Research article

Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces

  • Received: 28 November 2024 Revised: 18 February 2025 Accepted: 24 February 2025 Published: 05 March 2025
  • This paper is devoted to the study of the Liouville-type theorem of the stationary fractional compressible MHD systems in anisotropic Lebesgue spaces in $ \mathbb{R}^3 $. We showed that the solution is trivial when certain anisotropic integrability conditions are satisfied in terms of the velocity and the magnetic field components.

    Citation: Wenda Pei, Yong Zeng. Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces[J]. Electronic Research Archive, 2025, 33(3): 1306-1322. doi: 10.3934/era.2025058

    Related Papers:

  • This paper is devoted to the study of the Liouville-type theorem of the stationary fractional compressible MHD systems in anisotropic Lebesgue spaces in $ \mathbb{R}^3 $. We showed that the solution is trivial when certain anisotropic integrability conditions are satisfied in terms of the velocity and the magnetic field components.



    加载中


    [1] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd edition, Springer Monographs in Mathematics, Springer, New York, 2011. https://doi.org/10.1007/978-0-387-09620-9
    [2] D. Chae, Liouville-type theorem for the forced Euler equations and the Navier-Stokes equations, Commun. Math. Phys., 326 (2014), 37–48. https://doi.org/10.1007/s00220-013-1868-x doi: 10.1007/s00220-013-1868-x
    [3] G. Seregin, Liouville type theorem for stationary Navier-Stokes equations, Nonlinearity, 29 (2016), 2191–2195. https://doi.org/10.1088/0951-7715/29/8/2191 doi: 10.1088/0951-7715/29/8/2191
    [4] D. Chae, Note on the Liouville type problem for the stationary Navier-Stokes equations in ${\mathbb{R}}^3$, J. Differ. Equations, 268 (2020), 1043–1049. https://doi.org/10.1016/j.jde.2019.08.027. doi: 10.1016/j.jde.2019.08.027
    [5] D. Chae, Relative decay conditions on Liouville type theorem for the steady Navier-Stokes system, J. Math. Fluid Mech., 23 (2021), 1–6. https://doi.org/10.1007/s00021-020-00549-9 doi: 10.1007/s00021-020-00549-9
    [6] D. Chae, J. Wolf, On Liouville type theorems for the steady Navier-Stokes equations in ${\mathbb{R}}^3$, J. Differ. Equations, 261 (2016), 5541–5560. https://doi.org/10.1016/j.jde.2016.08.014 doi: 10.1016/j.jde.2016.08.014
    [7] D. Chae, J. Wolf, On Liouville type theorem for the stationary Navier-Stokes equations, Calc. Var. Partial Differ. Equations, 58 (2019), 1–11. https://doi.org/10.1007/s00526-019-1549-5 doi: 10.1007/s00526-019-1549-5
    [8] D. Chae, T. Yoneda, On the Liouville theorem for the stationary Navier-Stokes equations in a critical space, J. Math. Anal. Appl., 405 (2013), 706–710. https://doi.org/10.1016/j.jmaa.2013.04.040 doi: 10.1016/j.jmaa.2013.04.040
    [9] D. Chamorro, O. Jarrín, P. G. Lemarié-Rieusset, Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces, Ann. de l'Institut Henri Poincaré, Anal. non linéaire, 38 (2021), 689–710. https://doi.org/10.1016/j.anihpc.2020.08.006 doi: 10.1016/j.anihpc.2020.08.006
    [10] O. Jarrín, A remark on the Liouville problem for stationary Navier-Stokes equations in Lorentz and Morrey spaces, J. Math. Anal. Appl., 486 (2020), 123871. https://doi.org/10.1016/j.jmaa.2020.123871 doi: 10.1016/j.jmaa.2020.123871
    [11] H. Kozono, Y. Terasawa, Y. Wakasugi, A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions, J. Funct. Anal., 272 (2017), 804–818. https://doi.org/10.1016/j.jfa.2016.06.019 doi: 10.1016/j.jfa.2016.06.019
