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Abstract: In this work, we focus on a nonlinear dynamical model proposed by Lavrentovich et al. to 
compute and simulate spontaneous Ca2+ oscillations evoked by calcium ion efflux in astrocytes. 
Selected parameters are chosen, with observation of periodic and chaotic Ca2+ oscillations in cytosol. 
The stability analysis of equilibrium is conducted using the center manifold theorem to investigate 
the dynamics underlying spontaneous Ca2+ oscillations in astrocytes. The results indicate that the Hopf 
bifurcation represents the dynamical changes in stability of spontaneous Ca2+ oscillations. In addition, 
numerical simulations are performed to further assess the validity of the aforementioned analysis. 
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1. Introduction 

Astrocytes have traditionally been auxiliary elements to central nervous system, thereby 
providing support and nutrients to neurons. Unlike neurons, astrocytes may exert an active role in 
neuronal firing activities and are extensively employed in research pertaining to diverse neurological 
disorders [1–5]. Astrocytes do not generate electrical signals themselves but participate in neuronal 
activity by regulating the release of “glial transmitters”, such as glutamate and ATP, through 
intracellular Ca2+ oscillations [6,7]. In the brain, they occupy approximately 50% of the volume and 
can either be influenced by neurons or exhibit spontaneous Ca2+ oscillations [8]. Spontaneous Ca2+ 
oscillations typically encompass the following main processes: (i) channel dynamics; (ii) 
calcium-induced calcium release; and (iii) negative feedback regulation [9–11]. Many studies have 
unveiled the correlation between the onset and cessation of Ca2+ oscillations within the system [12–15].  

Intracellular Ca2+ oscillation in astrocytes is frequently triggered by an external stimulus, such 
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as glutamate. Nevertheless, Aguado et al. [16] observed spontaneous activities in astrocytes, thereby 
suggesting the existence of potential bidirectional regulation. In fact, astrocytes not only actively 
participate in neuronal activity and regulate synaptic plasticity, but also contribute to neural 
repair [17,18]. Therefore, a dynamical analysis of spontaneous Ca2+ oscillations could contribute to 
comprehending the role of astrocytes in neural networks and provide valuable insights into the 
development of complex brain networks in future. Here, a local Hopf bifurcation of a mathematical 
model in astrocytes proposed by Lavrentovich et al. [19] is investigated. This model manifests the 
dynamical behaviors of astrocytes without external stimulation. The objective of this work is to 
investigate the stability and bifurcation to explore the effects of calcium release rates from the 
cytosol of astrocytes.  

2. Models 

The model in [20] considered intracellular Ca2+ oscillations triggered by external stimuli, the 
interplay between calcium induced calcium release and the degradation of inositol triphosphate (IP3). 
In [21], the authors proposed a mathematical model that considered experimental data to predict the 
control and plasticity of intercellular Ca2+ waves. Subsequently, Lavrentovich et al. [19] simplified 
this model and provided an improved framework to evaluate spontaneous Ca2+ oscillations in 
astrocytes. The system is activated by the influx of extracellular Ca2+ into the cell and sustained 
through feedback mechanisms involving intracellular Ca2+ in the endoplasmic reticulum (ER) and 
IP3. The equations for the temporal evolution of three variables are defined as follows: 
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The three variables represent the concentration of Ca2+ within the cytosol (Cacyt), the 
concentration Ca2+ within the ER (Caer), and the IP3 concentration (IP3). The following equations 
describe the specific meanings of certain parameters, such as the rate of Ca2+ pumping into the ER by 
the reticulum’s ATPase (vserca), the rate of Ca2+ flux from the ER to the cytosol mediated by the IP3 
receptors (vCICR) and IP3 production (vPLC). The specific meanings and values of other parameters can 
be referred to in [19–21]. 
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Table 1. Details of the parameters in Lavrentovich model.

