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Abstract:  In this paper, we study the Liouville-type theorem for the stationary barotropic
compressible Navier—Stokes equations in R®. Based on a fairly general framework of a kind of local
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1. Introduction

The present paper is concerned with the following three-dimensional steady barotropic
compressible Navier—Stokes equations

{div(pv) =0, o

diviov®v) — uAv — (1 + w)Vdivv + VP = 0,

where p = p(x) and v = (vi(x), v(x), v3(x))T stand for the density and velocity of the fluid,
respectively, P = P(x) is the scalar pressure function given by the so-called y-law

Pl)=ap?’, a>0, y>1 (1.2)

and the constants ¢ and A are the shear viscosity and the bulk viscosity, respectively, such that

2
u>0 and /l+§,u>0.
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The system (1.1) is the famous Navier—Stokes system, which describes the motion of a compressible
viscous barotropic fluid. For more physical backgrounds and explanations of (1.1), we refer the readers
to [1-3] and the references therein.

The aim of this paper is to study Liouville-type property of the solutions to the system (1.1), which
is mainly inspired by the development of the incompressible Navier—Stokes equations. Recently, the
investigation of the Liouville-type theorems for the Navier—Stokes equations has attracted much
attention. One can refer to Leray [4] and Galdi [5, Remark X.9.4] for more details on this problem.
Though it is still far from complete, there has existed many remarkable results under some additional
conditions (see, e.g., [6-8]). Inspired by many works on the regularity of solutions to the stationary
compressible Navier—Stokes equations (see, e.g., [9—-11]), it is natural to study the Liouville properties
of smooth solutions to (1.1). In the following, we will review some related results on the
Liouville-type theorem for the compressible Navier—Stokes equations (1.1) to motivate this paper.
Under the assumptions p € L*(R?) and

(v, Vv) € L3 (R) x LA(R?), (1.3)
Chae [12] proved that the smooth solution (p, v) to (1.1) must satisfy
v=0 and p =constant in R3. (1.4)
Later, Li and Yu [13] replaced the intergrability condition (1.3) with
(v, Vv) € L3(RY) x LA(R?)
to obtain (1.4). Li and Niu [14] demonstrated that (1.4) holds if
(v, Vv) € LPURY) x L*(RY)

for (p, q) € (3, 2) x [3, oo] instead of (1.3). Very recently, Liu [15] improved the result of Li and Niu
by assuming that
Vv € LA(RY),

and there exists a smooth function ¥ € C®(R?; R¥?) such that v = div¥ and

sup (r_4 f P — ()3 |° dx) < oo, (1.5)
r>1 B,

One can refer to [16,17] and the references therein for more different and remarkable results and also
to [18-21] for the study of the Liouville property of the solutions to the incompressible\compressible
magnetohydrodynamic (MHD) equations and related models. It is not hard to see that the assumption
(1.5) is weaker than v € L7 9(R?), considering that the space BMO(R?) (see, e.g., [22, Definition 1.1])
shares similar properties with the space L*(R?) = L™ *(R?) and often serves as a substitute for L~(R?).
A natural question is whether one can weaken the Dirichlet integrability condition Vv € L*(R?). The
purpose of this work is to give a positive answer. Inspired by [15,16,21], we establish the Liouville-
type theorem for the compressible Navier—Stokes equations (1.1) without the assumption Vv € L*(R?).

Before preceding, some notations are introduced as follows. Throughout this paper, we denote B,
the ball with center O and radius r > 0O; that is,

Br::{x€R3||xl<r}.
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For each measurable set Q c R* with its Lebesgue measure |Q| > 0 and for any g € L}OC(R3), we
adopt the standard notation

1
(&a = Q fQ g(x)dx

to denote the average of g over Q.
Our first result can be stated as:

Theorem 1.1. Let (o, v, P) be a smooth solution to the Egs (1.1) and (1.2). Suppose that (p, v) €

LR} x LP4R3) with (p, q) € [1, 3)X[1, +eo] or p = q = 3, and there exists ¥ € C*(R*; R¥?) such

that v = div¥ and

sup (r-z-%’ f ¥ — (¥)5,|” dx) < o0 (1.6)
B,

r>1

for some o € (3, 6], then v vanishes and p is a constant in R>.

Remark 1. The second author Liu [16] obtained the Liouville-type theorem for the stationary
compressible Navier-Stokes equations (1.1) and (1.2) under the assumptions (p, v) € L*(R*) x LP(R?)
with p € [1, 3] and there exists ¥ € C*(R*; R¥?) such that v = div¥ and the condition (1.6) holds
with o = 6. In comparison with the work [16], we establish the Liouville-type theorem in the
Jframework of Lorentz spaces and the growth order for the mean oscillations at infinity. On one hand,
we impose the condition v € LP-4(R3) with (p, q) € [1, %) X [1,0]orp=q= % which weakens the
assumption of v € LP(R®) with p € [1, %] in [16]. On the other hand, we carefully discuss the range of
parameter o in the condition (1.6). Our result can thus be viewed as an extension of the work [16].

It is well known that a tempered distribution v on R? belongs to BMO™!(R?), provided that there
exists a function ® € BMO(R?; R¥?) such that v = div @ (see, e.g., [22, Theorem 1]). Thanks to [23,
Corollary, page 144], the condition (1.6) automatically holds under the assumption v € BMO™"(R?).
As a consequence of Theorem 1.1, we obtain:

Corollary 1.1. Let (p, v, P) be a smooth solution to the Egs (1.1) and (1.2). Suppose that p € L™ (R?)
and v € L»4(R?*) N BMO™'(R?) with (p.g) €1, ) x[1, +0]orp=¢q = %, then v vanishes and p is a
constant in R>.

Our second result addresses the case of allowing the velocity v being in the Morrey spaces.

Theorem 1.2. Let (p, v, P) be a smooth solution to the Egs (1.1) and (1.2). Suppose that p € L™(R?)
and there exists ¥ € C*(R>; R¥?) such that v = div¥ and

sup (r-z-%’ f ¥ — (¥)5,|” dx) < o0 (1.7)
By

r>1

for some o € (3, 6]. If one of the following conditions of the velocity holds:
(a)ve MPY(R>) forl <p<y< %,

(b)ve MyR?) for0 <y <1< p< 2 suchthat2p+y <3,

(c)ve M§7O(R3)for0 <y<l<p< % such that 2p +7vy =3,

then v vanishes and p is a constant in R>.
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Remark 2. Thanks to the embedding relation between the Lorentz spaces and Morrey spaces (see,

e.g. [24]): ‘
LR — L"72(R3) — MPY(RY), 1<p<y<p)<oo,

our work improves the result of Li and Niu [14] and also extends the result of Liu [16] to the framework

of Morrey spaces.

The remaining part of this paper is unfolded as follows. In Section 2, we present the definitions of
the Lorentz spaces and the Morrey spaces, then recall some basic inequalities. Section 3 is devoted to
the derivation of the Caccioppoli-type inequalities, which will play a vital role in the proof of our main
results. The proof of Theorems 1.1 and 1.2 are completed in Section 4.

2. Preliminaries

For the convenience of readers, in this section, we will present the definitions of the Lorentz spaces
and the Morrey spaces, and recall some fundamental related facts.

We begin with the definition of the Lorentz spaces (see, e.g., [18,25]). For (p, g) € [1, oo] X[1, oo],
the Lorentz space L”9(R?) is the space of measurable functions 4 defined on R* such that the norm

”h”L”’q(R3) iS ﬁnite, Where
1
0 dr\e
( f (r#h*(z))q—) if ¢ < oo,
”h”LP"I(R% = 0 ?

sup 71" (1) if g = oo.

>0

Here, h* is the decreasing rearrangement of 4 given by
h*(t) = inf{t > 0| d),(7) < 1}

with the distribution function dj, of i defined as the Lebesgue measure of the set {y € R? | |h(y)| > 7).
It is well known that L7 9(R?) is a quasi-Banach space; that is, || - || Lra(r3) Satisfies

llg + Allzro@sy < 27 max(]1, Z(I_q)/q}(||g||LP~q(R3) + |lAllro@s) foreach g, he LP4(RY).

One can refer to [25, 26] for more details. In addition, it should be remarked that the usual L”
spaces LP(R?) coincide with the Lorentz spaces L"”(R?) for all p € [1, o], and we also have the
continuous embedding

L (RY) — LP2(RY), 1<p<oo,1<q <q <o

A simple fact we will recall is Holder’s inequality in Lorentz spaces (see, e.g., [26]), which plays a
significant role in the proof of our main result.

Lemma 2.1. Let 1 < py, ps, g1, g2 < 0. If g € L’ (R?) and h € LP»2(R?), then gh € LP9(R?) with
1 1 1 1 1 1
- <

P P D2 9" ¢ ¢

and there exists some constant C > 0 such that

2

||gh||Lp-q(R3) < Cligllzera (R3)||h||LPz»qz(R3)-
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We proceed to review the definitions of Morrey space and local Morrey space (see, e.g., [27]). Given
geLl! (R and 1< p <y < oo, we define

loc

s »
lgllyzry = sup 17 (r 3f Ig(x)lf’dx) ,
>0, xoeR3 B;(x0)

where B,(xy) is the ball with center x, and radius r. The set of all measurable functions g in L{;C(R3)
such that ||g|[y»» < oo is called the homogeneous Morrey space with indices p and y and denoted

by MPY(R3). For a function g in M?Y(R?), it can be readily seen that the average of 181175 o0
3

over the ball B,(x() admits the decay property for large r, which is characterized by the weight r7 in
the definition.

We shall also consider here the local Morrey space, which describes the average decay of a function
in a more general setting. Lety > 0 and 1 < p < co. For g € L, C(R3), we define

1
IIgIIMg=SHP(F‘y f Ig(x)l”dx) :
r>1 B,

The local Morrey space M;’ (R?) is the space of functions g in Lﬁ) C(R3), such that ||g|| M is finite. It
is obvious that the local Morrey space M} (R?) is a Banach space and the parameter y describes the
behavior of the quantity [|g||.»s,) when r is large. Furthermore, if y; < 7,, the following continuous
embedding holds

3 3
M (R7) — M) (R”).
Consequently, for 1 < p <y, < oo, by taking the parameter y, such that 3(1 - %) < ¥», we have that
MR = My @) = MR
From this point of view, the local Morrey space M} (R?) can be regarded as a generalization of the

homogeneous Morrey space M” ' (R?).
We also introduce the space Mﬁ ’O(R3), which is the set of functions g € M%) (R?) satisfying

1
lim [r_yf lg(x)|P dx] =0.
r—oo B%\Br

In the end of this section, we recall the interpolation inequality in L? spaces (see, e.g., [28]), which
will be utilized frequently later.

Lemma 2.2. Let 1 < pyg < py < p1 £ 0 and 0 € (0, 1) satisfy
1 6 1-6

—=—+ .
Po Do P1

Then, for all f € LP(R3) N LP(RY),

A

0 1-6
||f||L”9(R3) = ||f||Lp0(R3)||f”LPl(R3)’
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3. A priori estimates

This section is devoted to deriving the Caccioppoli-type inequalities, which will play a crucial role
in the proof of our main results.

Proposition 3.1. Let (p, v, P) be a smooth solution to (1.1) and (1.2). Suppose that p € L*(R?) and
there exists ¥ € C*(R?; R¥?), such that v = div¥ and

sup (r—z-‘s’ f ¥ — (P)g,|” dx) < o0
r>1 B,

for some o € (3, 6], then

f IVv]> dx < c(1 s R ||v||L1(B£\Br)) (3.1)
B, 2
foranyr > 1.

Proof. Let r € (1, 4+00). Throughout the rest of this paper, C is a positive constant independent of r,
which may be different on different lines. The proofs are split into two steps.

Step 1. Local estimate of Vv.
Select two positive numbers r; and r, such that

3
r<r<n< { 32)

and choose a radial smooth function ¢ € C(R?) satisfying

) 1 in B,,,
X) =
4 0 inR*\ B,

0<¢<land [Vl < C(ry = r)™ (k € N*).

Taking the L’-inner product of the second equation in (1.1) with ¢?v and integrating by parts,
we have

U f OV dx + (A + ) f ©*| div v|* dx
B, B

2 rn

B,

- ,uf Vv (ve V(gh))dx - (1 +p) f (v- V(g?) divvdx
B, (3.3)

—f div(pv®v)-<p2vdx—f ©*v-VPdx

By, B,

2
I]+IZ+I3+I4.

We will estimate the four terms 7, 75, 73 and 74 one by one.
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For 7, by Holder’s inequality and Young’s inequality, we see

I, < 2ﬂf lellVvIvI[Vel dx
B,,

(3.4)
C
< f N p—— f v dx.
8 B, (r2 =) By, \By,
Similar to (3.4), we observe
L= 204 [ lelldiviipiveldx
o c (3.5)
<t f VP dx + ——— f v dx.
8 B, (r2=r1) By, \B,
For I3, utilizing the first equation in (1.1) and integrating by parts, we obtain
1
I;= —f pv-Vv-o*vdx = = f v div(gozpv)dx
B, 2 s
[} n
= f eplvI*v - Ve dx,
By,
which implies
C
75 < f vl dx. (3.6)
r=nr Js,\s,
For 14, we first deduce from (1.2) that
- -1
VP =3V ().
then making use of the integration by parts and utilizing (1.1),, we find
2
I, = 4 f o'~ div (gozpv) dx = =2 f p v - Vodx
y-1 By, y-1 By,
3.7

C
< f [v] dx.
2 =711 Js,\B,

Plugging (3.4)—(3.7) into (3.3), we arrive at

A+ 1 C
f Vv dx + —E f |div [ dx < — f Vv dx + ———— f v dx
By, M By, 4 B,, (ra—r1) B, \B
C
+

P (3.8)

C
f v dx + f [v] dx.
r,—=r1 Jp.\B 2 =71 JB,,\B,
Step 2. Caccioppoli type inequality.

Select a radial smooth function £ € C*(R?) satisfying

‘o 1 if xeB,,
xX) =
0 if xeR3\ By,
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0<¢<land|[V¥¢llp> < C(ra — )™ (k € N¥).
From (3.2), it can be readily verified that

r<ri<ry<2r-r <2r

According to v = div 'Y, we have

f v?dx < f |Cv)* dx = f div (¥ — (P)p,,) - £*vdx.
B \B BZrz—rl By,

[

Integrating by parts and using Holder’s inequality and (1.6), we can get

f P dx=~ [ (¥-(¥)s,): V() dx
By, B>,

<Criv (f ¥ - (‘I’)Bhl"dx)a (f v (£) |2dx)2
B, By,

1

o=

1
1 2
<Creov ( 12Vv + 20V @ v dx)
By

11_1

1

2

scﬂ»-v( 12Vv)* dx + f |§V§®v|2dx) .
By, By,

In view of Young’s inequality, we find

v dx < Cre~ J—( 12V dx) +

[ oral)

[T Cri—s l
<Cre v Vv ar| + ST —+ VI dox.
Boryr, (rs=r)? " 2 Jg,

By the fact that { is supported in B,,,_,, and (3.9), we have

By, B>,

! u_2
Cr3 o

5 2
1_1 E
f P dx < Croe ( f Vo dx) + —,
BZrz—rl BZrz—rl (r2 - rl)

C f C 5
_ |v| dx_—f |lv]|” dx
(r2=r1)* Jg,\5 (ro=r)* Us,, . ¢

2 n
-2
3 c
< — IVv? dx + ———.
12 Jp,, (ry =)

which ensures

Considering o € (3, 6], by the integration by parts and Holder’s inequality, it follows that

(3.9)

(3.10)

(3.11)

(3.12)

Electronic Research Archive Volume 32, Issue 1, 386—404.
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f VP dx < f 1%V dx
Brz\Br] By

= f div (¥ — (P)p,) - 1V v dx

By

il ARSI (ST

(L,'T (), dx) (f v ( {v|dx) (f |§v|r72dx) 2,

which together with (1.6), Lemma 2.2 and Young’s inequality implies

2 1

f 122V dx < Cr3* 3( |§3Vv|2dx)2( f |43v|3dx)3_0( f |§3v|6dx)”
By, R3 R3

2 2
3

2 1

1
o o6
( f 3] dx)
1 2((r+6) 2((T+6)
< = f 1% dx+Cr( 13V dx) ( f 13v]° dx)
2 B, B,
1 2(u'+6) 2(fr+6)
+ Cr(—2 f |%v)? dx) ( f 13v]° dx) ,
(’"2 - 7"]) B, R3

f 2P dx < Cr ( f 12 Vv)? dx) ( f 13v[® dx)
By, By, R3

+Cr%+i( <|§2v||vg|>2dx)2( IS dex)
By,

namely,

30 o (3.13)
1 B Ho+6)
+ Cr(—z v dx) ( f 12| dx) .
(ry —r1) By, R3
Making use of the Sobolev embedding H'(R?) < LO(R?) (see, e.g., [29]), one observes
2ot ) \26
( f e dx) <C f V(&) dx)
R3 R3
e
<C| | 1Vvfdx+ f 12V @ v dx) (3.14)
3 3
- Ls«rR 1830
2(0+6) 1 2(0+6)
<C 13V dx) + c(—2 f lals dx) .
R? (ry = r)* Jgs