    [12] O. Jarrín, A short note on the Liouville problem for the steady-state Navier–Stokes equations, Arch. Math., 121 (2023), 303–315. https://doi.org/10.1007/s00013-023-01891-w doi: 10.1007/s00013-023-01891-w
    [13] G. Seregin, Remarks on Liouville type theorems for steady-state Navier-Stokes equations, St. Petersburg Math. J., 30 (2019), 321–328. https://doi.org/10.1090/spmj/1544 doi: 10.1090/spmj/1544
    [14] G. Seregin, W. Wang, Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations, St. Petersburg Math. J., 31 (2019), 269–278. https://doi.org/10.1090/spmj/1603 doi: 10.1090/spmj/1603
    [15] D. Chae, Remarks on the Liouville type results for the compressible Navier-Stokes equations in ${\mathbb{R}}^3$, Nonlinearity, 25 (2012), 1345. https://doi.org/10.1088/0951-7715/25/5/1345 doi: 10.1088/0951-7715/25/5/1345
    [16] D. Li, X. Yu, On some Liouville type theorems for the compressible Navier-Stokes equations, Discrete Contin. Dyn. Syst., 34 (2014), 4719–4733. https://doi.org/10.3934/dcds.2014.34.4719 doi: 10.3934/dcds.2014.34.4719
    [17] Z. Li, P. Niu, Liouville type theorems for the 3D stationary hall-MHD equations, Z. Angew. Math. Mech. ZAMM, 100 (2020), e201900200. https://doi.org/10.1002/zamm.201900200 doi: 10.1002/zamm.201900200
    [18] Z. Li, P. Niu, Notes on Liouville type theorems for the stationary compressible Navier-Stokes equations, Appl. Math. Lett., 114 (2021), 106908. https://doi.org/10.1016/j.aml.2020.106908 doi: 10.1016/j.aml.2020.106908
    [19] X. Zhong, A Liouville theorem for the compressible Navier-Stokes equations, Math. Methods Appl. Sci., 41 (2018), 5091–5095. https://doi.org/10.1002/mma.5055 doi: 10.1002/mma.5055
    [20] Y. Wang, J. Xiao, A Liouville type theorem for the stationary fractional Navier-Stokes-Poisson system, J. Math. Fluid Mech., 20 (2018), 485–498. https://doi.org/10.1007/s00021-017-0330-9 doi: 10.1007/s00021-017-0330-9
    [21] J. Yang, On Liouville type theorem for the steady fractional Navier-Stokes equations in ${\mathbb{R}}^3$, J. Math. Fluid Mech., 24 (2022), 81. https://doi.org/10.1007/s00021-022-00719-x doi: 10.1007/s00021-022-00719-x
    [22] D. Chamorro, B. Poggi, On an almost sharp Liouville type theorem for fractional Navier-Stokes equations, Publ. Mat., 69 (2025), 27–43. https://doi.org/10.5565/PUBLMAT6912502 doi: 10.5565/PUBLMAT6912502
    [23] D. Chae, P. Degond, J. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 555–565. https://doi.org/10.1016/j.anihpc.2013.04.006 doi: 10.1016/j.anihpc.2013.04.006
    [24] Y. Zeng, Liouville-type theorem for the steady compressible Hall-MHD system, Math. Methods Appl. Sci., 41 (2018), 205–211. https://doi.org/10.1002/mma.4605 doi: 10.1002/mma.4605
    [25] D. Chae, S. Weng, Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations, Discret. Contin. Dyn. Syst., 36 (2016), 5267–5285. https://doi.org/10.3934/dcds.2016031 doi: 10.3934/dcds.2016031
    [26] D. Chae, J. Wolf, On Liouville type theorems for the stationary MHD and Hall-MHD systems, J. Differ. Equations, 295 (2021), 233–248. https://doi.org/10.1016/j.jde.2021.05.061 doi: 10.1016/j.jde.2021.05.061
    [27] D. Chae, J. Kim, J. Wolf, On Liouville-type theorems for the stationary MHD and the Hall-MHD systems in ${\mathbb{R}}^3$, Z. Angew. Math. Phys., 73 (2022), 66. https://doi.org/10.1007/s00033-022-01701-3 doi: 10.1007/s00033-022-01701-3
    [28] W. Wang, Y. Wang, Liouville-type theorems for the stationary MHD equations in 2D, Nonlinearity, 32 (2019), 4483–4505. https://doi.org/10.1088/1361-6544/ab32a6 doi: 10.1088/1361-6544/ab32a6
