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Abstract: In this paper, we study the Liouville-type theorem for the stationary barotropic
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1. Introduction

The present paper is concerned with the following three-dimensional steady barotropic
compressible Navier–Stokes equations div(ρv) = 0,

div(ρv ⊗ v) − µ∆v − (λ + µ)∇ div v + ∇P = 0,
(1.1)

where ρ = ρ(x) and v =
(
v1(x), v2(x), v3(x)

)T stand for the density and velocity of the fluid,
respectively, P = P(x) is the scalar pressure function given by the so-called γ-law

P(ρ) = aργ, a > 0, γ > 1 (1.2)

and the constants µ and λ are the shear viscosity and the bulk viscosity, respectively, such that

µ > 0 and λ +
2
3
µ > 0.
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The system (1.1) is the famous Navier–Stokes system, which describes the motion of a compressible
viscous barotropic fluid. For more physical backgrounds and explanations of (1.1), we refer the readers
to [1–3] and the references therein.

The aim of this paper is to study Liouville-type property of the solutions to the system (1.1), which
is mainly inspired by the development of the incompressible Navier–Stokes equations. Recently, the
investigation of the Liouville-type theorems for the Navier–Stokes equations has attracted much
attention. One can refer to Leray [4] and Galdi [5, Remark X.9.4] for more details on this problem.
Though it is still far from complete, there has existed many remarkable results under some additional
conditions (see, e.g., [6–8]). Inspired by many works on the regularity of solutions to the stationary
compressible Navier–Stokes equations (see, e.g., [9–11]), it is natural to study the Liouville properties
of smooth solutions to (1.1). In the following, we will review some related results on the
Liouville-type theorem for the compressible Navier–Stokes equations (1.1) to motivate this paper.
Under the assumptions ρ ∈ L∞(R3) and

(v, ∇v) ∈ L
3
2 (R3) × L2(R3), (1.3)

Chae [12] proved that the smooth solution (ρ, v) to (1.1) must satisfy

v ≡ 0 and ρ ≡ constant in R3. (1.4)

Later, Li and Yu [13] replaced the intergrability condition (1.3) with

(v, ∇v) ∈ L
9
2 (R3) × L2(R3)

to obtain (1.4). Li and Niu [14] demonstrated that (1.4) holds if

(v, ∇v) ∈ Lp, q(R3) × L2(R3)

for (p, q) ∈ (3, 9
2 ) × [3, ∞] instead of (1.3). Very recently, Liu [15] improved the result of Li and Niu

by assuming that
∇v ∈ L2(R3),

and there exists a smooth function Ψ ∈ C∞(R3; R3×3) such that v = divΨ and

sup
r>1

(
r−4

∫
Br

|Ψ − (Ψ)Br |
6 dx

)
< ∞. (1.5)

One can refer to [16,17] and the references therein for more different and remarkable results and also
to [18–21] for the study of the Liouville property of the solutions to the incompressible\compressible
magnetohydrodynamic (MHD) equations and related models. It is not hard to see that the assumption
(1.5) is weaker than v ∈ Lp, q(R3), considering that the space BMO(R3) (see, e.g., [22, Definition 1.1])
shares similar properties with the space L∞(R3) = L∞,∞(R3) and often serves as a substitute for L∞(R3).
A natural question is whether one can weaken the Dirichlet integrability condition ∇v ∈ L2(R3). The
purpose of this work is to give a positive answer. Inspired by [15, 16, 21], we establish the Liouville-
type theorem for the compressible Navier–Stokes equations (1.1) without the assumption ∇v ∈ L2(R3).

Before preceding, some notations are introduced as follows. Throughout this paper, we denote Br

the ball with center 0 and radius r > 0; that is,

Br :=
{
x ∈ R3 | |x| < r

}
.
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For each measurable set Ω ⊂ R3 with its Lebesgue measure |Ω| > 0 and for any g ∈ L1
loc(R

3), we
adopt the standard notation

(g)Ω :=
1
|Ω|

∫
Ω

g(x) dx

to denote the average of g over Ω.
Our first result can be stated as:

Theorem 1.1. Let (ρ, v, P) be a smooth solution to the Eqs (1.1) and (1.2). Suppose that (ρ, v) ∈
L∞(R3)× Lp, q(R3) with (p, q) ∈ [1, 3

2 )× [1, +∞] or p = q = 3
2 , and there exists Ψ ∈ C∞(R3; R3×3) such

that v = divΨ and

sup
r> 1

(
r−2−σ3

∫
Br

|Ψ − (Ψ)Br |
σ dx

)
< ∞ (1.6)

for some σ ∈ (3, 6], then v vanishes and ρ is a constant in R3.

Remark 1. The second author Liu [16] obtained the Liouville-type theorem for the stationary
compressible Navier–Stokes equations (1.1) and (1.2) under the assumptions (ρ, v) ∈ L∞(R3)× Lp(R3)
with p ∈ [1, 3

2 ] and there exists Ψ ∈ C∞(R3; R3×3) such that v = divΨ and the condition (1.6) holds
with σ = 6. In comparison with the work [16], we establish the Liouville-type theorem in the
framework of Lorentz spaces and the growth order for the mean oscillations at infinity. On one hand,
we impose the condition v ∈ Lp, q(R3) with (p, q) ∈ [1, 3

2 ) × [1, ∞] or p = q = 3
2 , which weakens the

assumption of v ∈ Lp(R3) with p ∈ [1, 3
2 ] in [16]. On the other hand, we carefully discuss the range of

parameter σ in the condition (1.6). Our result can thus be viewed as an extension of the work [16].

It is well known that a tempered distribution v on R3 belongs to BMO−1(R3), provided that there
exists a function Φ ∈ BMO(R3; R3×3) such that v = divΦ (see, e.g., [22, Theorem 1]). Thanks to [23,
Corollary, page 144], the condition (1.6) automatically holds under the assumption v ∈ BMO−1(R3).
As a consequence of Theorem 1.1, we obtain:

Corollary 1.1. Let (ρ, v, P) be a smooth solution to the Eqs (1.1) and (1.2). Suppose that ρ ∈ L∞(R3)
and v ∈ Lp, q(R3) ∩ BMO−1(R3) with (p, q) ∈ [1, 3

2 ) × [1, +∞] or p = q = 3
2 , then v vanishes and ρ is a

constant in R3.

Our second result addresses the case of allowing the velocity v being in the Morrey spaces.

Theorem 1.2. Let (ρ, v, P) be a smooth solution to the Eqs (1.1) and (1.2). Suppose that ρ ∈ L∞(R3)
and there exists Ψ ∈ C∞(R3; R3×3) such that v = divΨ and

sup
r> 1

(
r−2−σ3

∫
Br

|Ψ − (Ψ)Br |
σ dx

)
< ∞ (1.7)

for some σ ∈ (3, 6]. If one of the following conditions of the velocity holds:
(a) v ∈ Ṁp,γ(R3) for 1 ≤ p < γ < 3

2 ,
(b) v ∈ Mp

γ (R3) for 0 ≤ γ < 1 ≤ p < 3
2 such that 2p + γ < 3,

(c) v ∈ Mp
γ,0(R3) for 0 ≤ γ < 1 ≤ p < 3

2 such that 2p + γ = 3,
then v vanishes and ρ is a constant in R3.
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Remark 2. Thanks to the embedding relation between the Lorentz spaces and Morrey spaces (see,
e.g., [24]):

Lγ(R3) ↪→ Lγ, p2(R3) ↪→ Ṁp1, γ(R3), 1 < p1 < γ ≤ p2 ≤ ∞,

our work improves the result of Li and Niu [14] and also extends the result of Liu [16] to the framework
of Morrey spaces.

The remaining part of this paper is unfolded as follows. In Section 2, we present the definitions of
the Lorentz spaces and the Morrey spaces, then recall some basic inequalities. Section 3 is devoted to
the derivation of the Caccioppoli-type inequalities, which will play a vital role in the proof of our main
results. The proof of Theorems 1.1 and 1.2 are completed in Section 4.

2. Preliminaries

For the convenience of readers, in this section, we will present the definitions of the Lorentz spaces
and the Morrey spaces, and recall some fundamental related facts.

We begin with the definition of the Lorentz spaces (see, e.g., [18,25]). For (p, q) ∈ [1, ∞]× [1, ∞],
the Lorentz space Lp, q(R3) is the space of measurable functions h defined on R3 such that the norm
∥h∥Lp, q(R3) is finite, where

∥h∥Lp, q(R3) :=


(∫ ∞

0

(
t

1
p h∗(t)

)q dt
t

)1
q

if q < ∞,

sup
t>0

t
1
p h∗(t) if q = ∞.

Here, h∗ is the decreasing rearrangement of h given by

h∗(t) = inf{τ ≥ 0 | dh(τ) ≤ t}

with the distribution function dh of h defined as the Lebesgue measure of the set {y ∈ R3 | |h(y)| > τ}.
It is well known that Lp, q(R3) is a quasi-Banach space; that is, ∥ · ∥Lp, q(R3) satisfies

∥g + h∥Lp, q(R3) ≤ 21/p max{1, 2(1−q)/q}
(
∥g∥Lp, q(R3) + ∥h∥Lp, q(R3)

)
for each g, h ∈ Lp, q(R3).

One can refer to [25, 26] for more details. In addition, it should be remarked that the usual Lp

spaces Lp(R3) coincide with the Lorentz spaces Lp, p(R3) for all p ∈ [1, ∞], and we also have the
continuous embedding

Lp, q1(R3) ↪→ Lp,q2(R3), 1 ≤ p ≤ ∞, 1 ≤ q1 < q2 ≤ ∞.

A simple fact we will recall is Hölder’s inequality in Lorentz spaces (see, e.g., [26]), which plays a
significant role in the proof of our main result.

Lemma 2.1. Let 1 ≤ p1, p2, q1, q2 ≤ ∞. If g ∈ Lp1, q1(R3) and h ∈ Lp2, q2(R3), then gh ∈ Lp, q(R3) with

1
p
=

1
p1
+

1
p2
,

1
q
≤

1
q1
+

1
q2
,

and there exists some constant C > 0 such that

∥gh∥Lp, q(R3) ≤ C∥g∥Lp1 , q1 (R3)∥h∥Lp2 , q2 (R3).

Electronic Research Archive Volume 32, Issue 1, 386–404.



390

We proceed to review the definitions of Morrey space and local Morrey space (see, e.g., [27]). Given
g ∈ Lp

loc(R
3) and 1 ≤ p ≤ γ < ∞, we define

∥g∥Ṁp, γ = sup
r>0, x0∈R3

r
3
γ

(
r−3

∫
Br(x0)
|g(x)|p dx

) 1
p

,

where Br(x0) is the ball with center x0 and radius r. The set of all measurable functions g in Lp
loc(R

3)
such that ∥g∥Ṁp, γ < ∞ is called the homogeneous Morrey space with indices p and γ and denoted
by Ṁp, γ(R3). For a function g in Ṁp, γ(R3), it can be readily seen that the average of ∥g∥pLp(Br(x0))

over the ball Br(x0) admits the decay property for large r, which is characterized by the weight r
3
γ in

the definition.
We shall also consider here the local Morrey space, which describes the average decay of a function

in a more general setting. Let γ ≥ 0 and 1 ≤ p < ∞. For g ∈ Lp
loc(R

3), we define

∥g∥Mp
γ
= sup

r≥1

(
r−γ

∫
Br

|g(x)|p dx
) 1

p

.

The local Morrey space Mp
γ (R3) is the space of functions g in Lp

loc(R
3), such that ∥g∥Mp

γ
is finite. It

is obvious that the local Morrey space Mp
γ (R3) is a Banach space and the parameter γ describes the

behavior of the quantity ∥g∥Lp(Br) when r is large. Furthermore, if γ1 ≤ γ2, the following continuous
embedding holds

Mp
γ1

(R3) ↪→ Mp
γ2

(R3).

Consequently, for 1 < p ≤ γ1 < ∞, by taking the parameter γ2 such that 3(1− p
γ1

) < γ2, we have that

Ṁp, γ1(R3) = Mp
3(1− p

γ1
)
(R3) ↪→ Mp

γ2
(R3).

From this point of view, the local Morrey space Mp
γ (R3) can be regarded as a generalization of the

homogeneous Morrey space Ṁp, γ1(R3).
We also introduce the space Mp

γ, 0(R3), which is the set of functions g ∈ Mp
γ (R3) satisfying

lim
r→∞

r−γ ∫B 3r
2
\Br
|g(x)|p dx


1
p

= 0.

In the end of this section, we recall the interpolation inequality in Lp spaces (see, e.g., [28]), which
will be utilized frequently later.

Lemma 2.2. Let 1 ≤ p0 < pθ < p1 ≤ ∞ and θ ∈ (0, 1) satisfy

1
pθ
=
θ

p0
+

1 − θ
p1
.

Then, for all f ∈ Lp0(R3) ∩ Lp1(R3),

∥ f ∥Lpθ (R3) ≤ ∥ f ∥θLp0 (R3)∥ f ∥
1−θ
Lp1 (R3).
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3. A priori estimates

This section is devoted to deriving the Caccioppoli-type inequalities, which will play a crucial role
in the proof of our main results.

Proposition 3.1. Let (ρ, v, P) be a smooth solution to (1.1) and (1.2). Suppose that ρ ∈ L∞(R3) and
there exists Ψ ∈ C∞(R3; R3×3), such that v = divΨ and

sup
r> 1

(
r−2−σ3

∫
Br

|Ψ − (Ψ)Br |
σ dx

)
< ∞

for some σ ∈ (3, 6], then ∫
Br

|∇v|2 dx ≤ C
(
1 + r−

1
3−

2
σ + r−1 ∥v∥L1(B 3r

2
\Br)

)
(3.1)

for any r > 1.

Proof. Let r ∈ (1,+∞). Throughout the rest of this paper, C is a positive constant independent of r,
which may be different on different lines. The proofs are split into two steps.

Step 1. Local estimate of ∇v.
Select two positive numbers r1 and r2 such that

r ≤ r1 < r2 ≤
3r
2
, (3.2)

and choose a radial smooth function φ ∈ C∞c (R3) satisfying

φ(x) =

1 in Br1 ,

0 in R3 \ Br2 ,

0 ≤ φ ≤ 1 and ∥∇kφ∥L∞ ≤ C(r2 − r1)−k (k ∈ N+).
Taking the L2-inner product of the second equation in (1.1) with φ2v and integrating by parts,

we have

µ

∫
Br2

φ2|∇v|2 dx + (λ + µ)
∫

Br2

φ2| div v|2 dx

= − µ

∫
Br2

∇v :
(
v ⊗ ∇(φ2)

)
dx − (λ + µ)

∫
Br2

(
v · ∇(φ2)

)
div v dx

−

∫
Br2

div(ρv ⊗ v) · φ2v dx −
∫

Br2

φ2v · ∇P dx

:= I1 + I2 + I3 + I4.

(3.3)

We will estimate the four terms I1, I2, I3 and I4 one by one.
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For I1, by Hölder’s inequality and Young’s inequality, we see

I1 ≤ 2µ
∫

Br2

|φ||∇v||v||∇φ| dx

≤
µ

8

∫
Br2

|∇v|2 dx +
C

(r2 − r1)2

∫
Br2\Br1

|v|2 dx.
(3.4)

Similar to (3.4), we observe

I2 ≤ 2(λ + µ)
∫

Br2

|φ|| div v||v||∇φ| dx

≤
µ

8

∫
Br2

|∇v|2 dx +
C

(r2 − r1)2

∫
Br2\Br1

|v|2 dx.
(3.5)

For I3, utilizing the first equation in (1.1) and integrating by parts, we obtain

I3 = −

∫
Br2

ρv · ∇v · φ2v dx =
1
2

∫
Br2

|v|2 div
(
φ2ρv

)
dx

=

∫
Br2

φρ|v|2v · ∇φ dx,

which implies

I3 ≤
C

r2 − r1

∫
Br2\Br1

|v|3 dx. (3.6)

For I4, we first deduce from (1.2) that

∇P =
aγ
γ − 1

ρ∇
(
ργ−1

)
,

then making use of the integration by parts and utilizing (1.1)1, we find

I4 =
aγ
γ − 1

∫
Br2

ργ−1 div
(
φ2ρv

)
dx =

2aγ
γ − 1

∫
Br2

ργφv · ∇φ dx

≤
C

r2 − r1

∫
Br2\Br1

|v| dx.
(3.7)

Plugging (3.4)–(3.7) into (3.3), we arrive at∫
Br1

|∇v|2 dx +
λ + µ

µ

∫
Br1

| div v|2 dx ≤
1
4

∫
Br2

|∇v|2 dx +
C

(r2 − r1)2

∫
Br2\Br1

|v|2 dx

+
C

r2 − r1

∫
Br2\Br1

|v|3 dx +
C

r2 − r1

∫
Br2\Br1

|v| dx.
(3.8)

Step 2. Caccioppoli type inequality.
Select a radial smooth function ζ ∈ C∞c (R3) satisfying

ζ(x) =

1 if x ∈ Br2 ,

0 if x ∈ R3 \ B2r2−r1 ,
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0 ≤ ζ ≤ 1 and ∥∇kζ∥L∞ ≤ C(r2 − r1)−k (k ∈ N+).
From (3.2), it can be readily verified that

r ≤ r1 < r2 < 2r2 − r1 ≤ 2r. (3.9)

According to v = divΨ, we have∫
Br2\Br1

|v|2 dx ≤
∫

B2r2−r1

|ζv|2 dx =
∫

B2r

div
(
Ψ − (Ψ)B2r

)
· ζ2v dx. (3.10)

Integrating by parts and using Hölder’s inequality and (1.6), we can get∫
B2r

|ζv|2 dx = −
∫

B2r

(
Ψ − (Ψ)B2r

)
: ∇

(
ζ2v

)
dx

≤ Cr
3
2−

3
σ

(∫
B2r

|Ψ − (Ψ)B2r |
σ dx

) 1
σ
(∫

B2r

∣∣∣∇ (
ζ2v

) ∣∣∣2 dx
) 1

2

≤ Cr
11
6 −

1
σ

(∫
B2r

|ζ2∇v + 2ζ ∇ζ ⊗ v|2 dx
) 1

2

≤ Cr
11
6 −

1
σ

(∫
B2r

|ζ2∇v|2 dx +
∫

B2r

|ζ ∇ζ ⊗ v|2 dx
) 1

2

.

In view of Young’s inequality, we find∫
B2r

|ζv|2 dx ≤ Cr
11
6 −

1
σ

(∫
B2r

|ζ2∇v|2 dx
) 1

2

+
Cr

11
6 −

1
σ

r2 − r1

(∫
B2r

|ζv|2 dx
) 1

2

≤ Cr
11
6 −

1
σ

∫
B2r2−r1

|∇v|2 dx
 1

2

+
Cr

11
3 −

2
σ

(r2 − r1)2 +
1
2

∫
B2r

|ζv|2 dx.

By the fact that ζ is supported in B2r2−r1 and (3.9), we have∫
B2r2−r1

|ζv|2 dx ≤ Cr
11
6 −

1
σ

∫
B2r2−r1

|∇v|2 dx
 1

2

+
Cr

11
3 −

2
σ

(r2 − r1)2 , (3.11)

which ensures

C
(r2 − r1)2

∫
Br2\Br1

|v|2 dx ≤
C

(r2 − r1)2

∫
B2r2−r1

|ζv|2 dx

≤
1
12

∫
B2r2−r1

|∇v|2 dx +
Cr

11
3 −

2
σ

(r2 − r1)4 .

(3.12)

Considering σ ∈ (3, 6], by the integration by parts and Hölder’s inequality, it follows that
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∫
Br2\Br1

|v|3 dx ≤
∫

B2r

|ζ2v|3 dx

=

∫
B2r

div
(
Ψ − (Ψ)B2r

)
· |ζ3v|ζ3v dx

= −

∫
B2r

(
Ψ − (Ψ)B2r

)
: ∇

(
|ζ3v|ζ3v

)
dx

≤

(∫
B2r

∣∣∣Ψ − (Ψ)B2r

∣∣∣σ dx
) 1
σ
(∫

B2r

∣∣∣∇ (
ζ3v

) ∣∣∣2 dx
) 1

2
(∫
R3
|ζ3v|

2σ
σ−2 dx

)σ−2
2σ

,

which together with (1.6), Lemma 2.2 and Young’s inequality implies∫
B2r

|ζ2v|3 dx ≤ Cr
1
3+

2
σ

(∫
B2r

|ζ3∇v|2 dx
) 1

2
(∫
R3
|ζ3v|3 dx

) 2
3−

2
σ
(∫
R3
|ζ3v|6 dx

) 1
σ−

1
6

+Cr
1
3+

2
σ

(∫
B2r

(|ζ2v||∇ζ |)2 dx
) 1

2
(∫
R3
|ζ3v|3 dx

) 2
3−

2
σ
(∫
R3
|ζ3v|6 dx

) 1
σ−

1
6

≤
1
2

∫
B2r

|ζ2v|3 dx +Cr
(∫

B2r

|ζ3∇v|2 dx
) 3σ

2(σ+6)
(∫
R3
|ζ3v|6 dx

) 6−σ
2(σ+6)

+Cr
(

1
(r2 − r1)2

∫
B2r

|ζ2v|2 dx
) 3σ

2(σ+6)
(∫
R3
|ζ3v|6 dx

) 6−σ
2(σ+6)

,

namely, ∫
B2r

|ζ2v|3 dx ≤ Cr
(∫

B2r

|ζ3∇v|2 dx
) 3σ

2(σ+6)
(∫
R3
|ζ3v|6 dx

) 6−σ
2(σ+6)

+Cr
(

1
(r2 − r1)2

∫
B2r

|ζ2v|2 dx
) 3σ

2(σ+6)
(∫
R3
|ζ3v|6 dx

) 6−σ
2(σ+6)

.

(3.13)

Making use of the Sobolev embedding H1(R3) ↪→ L6(R3) (see, e.g., [29]), one observes(∫
R3
|ζ3v|6 dx

) 6−σ
2(σ+6)

≤ C
(∫
R3

∣∣∣∣∇ (
ζ3v

)∣∣∣∣2 dx
) 18−3σ

2(σ+6)

≤ C
(∫
R3
|ζ3∇v|2 dx +

∫
R3
|ζ2∇ζ ⊗ v|2 dx

) 18−3σ
2(σ+6)

≤ C
(∫
R3
|ζ3∇v|2 dx

) 18−3σ
2(σ+6)

+C
(

1
(r2 − r1)2

∫
R3
|ζ2v|2 dx

) 18−3σ
2(σ+6)

.

(3.14)

Inserting (3.14) into (3.13) leads to
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∫
B2r

|ζ2v|3 dx ≤ Cr
∫

B2r2−r1

|∇v|2 dx
 9
σ+6

+Cr
 1
(r2 − r1)2

∫
B2r2−r1

|ζ2v|2 dx
 9
σ+6

+Cr
∫

B2r2−r1

|∇v|2 dx
 3σ

2(σ+6)
 1
(r2 − r1)2

∫
B2r2−r1

|ζ2v|2 dx
 18−3σ

2(σ+6)

+Cr
∫

B2r2−r1

|∇v|2 dx
 18−3σ

2(σ+6)
 1
(r2 − r1)2

∫
B2r2−r1

|ζ2v|2 dx
 3σ

2(σ+6)

≤ Cr
∫

B2r2−r1

|∇v|2 dx
 9
σ+6

+Cr
 1
(r2 − r1)2

∫
B2r2−r1

|ζ2v|2 dx
 9
σ+6

.

Noting that 9
σ+6 < 1 and utilizing Young’s inequality, we then obtain

C
r2 − r1

∫
B2r2−r1

|ζ2v|3 dx =
C

r2 − r1

∫
B2r

|ζ2v|3 dx

≤
Cr

r2 − r1

∫
B2r2−r1

|∇v|2 dx
 9
σ+6

+
Cr

r2 − r1

 1
(r2 − r1)2

∫
B2r2−r1

|ζ2v|2 dx
 9
σ+6

≤
1

12

∫
B2r2−r1

|∇v|2 dx +
1

(r2 − r1)2

∫
B2r2−r1

|ζ2v|2 dx +
Cr

σ+6
σ−3

(r2 − r1)
σ+6
σ−3

,

which along with (3.12) implies

C
r2 − r1

∫
B2r2−r1

|ζ2v|3 dx ≤
1
6

∫
B2r2−r1

|∇v|2 dx +
Cr

11
3 −

2
σ

(r2 − r1)4 +
Cr

σ+6
σ−3

(r2 − r1)
σ+6
σ−3

.

Therefore,
C

r2 − r1

∫
Br2\Br1

|v|3 dx ≤
C

r2 − r1

∫
B2r2−r1

|ζ2v|3 dx

≤
1
6

∫
B2r2−r1

|∇v|2 dx +
Cr

11
3 −

2
σ

(r2 − r1)4 +
Cr

σ+6
σ−3

(r2 − r1)
σ+6
σ−3

.

(3.15)

Since r2 ≤
3r
2 , plugging (3.12) and (3.15) into (3.8), one sees∫

Br1

|∇v|2 dx ≤
1
2

∫
B2r2−r1

|∇v|2 dx

+C

 r
11
3 −

2
σ

(r2 − r1)4 +
r
σ+6
σ−3

(r2 − r1)
σ+6
σ−3

+
1

r2 − r1

∫
B 3r

2
\Br

|v| dx

 .
(3.16)

From (3.9) and (3.16), we can deduce by the standard iteration argument (see, e.g., [30, Lemma 3.1,
page 161]) that ∫

Br

|∇v|2 dx ≤ C

1 + r−
1
3−

2
σ +

1
r

∫
B 3r

2
\Br

|v| dx

 ,
which is consistent with (3.1).
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4. Proof of the main theorems

In this section, we will utilize the Caccioppoli-type inequalities established in Section 3 to prove
Theorems 1.1 and 1.2. We begin with some estimates in the framework of Lebesgue spaces.

Proposition 4.1. Let v ∈ C∞(R3) satisfy ∇v ∈ L2(R3). Suppose that there is Ψ ∈ C∞(R3; R3×3), such
that v = divΨ and

sup
r> 1

(
r−2−σ3

∫
Br

|Ψ − (Ψ)Br |
σ dx

)
< ∞

with σ ∈ (3, 6], then we have

1
r2

∫
B 3r

2
\Br

|v|2 dx→ 0 as r → +∞

and
1
r

∫
B 3r

2
\Br

|v|3 dx→ 0 as r → +∞.

Proof. Let r > 1, then choose a radial smooth function χ ∈ C∞c (R3) satisfying

χ(x) =

1 in B 3r
2
\ Br,

0 in B r
2
∪

(
R3\B2r

)
,

0 ≤ χ ≤ 1 and ∥∇kχ∥L∞ ≤ Cr−k (k ∈ N+).
Making use of the assumption v = divΨ, Hölder’s inequality and Young’s inequality, integrating by

parts and repeating the previous estimation process of (3.10) and (3.11) in Section 3, we can obtain

∫
B2r

|v χ|2 dx ≤ Cr
11
6 −

1
σ

∫
B2r\B r

2

|∇v|2 dx


1
2

+Cr
5
3−

2
σ . (4.1)

Therefore,

1
r2

∫
B 3r

2
\Br

|v|2 dx ≤
1
r2

∫
B2r

|v χ|2 dx

≤ Cr−
1
6−

1
σ

∫
B2r\B r

2

|∇v|2 dx


1
2

+Cr−
1
3−

2
σ

≤

∫
B2r\B r

2

|∇v|2 dx +Cr−
1
3−

2
σ ,

which together with the assumption ∇v ∈ L2(R3) ensures

1
r2

∫
B 3r

2
\Br

|v|2 dx→ 0 as r → +∞.
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Considering v = divΨ and integrating by parts, we derive that

∫
B 3r

2
\Br

|v|3 dx ≤
∫

B2r\B r
2

|v χ3|3 dx

=

∫
B2r\B r

2

χ9|v|v · div
(
Ψ − (Ψ)B2r

)
dx

≤
C
r

∫
B2r\B r

2

χ2
∣∣∣Ψ − (Ψ)B2r

∣∣∣∣∣∣v χ3
∣∣∣2 dx +

∫
B2r\B r

2

χ2
∣∣∣Ψ − (Ψ)B2r

∣∣∣∣∣∣∇v χ
∣∣∣∣∣∣v χ3

∣∣∣ dx

:= J1 +J2.

(4.2)

In what follows, we estimate J1 and J2 separately.

For J1, by the assumption (1.6) and Hölder’s inequality, we get

J1 =
C
r

∫
B2r\B r

2

χ2
∣∣∣Ψ − (Ψ)B2r

∣∣∣∣∣∣v χ3
∣∣∣2 dx

≤
C
r

∫
B2r\B r

2

∣∣∣Ψ − (Ψ)B2r

∣∣∣σ dx


1
σ
∫

B2r\B r
2

|v χ3|3 dx


2
3

r1− 3
σ

≤ Cr
1
3−

1
σ

∫
B2r\B r

2

|v χ3|3 dx


2
3

,

which together with Young’s inequality yields

J1 ≤ Cr1− 3
σ +

1
4

∫
B2r\B r

2

|v χ3|3 dx. (4.3)

For J2, by the assumption (1.6) and by applying the Hölder inequality, we get

J2 =

∫
B2r\B r

2

χ2
∣∣∣Ψ − (Ψ)B2r

∣∣∣∣∣∣∇v χ
∣∣∣∣∣∣v χ3

∣∣∣ dx

≤

∫
B2r\B r

2

∣∣∣Ψ − (Ψ)B2r

∣∣∣σ dx


1
σ
∫

B2r\B r
2

|∇v|2 dx


1
2 (∫

R3
|v χ3|

2σ
σ−2 dx

)σ−2
2σ

≤ Cr
1
3+

2
σ

∫
B2r\B r

2

|∇v|2 dx


1
2 (∫

R3
|v χ3|

2σ
σ−2 dx

)σ−2
2σ

.

(4.4)
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By Lemma 2.2 and the Sobolev embedding H1(R3) ↪→ L6(R3), we can see

(∫
R3
|v χ3|

2σ
σ−2 dx

)σ−2
2σ

≤

(∫
R3
|v χ3|6 dx

) 1
σ−

1
6
(∫
R3
|v χ3|3 dx

) 2
3−

2
σ

≤ C

(∫
R3
|∇v χ3|2 dx

) 1
2

+
1
r

(∫
R3
|v χ2|2 dx

) 1
2


6
σ−1 (∫

R3
|v χ3|3 dx

) 2
3−

2
σ

≤ C

∫
B2r\B r

2

|∇v|2 dx


3
σ−

1
2
∫

B2r\B r
2

|v χ3|3 dx


2
3−

2
σ

+Cr1− 6
σ

(∫
R3
|v χ|2 dx

) 3
σ−

1
2
∫

B2r\B r
2

|v χ3|3 dx


2
3−

2
σ

.