 
Parameter Value and units Description 
vM2 15.0 μM/s maximum Ca2+ efflux from the pump 
kout bifurcation parameter The rate of calcium release from the 

cytosol 
kdeg 0.08 s-1 Rate constant of IP3 degradation 
kCaA 0.27 μM activating affinities 
kip3 0.1 μM apparent affinity for IP3 
vM3 40.0 s-1 maximum Ca2+ flux entering the cytosol 
k2 0.1 μM threshold constants for pumping 
kCaI 0.27 μM inhibiting affinities 
m 2.2 Hill coefficient 
n 2.02 Hill coefficient 
kf 0.5 s-1 Leakage flux 
vp 0.05 rate of PLC (phospholipase C) activation 
vin 0.05 s-1 Ca2+ influx across the plasma membrane 
kp 0.164 μM Ca2+ activation threshold for PLC 

3. Stability and bifurcation analysis 

kout is selected as the bifurcation parameter. For convenience, we write cyt ,Ca   er ,Ca   

3IP   and   = kout. The system dynamics are determined by the following form: 
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The equilibrium points satisfy the equations on the left side of system (2) when they equal zero. 
Subsequently, by calculating 
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can be obtained by  
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Subsequently, by substituting   and   into the equation  
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Assuming that the equilibrium points are denoted as 0 0 0, , ,    we have the following 
equations through the substitution j1 = j j0 ( , ,j    ): 
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Systems (2) and (4) could exhibit identical characteristics with mutual equilibrium points (0, 0, 0). 
Therefore, we can readily compute the Jacobian matrix of the system as follows: 
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The resulting characteristic equation can be easily obtained using the following: 

3 2
3 2 1 0,Q Q Q       
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The characteristic polynomial can be obtained and the Hurwitz matrix with Ql (l = 1, 2, 3) 
coefficients is as follows: 
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The stability of the system can be determined by calculating the sign of Hl (l = 1, 2, 3). The 
dynamical behaviors of the system (4) can be obtained as the parameter kout varies with use of the 
Routh-Hurwitz criteria [12].  

When 
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1)   < 0.421, there is a stable node;  
2)   = 0.421, there is a Hopf bifurcation point O1 = (0.1183, 0.5907, 0.2146); 
3) 0.421 <   < 1.267, there exists an equilibrium; 
4)   = 1.267, there is a Hopf bifurcation point O2 = (0.0345, 2.6574, 0.0246); 
5) 1.267 <   ≤ 1.284, there exists an equilibrium; and 
6)   > 1.284, there is a stable node. 
Given j1 = j  j0 ( , , ,j     ), the equilibrium of system (4) is ( 0 , 0 , 0 ). We introduce a 

new parameter 1  for 1d 0dt  . 
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Systems (2) and (5) have the same dynamics with mutual equilibrium points O ( 1 , 1 , 1 , 1 ) 
= (0, 0, 0, 0). For 0  = 0.421, we calculate the eigenvalues at the equilibrium point: ξ1 = –0.1200, ξ2 
= 2.2814i, ξ3 = –2.2814i and ξ4 = 0. The eigenvectors conform to the ensuing matrix: 
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System (5) can be replaced by 
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System (5) has a center manifold with the following form: 

   c 4 * * *
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Substituting the equation into (6) yields the following equations: 
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Let h (y, z, s) = ay2 + bz2 + cs2 + dyz + eys + fzs +…; we have the following:  
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where a = –0.7494, b = –0.7334, c = –2.1352, d = –0.0752, e = –0.0506, f = –0.2795.

 

The system is 
described as follows: 

 
 

,0 2.2814
,

g ,2.2814 0
f y zy y

y zz z
     

       
      




                 (8) 

where 

2

( , ) ,
( , ) .

2.375 0.9824 0.4704 0.005937 0.0328 0.008823
0.02144 2.083 0.409 0.03185 0.1759 0.04733 1.344

z y s sy sz yz
z y s

f
z

y z
g y sy sz z y s

    

     



 


  

Hence, it is easy to obtain the following: 
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Based on the aforementioned computation, we derive the following conclusions. 
Conclusion 1: A subcritical Hopf bifurcation is observed as the parameter   traverses the 

critical value of 0  = 0.421. Below this threshold ( 0  ), the equilibrium O1 is always locally 
stable. For 0  , the equilibrium O1 turns to be unstable. and the system (2) begins to oscillate. 

For 0  = 1.267, the eigenvalues at the equilibrium point can be computed as follows: ξ1 = –
69.3501, ξ2 = 0.0157i, ξ3 = –0.0157i and ξ4 = 0. 
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Similar to the previous computations, we have a = –0.12945 < 0 and d = –0.0113 < 0. 
Conclusion 2: system (2) undergoes a supcritical Hopf bifurcation at 0  = 1.267. When 

0  , the equilibrium O2 turns to be unstable.  
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4. Numerical simulations 

Next, we present the bifurcation diagrams by varying the values of parameter kout, as illustrated 
in Figure 1a,b. As kout varies from 0.2 to 1.5, the system undergoes bifurcations around 0.421 and 1.267. 
Figure 1a illustrates the bifurcation in terms of both the period and the amplitude. When the 
parameter value is between 0.42 and 0.49, the model exhibits a simple oscillation with a consistent 
amplitude. As kout is further increased, the model displays complex Ca2+ oscillations with varying 
amplitudes and periods. The period gradually decreases near 1.28. In Figure 1b, the continuous line 
represents the equilibrium state. HB1 and HB2 correspond to two bifurcation points. Figure 1c 
displays the interspike interval (ISI) bifurcation. As the parameter increases, the value of ISI becomes 
larger, thereby indicating a decrease in frequency. Figure 1d depicts the corresponding Lyapunov 
exponent diagram. 

  

  

Figure 1. (a) The interspike interval bifurcation diagram with kout. (b) Bifurcation 
diagram in (kout, Cacyt) plane, HB represents Hopf bifurcation points. (c) The interspike 
interval bifurcation diagram with kout. (d) Lyapunov exponent with parameter kout. 

In Figure 2, we present the time course for different values of the parameter kout. The left 
column displays the time series for different parameter values (Figure 2a1–f1), the middle column 
shows the corresponding phase portraits (Figure 2a2–f2) and the right column illustrates the 
variations in power and frequency for the corresponding time series (Figure 2a3–f3). For example, 
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Figure 2a1 represents the time course of Ca2+ evolution for kout = 1.2. To eliminate the initial value 
interference, the time evolution for the first 200 s is excluded, thus allowing only one peak to appear 
in the graph. In Figure 2a2, a periodic orbit is evident. Figure 2a3 illustrates its frequency variation. 

In Figure 2b1, we present spontaneous bursting Ca2+ oscillations for kout = 0.7. In Figure 2c1–e1, 
an increasing number of small spikes become apparent. The corresponding phase portrait diagrams 
are illustrated in Figure 2b2–e2. Figure 2f1 corresponds to the case with kout = 0.4966 in the 
bifurcation diagram. The time series illustrates the phenomenon of bursting chaos. For a clearer 
representation, we have zoomed in on the time range of 10,000 s. The upper right corner depicts a 
schematic of the local magnification. 

   

   

   

   

Continued on next page 
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Figure 2. Illustrations for spontaneous Ca2+ oscillations. The left side displays the time 
series for Cacyt. The middle graphs are the associated phase portraits. The right panels 
display the variations in power and frequency. Different values of kout in each figure are: 
(a1–a3) kout = 1.2 s-1; (b1–b3) kout = 0.7 s-1; (c1–c3) kout = 0.65 s-1; (d1–d3) kout = 0.6 s-1; 
(e1–e3) kout = 0.5 s-1 and (f1–f3) kout = 0.4966 s-1. 

5. Discussion 

In this paper, we investigated the stability and bifurcation of spontaneous Ca2+ oscillations in 
astrocytes using a well-established mathematical model which measures the rate of calcium release 
from the cytosol as a controlling parameter. Within a specific range, we identified two Hopf 
bifurcation points. The stability analysis revealed their close association with spontaneous Ca2+ 
oscillations. To validate the theoretical predictions, numerical simulations were conducted to 
demonstrate the consistency with computations. When the parameters were varied, the stability of the 
system exhibited diverse dynamic behaviors.  

We analyzed the spontaneous Ca2+ oscillations evoked by calcium ion efflux in astrocytes in the 
same model as compared with previous studies [12,19], and obtained more complex dynamical 
behaviors. For instance, as the rate of calcium release from the cytosol decreased, this model 
exhibited the gradual emergence of multiple peaks simultaneously, accompanied by an increasing 
number of smaller peaks, before culminating in irregular chaotic states. Time-frequency diagrams 
were presented to show more intuitive depictions of frequency changes. The complexity arose from 
bidirectional communication between neurons and astrocytes and significantly increased the richness 
of their dynamical behavior. Future research is needed to examine the potential dynamical 
mechanisms for bidirectional communication in detail. 
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