    [29] W. Wang, Liouville type theorems for the planar stationary MHD equations with growth at infinity, J. Math. Fluid Mech. 23 (2021), 88. https://doi.org/10.1007/s00021-021-00615-w doi: 10.1007/s00021-021-00615-w
    [30] X. Chen, S. Li, W. Wang, Remarks on Liouville-type theorems for the steady MHD and Hall-MHD equations, J. Nonlinear Sci., 32 (2022), 12. https://doi.org/10.1007/s00332-021-09768-4 doi: 10.1007/s00332-021-09768-4
    [31] Z. Li, P. Liu, P. Niu, Remarks on Liouville type theorems for the 3D stationary MHD equations, Bull. Korean Math. Soc., 57 (2020), 1151–1164. https://doi.org/10.4134/BKMS.b190828 doi: 10.4134/BKMS.b190828
    [32] Z. Li, Y. Su, Liouville type theorems for the stationary Hall-magnetohydrodynamic equations in local Morrey spaces, Math. Methods Appl. Sci., 45 (2022), 10891–10903. https://doi.org/10.1002/mma.8423 doi: 10.1002/mma.8423
    [33] P. Liu, Liouville-type theorems for the stationary incompressible inhomogeneous Hall-MHD and MHD equations, Banach J. Math. Anal., 17 (2023), 13. https://doi.org/10.1007/s43037-022-00236-z doi: 10.1007/s43037-022-00236-z
    [34] B. Yuan, Y. Xiao, Liouville-type theorems for the 3D stationary Navier-Stokes, MHD and Hall-MHD equations, J. Math. Anal. Appl., 491 (2020), 124343. https://doi.org/10.1016/j.jmaa.2020.124343 doi: 10.1016/j.jmaa.2020.124343
    [35] S. Schulz, Liouville type theorem for the stationary equations of magneto-hydrodynamics, Acta Math. Sci., 39 (2019), 491–497. https://doi.org/10.1007/s10473-019-0213-7 doi: 10.1007/s10473-019-0213-7
    [36] W. Luo, Z. Yin, The Liouville theorem and the $L^2$ decay for the FENE dumbbell model of polymeric flows, Arch. Ration. Mech. Anal., 224 (2017), 209–231. https://doi.org/10.1007/s00205-016-1072-1 doi: 10.1007/s00205-016-1072-1
    [37] T. Phan, Liouville type theorems for 3D stationary Navier-Stokes equations in weighted mixed-norm Lebesgue spaces, Dyn. Partial Differ. Equations, 17 (2020), 229–243. https://dx.doi.org/10.4310/DPDE.2020.v17.n3.a2 doi: 10.4310/DPDE.2020.v17.n3.a2
    [38] D. Chae, Anisotropic Liouville type theorem for the stationary Naiver-Stokes equations in ${\mathbb{R}}^3$, Appl. Math. Lett., 142 (2023), 108655. https://doi.org/10.1016/j.aml.2023.108655 doi: 10.1016/j.aml.2023.108655
    [39] D. Chae, Anisotropic Liouville type theorem for the MHD system in ${\mathbb{R}}^n$, J. Math. Phys., 64 (2023), 121501. https://doi.org/10.1063/5.0159958 doi: 10.1063/5.0159958
    [40] H. Fan, M. Wang, The Liouville type theorem for the stationary magnetohydrodynamic equations in weighted mixed-norm Lebesgue spaces, Dyn. Partial Differ. Equations, 18 (2021), 327–340. https://doi.org/10.1063/5.0036229 doi: 10.1063/5.0036229
    [41] F. Wu, Liouville-type theorems for the 3D compressible magnetohydrodynamics equations, Nonlinear Anal. Real World Appl., 64 (2022), 103429. https://doi.org/10.1016/j.nonrwa.2021.103429 doi: 10.1016/j.nonrwa.2021.103429
    [42] Y. Zeng, On Liouville type theorems for the 3D stationary fractional MHD system in anisotropic Lebesgue spaces, preprint.
    [43] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), Springer, Heidelberg, 343 (2011). https://doi.org/10.1007/978-3-642-16830-7
    [44] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differ. Equations, 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
    [45] A. Benedek, R. Panzone, The space $L^p$, with mixed norm, Duke Math. J., 28 (1961), 301–324. https://doi.org/10.1215/S0012-7094-61-02828-9 doi: 10.1215/S0012-7094-61-02828-9
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(128) PDF downloads(18) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog