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Abstract: In this work, we focus on a nonlinear dynamical model proposed by Lavrentovich et al. to
compute and simulate spontaneous Ca”* oscillations evoked by calcium ion efflux in astrocytes.
Selected parameters are chosen, with observation of periodic and chaotic Ca?" oscillations in cytosol.
The stability analysis of equilibrium is conducted using the center manifold theorem to investigate
the dynamics underlying spontaneous Ca*" oscillations in astrocytes. The results indicate that the Hopf
bifurcation represents the dynamical changes in stability of spontaneous Ca" oscillations. In addition,
numerical simulations are performed to further assess the validity of the aforementioned analysis.
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1. Introduction

Astrocytes have traditionally been auxiliary elements to central nervous system, thereby
providing support and nutrients to neurons. Unlike neurons, astrocytes may exert an active role in
neuronal firing activities and are extensively employed in research pertaining to diverse neurological
disorders [1-5]. Astrocytes do not generate electrical signals themselves but participate in neuronal
activity by regulating the release of “glial transmitters”, such as glutamate and ATP, through
intracellular Ca*" oscillations [6,7]. In the brain, they occupy approximately 50% of the volume and
can either be influenced by neurons or exhibit spontaneous Ca*" oscillations [8]. Spontaneous Ca**
oscillations typically encompass the following main processes: (i) channel dynamics; (ii)
calcium-induced calcium release; and (iii) negative feedback regulation [9-11]. Many studies have
unveiled the correlation between the onset and cessation of Ca?* oscillations within the system [12—15].

Intracellular Ca®" oscillation in astrocytes is frequently triggered by an external stimulus, such
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as glutamate. Nevertheless, Aguado et al. [16] observed spontaneous activities in astrocytes, thereby
suggesting the existence of potential bidirectional regulation. In fact, astrocytes not only actively
participate in neuronal activity and regulate synaptic plasticity, but also contribute to neural
repair [17,18]. Therefore, a dynamical analysis of spontaneous Ca*" oscillations could contribute to
comprehending the role of astrocytes in neural networks and provide valuable insights into the
development of complex brain networks in future. Here, a local Hopf bifurcation of a mathematical
model in astrocytes proposed by Lavrentovich et al. [19] is investigated. This model manifests the
dynamical behaviors of astrocytes without external stimulation. The objective of this work is to
investigate the stability and bifurcation to explore the effects of calcium release rates from the
cytosol of astrocytes.

2. Models

The model in [20] considered intracellular Ca** oscillations triggered by external stimuli, the
interplay between calcium induced calcium release and the degradation of inositol triphosphate (IP3).
In [21], the authors proposed a mathematical model that considered experimental data to predict the
control and plasticity of intercellular Ca?>" waves. Subsequently, Lavrentovich et al. [19] simplified
this model and provided an improved framework to evaluate spontaneous Ca®" oscillations in
astrocytes. The system is activated by the influx of extracellular Ca®" into the cell and sustained
through feedback mechanisms involving intracellular Ca** in the endoplasmic reticulum (ER) and
IP3. The equations for the temporal evolution of three variables are defined as follows:

dcacyt /dt = vin - kout Cacyt - vserca + vCICR + kf (Caer - Cacyt )’

dCa,, | dt =V, —Veier —k: (Ca, —Cay, ), (1)
dIP, | dt = vy, . —k, IP,,

deg

2 2
Vorc =V _ Gl V.=V _ Cay
PLC p Cafw + kpz > Vserca M2 (:,aczyt + k22 b
ki Ca, pr"
Vacr = i N X| (Caer -Ca,, )
(Caly, +ké )(Ca, +key ) ) \IB" +k

ip3

The three variables represent the concentration of Ca?" within the cytosol (Cacy), the
concentration Ca®" within the ER (Caer), and the IP; concentration (IP3). The following equations
describe the specific meanings of certain parameters, such as the rate of Ca** pumping into the ER by
the reticulum’s ATPase (Vserca), the rate of Ca®" flux from the ER to the cytosol mediated by the IP3
receptors (vcicr) and IP3 production (verc). The specific meanings and values of other parameters can
be referred to in [19-21].
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Table 1. Details of the parameters in Lavrentovich model.

Parameter Value and units Description

M2 15.0 uM/s maximum Ca?* efflux from the pump

kout bifurcation parameter The rate of calcium release from the
cytosol

kdcg 0.08 57! Rate constant of IP5 degradation

kcaa 0.27 uM activating affinities

kip3 0.1 uM apparent affinity for IP3

M3 40.0 ! maximum Ca”* flux entering the cytosol

k> 0.1 uM threshold constants for pumping

kcal 0.27 uM inhibiting affinities

m 2.2 Hill coefficient

n 2.02 Hill coefficient

ke 055" Leakage flux

Vp 0.05 rate of PLC (phospholipase C) activation

Vin 0.05 s Ca?" influx across the plasma membrane

ky 0.164 uM Ca?" activation threshold for PLC

3. Stability and bifurcation analysis

kout is selected as the bifurcation parameter. For convenience, we write o =Ca,,, pB=Ca,,

y=1P, and 6 = kou. The system dynamics are determined by the following form:

2 1136 2,02 .22 _
az=o.05+0.5ﬂ—0.5a—215—“_ - @7 (a=8) ’
a” +0.01 (a2'02+0.07102) (}/2'2+0.00631)
. 2 1 136 202, 22 _ (2)
L£=05a0-0.58+ 5o | o’y (a—p)

@’ +0.01 (2 1+0.07102) (5** +0.00631)

0.05¢°

=————-0.08y.
4 a’ +0.0269 4

The equilibrium points satisfy the equations on the left side of system (2) when they equal zero.
Subsequently, by calculating

we can obtain

Then,
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0.05¢*

2D 08y =0,
2 +00269 7

B 0.05¢*
0.08(a”> +0.0269)

v

150 N 11.360>® }/2'2(0(—,3)
@ +0.01 " (g2 10.07102) (** +0.00631)

0.5 —0.58+ =0
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can be obtained by

15a° 1 1.360{3‘0201
0.5 +— + 2
p @ +0.01 " (5,+0.00631)(*” +0.07102)
= 2.02 ’
11.36a""0, 05

o +0.00631) (a2 +0.07102)°
(o, )(

2 2.2
S5a
o =l—5—7—| -
8a”+0.2152

Subsequently, by substituting f and y into the equation

15a° 11360 y**(a—p)

0.05+0.58—0.50 —— - :
a”+0.01 (e +0.07102) (7** +0.00631)

we have the following:

15a° 11360 y**(a - p)

2001 (> +0.07102) (7> +0.00631)

15a° N 11.3625a* %0,
@’ +0.01 " (5,+0.0063)(a> +0.071)’ 3)
11.36250°% g,
(,+0.0063)(a** +0.071)°

B 0.05¢°
7 0.08(c” +0.0269)°

f(a,0)=0.05+0.58-0.50 -

0.5+

+0.5

Assuming that the equilibrium points are denoted as ¢, f,,7,, we have the following
equations through the substitution j1 =j—jo (j=a, B, 7):

15(e, + )’
(a,+a,) +0.01
11.36(a, +a, )2'02 7/2‘2((051 +a,)—(B,+ 5, ))
(e +)™” +0.07102)2((71 +7,)" +0.00631)
15(a, +a, )’ 4)
(a,+a,) +0.01
11.36(a, +0,) " (1 +70) (e + ) (B, + )
(o +a)™” +0.07102)2((}/1 +7,)"+0.00631)

&, =0.05+0.5(8,+ ,)-0.5(a, + ) ) — —0(a, + )

B =0.5(c, +a,)-0.5(8,+ B,)+

0.05(e, + )2
(a,+a,) +0.0269

7= —0.08(7,+7,).

Systems (2) and (4) could exhibit identical characteristics with mutual equilibrium points (0, 0, 0).
Therefore, we can readily compute the Jacobian matrix of the system as follows:
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Lyl I3
J=11y by iy

Ly by Iy

where
30
Jl—e—m_02_06+05_0-5 o,+0.5 o0,-0,
30«
m_01+02+06_05+0'5 —0,=0.5 0,-0,
3
Ole Ol 08
o’ +0.026896 (4* 10.026896)
300° 1136327y 24998y (a - B)
0, = 2 20 O =T — 3 03% 2.02 . 2;
(> +0.01) 7, (e +0.071016) o,
24.9980*7y" (o - B) 45.905a*"y** (a - B)
o, = ;s O = 5
s o, (a2 +0071016) o
229520222 (o —
o, = a7y (a=p), o, =(a*? +0.071016) o
0-7

oy = 7>* +0.0063096.
The resulting characteristic equation can be easily obtained using the following:
A +04+0,A+0 =0,
where

O, ==, +iy +iz),
O, =iy + iy ly3 + iplys = hislyy — yly) — Iyl
O; =141 130y +iiy by + il 55k =yl = 1ylyslyy — b3y by

The characteristic polynomial can be obtained and the Hurwitz matrix with Q1 (I = 1, 2, 3)
coefficients is as follows:

o 1 o 1 0
HIZ(QI)’H2:[QI Q}Hs: o 0, 1
3 2 0 0 O

The stability of the system can be determined by calculating the sign of Hi (I = 1, 2, 3). The
dynamical behaviors of the system (4) can be obtained as the parameter kou varies with use of the
Routh-Hurwitz criteria [12].

When
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1) 8 <0.421, there is a stable node;

2) 0 =0.421, there is a Hopf bifurcation point O = (0.1183, 0.5907, 0.2146);

3)0.421 < 8 <1.267, there exists an equilibrium;

4) 0 =1.267, there is a Hopf bifurcation point O, = (0.0345, 2.6574, 0.0246);

5)1.267 < @ <1.284, there exists an equilibrium; and

6) 6 >1.284, there is a stable node.

Givenji=j—jo (j=a, B, y,0), the equilibrium of system (4) is (&,, fB,, 7,). We introduce a

new parameter 6, for d6,/dt=0.

15.0(e, +a, )’
(a,+a,) +0.01

1 1.36(05l +a, )2’02 7/2'2((0{1 +a, ) —(B,+5, ))
(e +)" +0.o7102)2((7l +7,)"7 +0.00631)

15(e +a, )’ (5)
(a,+a,) +0.01
11.36(ct, +at,) " (7, + 7, )2‘2((0‘1 +a,)~(A+5))
(e +)" +0.07102)2((71 +7,)"7 +0.00631)

&, =0.05+0.5(8 +5,)-0.5(c, + ) — —(6,+6,)) e, +,)

B =05(a, +a,)-0.5(B +B,)+

0.05(c, +,)’
(a,+a,) +0.0269
6, =0.

7}1: _0-08(71+70)>

Systems (2) and (5) have the same dynamics with mutual equilibrium points O (¢, B, 7,, 6,)
=(0,0,0,0). For 6, =0.421, we calculate the eigenvalues at the equilibrium point: & =—-0.1200, &
=2.2814i, & =-2.2814i and & = 0. The eigenvectors conform to the ensuing matrix:

—0.1825 —0.6869-0.1263i —0.6869+0.1263i —0.1920

—0.4592 0.7134 0.7134 0.5352
0.8694 —0.0139+0.0565i —0.0139-0.0565; —0.4566 |
0 0 0 0.6843
Suppose
@, X -0.1825 -0.6869 0.1263 —0.1920
B U y U< -0.4592 0.7134 0 0.5352 |
7 z | 0.8694 —0.0139 —0.0565 —0.4566
6 s 0 0 0 0.6843

System (5) can be replaced by

X -0.1200 0 0 0 x &
V| 0 0 -2.2814 0|y N g, , (6)
z 0 2.2814 0 0] z g,
S 0 0 0 0)\s g,
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and

a x X o A

Ayl o] P v ||

7 z z " s

6, s s 6, 0

g ~0.1200 0 0)(x

& |_ f2 22814 0] y

g, 22814 0 ol z[
g, 0 0)\s

where

g, =—-0.7699 f —0.7749 f, +1.7211f, = 0.12x,
g, =0.4956 f +1.9005 f, +1.1078f, —2.28 14z,
g, =11.7255f, +11.4558 f, +8.5121f, + 2.28 14,

g4:0,

f,=0.36365—0.1383x+0.7001y - 0.06315z -0, + (0.6843s + 0.4217)05 +0, +0.2862,

f, =0.1383x-0.36365 —0.7001y +0.06315z + 0, — 5, —0.2362,

/5 =0.036535—0.06955x+0.001112y +0. 00452z+&—0.01717,

o;’ +0.0269
J4=0,
1 1.36(0.727ZS -0.2767x+1.4y-0.1263z + 0.4724) 0,0,

0, = 2
(0, +0.00631)(c, +0.07102)

15.00.”
o +0.01°

. =(0.12632-0.1825x 06869y —0.1925 +0.1183)*"

:(0.8694x—0.4566s—0.0139y—0.05652+0.2146) 2
0,=0.1925+0.1825x+0.6869y —0.1263z - 0.1183.

o, =

System (5) has a center manifold with the following form:
We(0)={(x.y.2.5) € R* | x =" (y,2,5),h"(0,0,0) = 0,D’(0,0,0) = 0}..

Substituting the equation into (6) yields the following equations:

h(y,z,s)| (-0.1200 0 0 0\ A (v,2,9)) (&
ol o 0 22814 0 vl
z 0 22814 0 0 z g;
$ 0 0 0 0 s g,

Let & (y, z, ) = ay? + bz> + cs> + dyz + eys + fzs +...; we have the following:

Electronic Research Archive Volume 32, Issue 1, 405-417.
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y
N(h)y=Dh-| z |+0.12h—g, =0, (7)

N

where a = -0.7494, b = —0.7334, ¢ = -2.1352, d = -0.0752, e = —0.0506, f'=—0.2795. The system is
described as follows:
’ 0 —2.2814 R
e L[S (8)
z 2.2814 0 z g(y,z)

f(y,2)=2.3752—0.9824y —0.4704s —0.005937sy — 0.0328sz — 0.008823yz -+,
g(1,2)=0.02144z —2.083y +0.409s + 0.031855y +0.1759s2 + 0.04733yz + 13445 +---

where

Hence, it is easy to obtain the following:

| 1 2 2 1 1 pl 1
=—[f' +f +/2+ . — +
a 16[fyyy f;/zz fyyz ﬂzz](o’o) 16X22814[.}(yz(fyy f;z)
2, 2 2 1 2 12 _
STyt L) = S f o+ LaF D) gy = ~270-7099 <0, 9)
g = 4R ) —-0.3697 <0.
ds (y=0,2=0,5=0)

Based on the aforementioned computation, we derive the following conclusions.
Conclusion 1: A subcritical Hopf bifurcation is observed as the parameter @ traverses the
critical value of 6, = 0.421. Below this threshold (8 < 6,), the equilibrium O; is always locally

stable. For 6> 6,, the equilibrium O turns to be unstable. and the system (2) begins to oscillate.
For 6, =1.267, the eigenvalues at the equilibrium point can be computed as follows: &1 = —
69.3501, & = 0.0157i, & =—-0.0157i and &4 = 0.

@ :[0.0(157 _o<())157j@+@((;22))j "

£(7,2)=0.006927s —0.008238y +0.01683z +0.0006307 sy +0.00056855z — 0.0007773yz + -+,
2(1,2) =0.024485 —0.05694 y — 0.081242 — 0.0019695y — 0.0017755z +0.002427 yz +---.

where

Similar to the previous computations, we have @ =—0.12945 <0 and d =—-0.0113 <0.
Conclusion 2: system (2) undergoes a supcritical Hopf bifurcation at 6, = 1.267. When

0 < 6, , the equilibrium O turns to be unstable.

Electronic Research Archive Volume 32, Issue 1, 405-417.
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4. Numerical simulations

Next, we present the bifurcation diagrams by varying the values of parameter kou, as illustrated
in Figure 1a,b. As kou varies from 0.2 to 1.5, the system undergoes bifurcations around 0.421 and 1.267.
Figure 1la illustrates the bifurcation in terms of both the period and the amplitude. When the
parameter value is between 0.42 and 0.49, the model exhibits a simple oscillation with a consistent
amplitude. As kow is further increased, the model displays complex Ca®" oscillations with varying
amplitudes and periods. The period gradually decreases near 1.28. In Figure 1b, the continuous line
represents the equilibrium state. HB1 and HB2 correspond to two bifurcation points. Figure lc
displays the interspike interval (ISI) bifurcation. As the parameter increases, the value of ISI becomes
larger, thereby indicating a decrease in frequency. Figure 1d depicts the corresponding Lyapunov
exponent diagram.

| b
. ‘ | 0.25 |
0.6 \ 7 0.2
T2, 047 | &g‘ .
S Sooap e
0.2 ™~ /f‘/_/ L
\\\\ /4 005+ e CHBz
e B
| ‘ 0
0.5 1 1.5 -~ l -
ko [MM] -
| d
250
0
- é 20
: e g{_
} ..... q\)
100F e -
.................... :S
I s
50 i
| | | | -80 ‘ I |
0.4 0.6 0.8 1 1.2 0.5 | -
ko mM1 o

out

Figure 1. (a) The interspike interval bifurcation diagram with kouw. (b) Bifurcation
diagram in (kou, Cacyt) plane, HB represents Hopf bifurcation points. (c) The interspike
interval bifurcation diagram with kou. (d) Lyapunov exponent with parameter kout.

In Figure 2, we present the time course for different values of the parameter kou. The left
column displays the time series for different parameter values (Figure 2al—f1), the middle column
shows the corresponding phase portraits (Figure 2a2—f2) and the right column illustrates the
variations in power and frequency for the corresponding time series (Figure 2a3—f3). For example,

Electronic Research Archive Volume 32, Issue 1, 405-417.
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Figure 2al represents the time course of Ca*" evolution for kou = 1.2. To eliminate the initial value
interference, the time evolution for the first 200 s is excluded, thus allowing only one peak to appear
in the graph. In Figure 2a2, a periodic orbit is evident. Figure 2a3 illustrates its frequency variation.
In Figure 2b1, we present spontaneous bursting Ca*" oscillations for kouw = 0.7. In Figure 2cl—el,
an increasing number of small spikes become apparent. The corresponding phase portrait diagrams
are illustrated in Figure 2b2—e2. Figure 2fl corresponds to the case with kot = 0.4966 in the
bifurcation diagram. The time series illustrates the phenomenon of bursting chaos. For a clearer
representation, we have zoomed in on the time range of 10,000 s. The upper right corner depicts a
schematic of the local magnification.

al
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Continued on next page
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Figure 2. Illustrations for spontaneous Ca’" oscillations. The left side displays the time
series for Cacy. The middle graphs are the associated phase portraits. The right panels
display the variations in power and frequency. Different values of kou in each figure are:
(al-a3) kou = 1.2 s7'; (b1-b3) kou = 0.7 5715 (c1—¢3) kout = 0.65 s7%; (d1—d3) kout = 0.6 s7!;
(e1—e3) kour = 0.5 ' and (f1—£3) kou = 0.4966 s7.

5. Discussion

In this paper, we investigated the stability and bifurcation of spontaneous Ca?" oscillations in
astrocytes using a well-established mathematical model which measures the rate of calcium release
from the cytosol as a controlling parameter. Within a specific range, we identified two Hopf
bifurcation points. The stability analysis revealed their close association with spontaneous Ca**
oscillations. To validate the theoretical predictions, numerical simulations were conducted to
demonstrate the consistency with computations. When the parameters were varied, the stability of the
system exhibited diverse dynamic behaviors.

We analyzed the spontaneous Ca*" oscillations evoked by calcium ion efflux in astrocytes in the
same model as compared with previous studies [12,19], and obtained more complex dynamical
behaviors. For instance, as the rate of calcium release from the cytosol decreased, this model
exhibited the gradual emergence of multiple peaks simultaneously, accompanied by an increasing
number of smaller peaks, before culminating in irregular chaotic states. Time-frequency diagrams
were presented to show more intuitive depictions of frequency changes. The complexity arose from
bidirectional communication between neurons and astrocytes and significantly increased the richness
of their dynamical behavior. Future research is needed to examine the potential dynamical
mechanisms for bidirectional communication in detail.
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