(4.5)

Substituting (4.5) and (4.1) into (4.4) and by using Young’s inequality, we observe

J2 ≤ Cr
1
3+

2
σ

∫
B2r\B r

2

|∇v|2 dx
 3
σ

∫
B2r\B r

2

|v χ3|3 dx


2
3−

2
σ

+Cr
4
3−

4
σ

∫
B2r\B r

2

|∇v|2 dx


1
2
∫

B2r\B r
2

|v χ3|3 dx


2
3−

2
σ

r 11
6 −

1
σ

∫
B2r\B r

2

|∇v|2 dx


1
2

+ r
5
3−

2
σ


3
σ−

1
2

≤
1
8

∫
B2r\B r

2

|v χ3|3 dx +Cr

∫
B2r\B r

2

|∇v|2 dx


9
σ+6

+Cr
1
3+

2
σ

∫
B2r\B r

2

|∇v|2 dx


1
2
∫

B2r\B r
2

|v χ3|3 dx


2
3−

2
σ

r− 1
6−

1
σ

∫
B2r\B r

2

|∇v|2 dx


1
2

+ r−
1
3−

2
σ


3
σ−

1
2

≤
1
4

∫
B2r\B r

2

|v χ3|3 dx +Cr

∫
B2r\B r

2

|∇v|2 dx


9
σ+6

+Cr

∫
B2r\B r

2

|∇v|2 dx


3σ

2(σ+6)
r− 1

6−
1
σ

∫
B2r\B r

2

|∇v|2 dx


1
2

+ r−
1
3−

2
σ


3(6−σ)
2(σ+6)

,

which follows from Young’s inequality that

J2 ≤
1
4

∫
B2r\B r

2

|v χ3|3 dx +Cr

∫
B2r\B r

2

|∇v|2 dx


9
σ+6

+Cr

r− 1
6−

1
σ

∫
B2r\B r

2

|∇v|2 dx


1
2

+ r−
1
3−

2
σ


9
σ+6

≤
1
4

∫
B2r\B r

2

|v χ3|3 dx +Cr

∫
B2r\B r

2

|∇v|2 dx


9
σ+6

+Cr1− 3
σ .

(4.6)
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Plugging (4.3) and (4.6) into (4.2) yields

∫
B2r\B r

2

|v χ3|3 dx ≤ Cr

∫
B2r\B r

2

|∇v|2 dx


9
σ+6

+Cr1− 3
σ ,

which implies

∫
B 3r

2
\Br

|v|3 dx ≤ Cr

∫
B2r\B r

2

|∇v|2 dx


9
σ+6

+Cr1− 3
σ .

Since ∇v ∈ L2(R3), we see

1
r

∫
B 3r

2
\Br

|v|3 dx ≤ C

∫
B2r\B r

2

|∇v|2 dx


9
σ+6

+Cr−
3
σ → 0 as r → +∞.

The proof of Proposition 4.1 is completed.

With Propositions 3.1 and 4.1 in hand, we are now ready to prove Theorems 1.1 and 1.2. For
simplicity, we adopt the following definition:

Mγ, pv(r) =

r−γ ∫B 3r
2
\Br

|v(x)|p dx


1
p

. (4.7)

Proof of Theorem 1.1. Let r > 1. We first show that ∇v ∈ L2(R3) by Proposition 3.1. By virtue of
Lemma 2.1, we have

1
r

∫
B 3r

2
\Br

|v| dx ≤
C
r
∥v∥Lp, q(B 3r

2
\Br)∥1∥

L
p

p−1 ,
q

q−1 (B 3r
2

)
≤ Cr2− 3

p ∥v∥Lp, q(B 3r
2
\Br). (4.8)

Substituting (4.8) into (3.1) leads to∫
Br

|∇v|2 dx ≤ C
(
1 + r−

1
3−

2
σ + r2− 3

p ∥v∥Lp, q(B 3r
2
\Br)

)
. (4.9)

Since v ∈ Lp, q(R3) with (p, q) ∈ [1, 3
2 )× [1, +∞] or p = q = 3

2 , letting r → +∞ in (4.9) and making
use of Fatou’s lemma, we see ∫

R3
|∇v|2 dx ≤ lim inf

r→∞

∫
Br

|∇v|2 dx ≤ C. (4.10)

We next prove the vanishing property of ∥∇v∥L2(R3). To this end, by the standard iteration argument
to (3.8) , we observe∫

Br

|∇v|2 dx ≤
C
r2

∫
B 3r

2
\Br

|v|2 dx +
C
r

∫
B 3r

2
\Br

|v|3 dx +
C
r

∫
B 3r

2
\Br

|v| dx. (4.11)
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Inserting (4.8) into (4.11), we arrive at∫
Br

|∇v|2 dx ≤
C
r2

∫
B 3r

2
\Br

|v|2 dx +
C
r

∫
B 3r

2
\Br

|v|3 dx +Cr2− 3
p ∥v∥Lp, q(B 3r

2
\Br). (4.12)

Since v ∈ Lp, q(R3) with (p, q) ∈ [1, 3
2 ) × [1, +∞] or p = q = 3

2 , we have

r2− 3
p ∥v∥Lp, q(B 3r

2
\Br) → 0 as r → +∞,

which together with Proposition 4.1 and (4.12) yields

lim
r→∞

∫
Br

|∇v|2 dx = 0.