Inserting (3.14) into (3.13) leads to
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1
f P dx < Cr ( f Vv dx) + cr(—2 f v dx)
By, B2r2—r1 (rz - rl) B2r2—r1

37 18-30
2(c+6) 1 2(c+6)
+ Cr( f Vv dx) (—2 12V dx)
BZrZ—rl (rz - rl) BZrz—r|

18-3c

o+ 1 o
+Cr f IVyI* dx — 17V dx
BZrZ—rl (rz - rl) Blrz—q

755 75
1
<Cr ( f Vv dx) - cr(—2 f 12 dx) .
B2r2—r1 (rz - rl) BZrZ—rl

Noting that == < 1 and utilizing Young’s inequality, we then obtain

C C
f (VP dx = f v dax
=nr Js,,., r, —ri Js,

9 9
Cr T+6 Cr 1 T+6
< ( f Vv dx] + 5 1>V dx
rp—r Bory-r, r—r\(ra—r1) Bayy -,
T+6
1 1 Cres
< — Vv dx + ——— f 12V dx + ————,
12 Bory—ry (”2 - rl) Bory—ry (}"2 - rl)m

which along with (3.12) implies

C 1 Cri-+ Cres
f 2P dx < - f VoPde+ — 4 =L
BQrzﬂl 6 B

ry—ri (r=r)*  (r,—r)5

2rp-r]

C C
f VP dx < f |V dox
> =Tr Jp,\B, =T Jsy,,

Therefore,

[V dx +

o 3.15
1 f Crsi—s Crs (.15)
h B

+ .
2r2—r1 (rz - rl )4 (r2 - rl)%
Since r, < %, plugging (3.12) and (3.15) into (3.8), one sees
1
f IVvPdx < = f IVv|? dx
By, 2

2ry-r|

u_2 = 1
r o ro-
+ C 4 + a+6 + f |V| dx ‘
(=r)*  (p—r)& By,
2

(3.16)

From (3.9) and (3.16), we can deduce by the standard iteration argument (see, e.g., [30, Lemma 3.1,

page 161]) that

1
f|vv|2dxsc 1+r-%-5+—f v dx|,
B, r JB3\B,
2

which is consistent with (3.1).
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4. Proof of the main theorems

In this section, we will utilize the Caccioppoli-type inequalities established in Section 3 to prove
Theorems 1.1 and 1.2. We begin with some estimates in the framework of Lebesgue spaces.

Proposition 4.1. Let v € C*(R?) satisfy Vv € L2 (R?). Suppose that there is ¥ € C (R>; R>?), such

that v = div¥ and
sup (r—z-‘s’ f ¥ — (P)5,|” dx) < o0
r>1 B,

1
- WPdx >0 as r — +o
" JBy B,

with o € (3, 6], then we have

and .
—f WPdx = 0 as r— +co.
B3 \B,

r 3r
2

Proof. Let r > 1, then choose a radial smooth function y € C=(R?) satisfying

o]l By\B.
xX) =
a 0 in By U(R*\By),

0 <y < land ||[V¥y|l~ < Cr7* (k € N*).
Making use of the assumption v = div 'Y, Holder’s inequality and Young’s inequality, integrating by
parts and repeating the previous estimation process of (3.10) and (3.11) in Section 3, we can obtain

%
f wyldx < Cro v f Vv dx| +Crive, 4.1)
By BZV\B%

Therefore,

1 2 1 2
- [v| dxsﬁf [v x|~ dx
BZr

r Bir \Br
2

1
<Crs”

1 1_2
; |Vv|2dx +Cr iz
2r\B’
2

1
Sf Vv dx + Cr 377,
BZr\B’

which together with the assumption Vv € L2(R?) ensures

1

5 WPdx = 0 as r - 4.
= Js

3r \Br
2
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Considering v = div ¥ and integrating by parts, we derive that

f P dx < f v’ dx
B3, \B, BZr\B%
2

= f Xy - div (¥ — (P)p, ) dx
B>, \Br

< ¢ )(2|‘P— (‘Y)s,, va||vx3|dx

r B2r\B%

=91+

V)(3|2 dx + f )(2|‘P - (W)s,,
BZr\BL

In what follows, we estimate ./, and ./, separately.

For 71, by the assumption (1.6) and Holder’s inequality, we get

r

Ji = gf X |‘P - (\I")32r||V)(3|2 dx
By \Br

1 2
5

c v 4| C
< —[f ¥ - (¥)5,|" d ] (f v dx] pi-d
r Bzr\Br BZr\B%
2
3

_% f |VX3|3 dx ,
BZr\B%

which together with Young’s inequality yields

W=

Cr

IA

1
Jr<Crive + —f VP dx.
4 By \Br

For 7>, by the assumption (1.6) and by applying the Holder inequality, we get

Jr = f X |\P_(\P)Bz, VV)(||V)(3|dx
Bzr\Bg
a=2

% 3 o2
< f ¥ - (P, | dx f IVv]* dx ( f vy’ |72 dx)
BZr\B7 BZr\B r R3
3 o2
<C %% Vv dx (f vy |v2dx) .
BZV\Br R3

4.2)

4.3)

4.4)

Electronic Research Archive Volume 32, Issue 1, 386—404.
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By Lemma 2.2 and the Sobolev embedding H'(R?) — LS(R?), we can see

1

o-2 1 2
20 o 6 37 ¢
(f |VX3|% dx) < (f IV)(3|6 dx) IV)(3|3 dx)
R3 R3 R3
1 e _
2 1 2 3 0
<C (f IVv/\/3|2 dx| +- (f |V)(2|2 dx) ) ( IV)(3|3 dx)
R3 r R3 R3
3_1 2 2
o 2 3 o
<C f |Vv[* dx f vy’ dx
Bzr\B% BZr\B%
3_1
6 o 2
+Crive (f |V)(|2 dx)
R3

4.5)

3
J» < Crite ( f V2 dx) f vy dx
BZr\Bg BZr\B%

+Crie ( f Vv dx

By \Br

2

1 33
< - vx’I"dx + Cr
8 Bzr\B% BZr\B
1

2
2 370 2
1,2 1_1 1_2
+Crste f IVI* dx v Pdx| [reTe f Vv dx| +r7577
BZr\BL BZr\BL BZr\BL
2 2 2
1 T+6
< - f vy’ dx+Cr f Vv dx
4 BZr\B BZV\B"

Q1w
ST

r
2

which follows from Young’s inequality that

l o+6 D
Ja < —f vyl dx+Cr f IVvPdx| +Cr|res f
4 Jys, Bo\By By \B

1
< —f vy’ dx + Cr f VvPdx| +Crlve.
4 BZV\B% B2r\B%

Electronic Research Archive Volume 32, Issue 1, 386—404.

(4.6)




399

Plugging (4.3) and (4.6) into (4.2) yields

9

T+6
3
f vy’ dx < Cr f VoPdx|  +cCr'oe,
Bzr\BL BZr\BL
2 2

9

T+6
3
f VP dx < Cr f Vv dx| +cCrli v,
B%\Br B2r\B%

Since Vv € L*(R?), we see

which implies

9

1 e :
—f WP dx < c[f Vo dx] +Cr v >0 as r— +oo.
r JBs.\B, By \B:
2 2
The proof of Proposition 4.1 is completed.

With Propositions 3.1 and 4.1 in hand, we are now ready to prove Theorems 1.1 and 1.2. For
simplicity, we adopt the following definition:

1

M%pv(r):[r_y f |v(x)|”dx] . 4.7)
B3, \B,

Proof of Theorem 1.1. Let » > 1. We first show that Vv € L*(R?) by Proposition 3.1. By virtue of
Lemma 2.1, we have

1

C -

_ vdXS—V p, 1 P q Scr—;v . .

r £3r\3r| | - ” ”Ll ‘J(B%\Br)” ||Lpfl,qﬁl(3%r) ” ”Ll q(B%\B,.) (48)
2

Substituting (4.8) into (3.1) leads to

f |VV|2 dx<C (1 + I"_%_% + 1"2_/3’”\/”[,11,(1(332,\3,)) . (49)
B

Since v € LP9(R?) with (p, g) € [1, %) X[1, +oo]orp =¢q = %, letting r — +oc0 in (4.9) and making
use of Fatou’s lemma, we see

f IVy? dx < liminf f [Vv[>dx < C. (4.10)
R3 r—oo B,

We next prove the vanishing property of [|Vv|;2gs). To this end, by the standard iteration argument
to (3.8) , we observe

C C C

f Vvl dx < < WV dx + = f v dx + = f

B, "= JB3\B, " JB3\B, rJs
2

2

” vl dox. (4.11)

(NS
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Inserting (4.8) into (4.11), we arrive at
_3
f IV dx < —f |v| dx + —f v dx + cr ?|llzrass,\B,)- (4.12)
3 r 7 2
7 2

Since v € LP4(R?) with (p, q) € [1, %) X [1, +o0]or p=¢q = %, we have
rz_%llvlle,q(BS,.\B,) -0 asr— +00,
2
which together with Proposition 4.1 and (4.12) yields

lim | |Vvfdx=0.

