed model
(2.1) converge exponentially into the invariant set Ω, and since we aim to study the asymptotic behavior
of the system (2.1), we studied the asymptotic behavior of the restriction of (2.1) on Ω. We provided a
complete theoretical description of the existence and stability of the steady states, according to the op-
erating parameters and the growth rates of species. Therefore, thanks to Thieme’s results [12], we drew
conclusions on the asymptotic behavior of the main system (2.1). We finished by proposing an optimal
strategy to maximise the size of both species through a time-varying control function, hin(t), expressing
the input concentration of hydrogen. Thus we constructed an objective function for the optimal control
problem. We discussed the existence of the optimal control using the Pontryagin’s maximum principle,
and then derived the first order necessary conditions for the optimal control through constructing the
Hamiltonian. We give some numerical simulations validating the obtained results for both, the behav-
ior of the solution and also for the proposed optimal strategy. As can be seen in Figures 6, 7 and 9, the
values of the three balancing constants α1, α2 and α3 can affect the final values of the state variables.
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Appendix

A. Applied numerical scheme

Consider the subdivision [0,T ] =

N−1⋃
n=0

[tn, tn+1], tn = n dt, dt = T/N. Define xn
1, xn

2, pn, hn, λn
1,

λn
2, λn

3, λn
4 and hn

in be an approximation of x1(t), x2(t), p(t), h(t), λ1(t), λ2(t), λ3(t), λ4(t) and the control
hin(t) at the time tn. We applied an improved Gauss-Seidel implicit finite-difference method for he state
system and a first-order backward-difference for the adjoint system (see [23–26] for other applications).



xn+1
1 − xn

1

dt
= (θ f1(pn, hn) − D) xn+1

1 ,

xn+1
2 − xn

2

dt
= ( f2(hn) − D) xn+1

2 ,

pn+1 − pn

dt
= D(pin − pn+1) −

f̄1 pn+1xn+1
1

(k1 + pn)(1 + mhn)
,

hn+1 − hn

dt
= D(hn

in − hn+1) + (1 − θ) f1(pn+1, hn)xn+1
1 −

f̄2hn+1xn+1
2

(k2 + hn)
,

λN−n
1 − λN−n−1

1

dt
= α1 − λ

N−n−1
1

(
θ f1(pn+1, hn+1) − D

)
+ λN−n

3 f1(pn+1, hn+1) − λN−n
4 (1 − θ) f1(pn+1, hn+1),

λN−n
2 − λN−n−1

2

dt
= α2 − λ

N−n−1
2

(
f2(hn+1) − D

)
+ λN−n

4 f2(hn+1),

λN−n
3 − λN−n−1

3

dt
= −λN−n−1

1 θ
∂ f1

∂p
(pn+1, hn+1)xn+1

1 − λN−n−1
3

(
−D −

∂ f1

∂p
(pn+1, hn+1)xn+1

1

)
−λN−n

4 (1 − θ)
∂ f1

∂p
(pn+1, hn+1)xn+1

1 ,

λN−n
4 − λN−n−1

4

dt
= −λN−n−1

1
∂ f1

∂h
(pn+1, hn+1)xn+1

1 − λN−n−1
2 f ′2(hn+1)xn+1

2 + λN−n−1
3

∂ f1

∂h
(pn+1, hn+1)xn+1

1

−λN−n−1
4

(
−D + (1 − θ)

∂ f1

∂h
(pn+1, hn+1)xn+1

1 − f ′2(hn+1)xn+1
2

)
.

Therefore we apply the following algorithm using MATLAB software.
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Algorithm 1: Optimal control resolution
1: x0

1 ← x1(0), x0
2 ← x2(0), p0 ← p(0), h0 ← h(0), λN

1 ← 0, λN
2 ← 0, λN

3 ← 0, λN
4 ← 0, h0

in ← hin(0),
2: for n = 0 to N − 1 do

xn+1
1 ←

xn
1

1 − dt(θ f1(pn, hn) − D)
,

xn+1
2 ←

xn
2

1 − dt( f2(hn) − D)
,

pn+1 ←
pn + dtDpin

1 + dt
(
D +

f̄1xn+1
1

(k1 + pn)(1 + mhn)

) ,
hn+1 ←

hn + dtDhn
in + dt(1 − θ) f1(pn+1, hn)xn+1

1

1 + dt
(
D +

f̄2xn+1
2

(k2 + hn)

) ,

λN−n−1
1 ←

λN−n
1 − dt

(
α1 + λN−n

3 f1(pn+1, hn+1) − λN−n
4 (1 − θ) f1(pn+1, hn+1)

)
1 − dt

(
θ f1(pn+1, hn+1) − D

) ,

λN−n−1
2 ←

λN−n
2 − dt

(
α2 + λN−n

4 f2(hn+1)
)

1 − dt
(
f2(hn+1) − D

) ,

λN−n−1
3 ←

λN−n
3 + dt

(
λN−n−1

1 θ
∂ f1

∂p
(pn+1, hn+1)xn+1

1 + λN−n
4 (1 − θ)

∂ f1

∂p
(pn+1, hn+1)xn+1

1

)
1 + dt

(
D +

∂ f1

∂p
(pn+1, hn+1)xn+1

1

) ,

λN−n−1
4 ←

λN−n
4 + dt

(
λN−n−1

1
∂ f1

∂h
(pn+1, hn+1)xn+1

1 + λN−n−1
2 f ′2(hn+1)xn+1

2 − λN−n−1
3

∂ f1

∂h
(pn+1, hn+1)xn+1

1

)
1 + dt

(
D − (1 − θ)

∂ f1

∂h
(pn+1, hn+1)xn+1

1 + f ′2(hn+1)xn+1
2

) ,

hn+1
in ← max

(
min

(
−

D
α3
λN−n−1

4 , hmax
in

)
, hmin

in

)
.

end
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