By virtue of (4.10) and the Lebesgue dominated convergence theorem, one can see∫
R3
|∇v|2 dx = 0.

It follows from the Sobolev embedding H1(R3) ↪→ L6(R3) that

∥v∥L6(R3) ≤ C∥∇v∥L2(R3) = 0.

Hence, v = 0 in R3.
Furthermore, combining (1.2) and (1.1)2, we conclude that ρ is a constant in R3. The proof of

Theorem 1.1 is then finished.

We proceed to give the proof of Theorem 1.2.

Proof of Theorem 1.2. (a) Since v ∈ Ṁp,γ(R3) for 1 ≤ p < γ < 3
2 , by virtue of Hölder’s inequality, we

derive that

1
r

∫
B 3r

2
\Br

|v| dx ≤ Cr2− 3
γ r

3
γ

r−3
∫

B 3r
2
\Br

|v|p dx


1
p

≤ Cr2− 3
γ ∥v∥Ṁp, γ . (4.13)

Substituting (4.13) into (3.1), we find∫
Br

|∇v|2 dx ≤ C
(
1 + r−

1
3−

2
σ + r2− 3

γ ∥v∥Ṁp, γ(R3)

)
.

By v ∈ Ṁp,γ(R3), letting r → ∞ then yields that∫
R3
|∇v|2 dx ≤ C. (4.14)

Conducting the standard iteration argument on (3.8) and utilizing (4.13), we can obtain that∫
Br

|∇v|2 dx ≤
C
r2

∫
B 3r

2
\Br

|v|2 dx +
C
r

∫
B 3r

2
\Br

|v|3 dx +
C
r

∫
B 3r

2
\Br

|v| dx

≤
C
r2

∫
B 3r

2
\Br

|v|2 dx +
C
r

∫
B 3r

2
\Br

|v|3 dx +Cr2− 3
γ ∥v∥Ṁp, γ(R3).

(4.15)
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By (4.14) and the assumption (1.7), we can deduce from Proposition 4.1 that

lim
r→∞

1
r2

∫
B 3r

2
\Br

|v|2 dx = 0 (4.16)

and
lim
r→∞

1
r

∫
B 3r

2
\Br

|v|3 dx = 0. (4.17)

Since v ∈ Ṁp,γ(R3) with 1 ≤ p < γ < 3
2 , we have that

lim
r→∞

r2− 3
γ ∥v∥Ṁp, γ(R3) = 0. (4.18)

Plugging (4.16)–(4.18) into (4.15) and using the Lebesgue dominated convergence theorem lead to∫
R3
|∇v|2 dx = 0,

which together with the Sobolev embedding H1(R3) ↪→ L6(R3) implies that v vanishes and ρ is a
constant in R3.

(b) and (c). In the case of 0 ⩽ γ < 1 ⩽ p < 3
2 , by Hölder’s inequality and the definitionMγ, pv(r)

given in (4.7), we can readily see that

1
r

∫
B 3r

2
\Br

|v| dx ≤ Cr2− 3
p+
γ
pMγ, pv(r).

It follows from (3.1) that∫
Br

|∇v|2 dx ≤ C
(
1 + r−

1
3−

2
σ + r2− 3

p+
γ
pMγ, pv(r)

)
. (4.19)

In the case (b), i.e., when v ∈ Mp
γ (R3) with 2p+γ < 3, according to the definition of ∥·∥Mp

γ
, we obtain

r2− 3
p+
γ
pMγ, pv(r) ≤ r2− 3

p+
γ
p ∥v∥Mp

γ
→ 0 (r → ∞). (4.20)

In the case (c), i.e., when v ∈ Mp
γ, 0(R3) with 2p + γ = 3, from the definition of the space Mp

γ, 0(R3),
we have

r2− 3
p+
γ
pMγ, pv(r) → 0 (r → ∞). (4.21)

Substituting (4.20) or (4.21) into (4.19) separately, we see∫
R3
|∇v|2 dx ≤ C. (4.22)

Combining (3.8), (4.20)–(4.22), the assumption (1.7) and Proposition 4.1 and repeating the previous
estimation process of (4.15)–(4.18), we can also find∫

R3
|∇v|2 dx = 0,

which implies the desired conclusion. The proof of Theorem 1.2 is finished.
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5. Conclusions

This paper is concerned with the Liouville-type theorem for the stationary barotropic compressible
Navier–Stokes equations in R3. We proved that smooth solutions must be trivial under the L∞

boundedness of the density and some new assumptions on the velocity field. This work contains two
main results. The first one allows the velocity field to be in the appropriate Lorentz space Lp, q(R3) and
gives a delicate condition related to the growth rate of the local mean oscillation of a “potential” Ψ
with the velocity v = divΨ. The subsequent corollary is a weaker result phrased in terms of the
BMO−1 space. The second main result addresses the case of allowing the velocity being in the (local)
Morrey space. Our work improves the result of Li-Niu [14] and also extends the result of Liu [16] to
the framework of Morrey spaces.
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