—00
& Br

By virtue of (4.10) and the Lebesgue dominated convergence theorem, one can see

f IVy2dx =0
]R3

It follows from the Sobolev embedding H'(R?) < L°(R?) that
IVllzs@sy < ClIVVII2@s = O.

Hence, v = 0 in R>.
Furthermore, combining (1.2) and (1.1),, we conclude that p is a constant in R®. The proof of
Theorem 1.1 is then finished.

We proceed to give the proof of Theorem 1.2.

Proof of Theorem 1.2. (a) Since v € MPY(R?) for 1 < p <y < 2, by virtue of Holder’s inequality, we
derive that

1 S p
- f vldx < Cr7rr |7 f P dx| < CP 77 Ml 4.13)
r JBs\B, B3 \B,

2 2

Substituting (4.13) into (3.1), we find
f VP dx < C(1+ 77577 + 72 7 Mlymos))
B,
By v € MP7(R?), letting r — oo then yields that
f IVv]*dx < C. (4.14)
R3

Conducting the standard iteration argument on (3.8) and utilizing (4.13), we can obtain that

C
flel dx<—f |v| dx+—f |v|3dx+—f vl dx
By \B By \B, " JBy\B,

3
<= f |v|2 dx+ — f WP dx + Cr277 Wl gy ey
Py Py
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By (4.14) and the assumption (1.7), we can deduce from Proposition 4.1 that

lim — f |v| dx = (4.16)
r—oo 1 B,
7
and .
lim — f v dx = 0. 4.17)
r—oo r B, \B,

3r
2

Since v € MPY(R?) with 1 < p <y < 3, we have that
lim 727Vl sy = O (4.18)

Plugging (4.16)—(4.18) into (4.15) and using the Lebesgue dominated convergence theorem lead to

f Vv dx =0
]R3

which together with the Sobolev embedding H'(R?) < L°(R?) implies that v vanishes and p is a
constant in R3.

(b) and (c). In the case of 0 < y < 1 < p < 3, by Holder’s inequality and the definition M, pv(r)
given in (4.7), we can readily see that

1 3,
—f v|dx < Cr s PM%pv(r).
BSr\B

r

It follows from (3.1) that
f VP dx < C(1+ 77377 + 7270 5 My (). (4.19)
B

In the case (b), i.e., when v € M;’ (R3) with 2p+7y < 3, according to the definition of ||-|| Mb> We obtain

P M) < P bl 50 (> e0), (420

In the case (¢), i.e., when v € M;”O(R3) with 2p + y = 3, from the definition of the space Mg’O(R3),
we have .
P M, v(r) >0 (r — o). 4.21)

Substituting (4.20) or (4.21) into (4.19) separately, we see
Vv dx < C. (4.22)
R3

Combining (3.8), (4.20)—(4.22), the assumption (1.7) and Proposition 4.1 and repeating the previous
estimation process of (4.15)—(4.18), we can also find

f IVy2dx =0
R3

which implies the desired conclusion. The proof of Theorem 1.2 is finished.
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5. Conclusions

This paper is concerned with the Liouville-type theorem for the stationary barotropic compressible
Navier-Stokes equations in R®>. We proved that smooth solutions must be trivial under the L®
boundedness of the density and some new assumptions on the velocity field. This work contains two
main results. The first one allows the velocity field to be in the appropriate Lorentz space L”9(R?) and
gives a delicate condition related to the growth rate of the local mean oscillation of a “potential” ¥
with the velocity v = div¥W. The subsequent corollary is a weaker result phrased in terms of the
BMO™! space. The second main result addresses the case of allowing the velocity being in the (local)
Morrey space. Our work improves the result of Li-Niu [14] and also extends the result of Liu [16] to
the framework of Morrey spaces.
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