

ERA, 33(3): 1306–1322. DOI: 10.3934/era.2025058 Received: 28 November 2024 Revised: 18 February 2025 Accepted: 24 February 2025 Published: 05 March 2025

https://www.aimspress.com/journal/era

Research article

Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces

Wenda Pei and Yong Zeng*

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China

* Correspondence: Email: yzeng@ctbu.edu.cn.

Abstract: This paper is devoted to the study of the Liouville-type theorem of the stationary fractional compressible MHD systems in anisotropic Lebesgue spaces in \mathbb{R}^3 . We showed that the solution is trivial when certain anisotropic integrability conditions are satisfied in terms of the velocity and the magnetic field components.

Keywords: fractional compressible MHD system; Liouville-type theorem; anisotropic Lebesgue spaces

1. Introduction and main results

In this paper, we are interested in the Liouville-type theorem in anisotropic Lebesgue spaces for the following stationary fractional compressible MHD system:

$$\begin{cases} \operatorname{div}(\rho u) = 0, & \text{in } \mathbb{R}^3, \\ (-\Delta)^{\alpha} u + \operatorname{div}(\rho u \otimes u) - (b \cdot \nabla)b + \nabla P = 0, & \text{in } \mathbb{R}^3, \\ (-\Delta)^{\beta} b + (u \cdot \nabla)b - (b \cdot \nabla)u = 0, & \text{in } \mathbb{R}^3, \\ \operatorname{div} b = 0, & \text{in } \mathbb{R}^3. \end{cases}$$
(1.1)

Here, $u = (u_1(x), u_2(x), u_3(x)), b = (b_1(x), b_2(x), b_3(x))$ and ρ represent the velocity field, the magnetic field, and the density, respectively. $P(\rho) = a\rho^{\gamma}$ is the pressure with constant a > 0 and the adiabatic exponent $\gamma \ge 1$. α and β are positive constants. The fractional Laplacian $(-\Delta)^{\alpha}$ is defined at the Fourier level by the symbol $|\xi|^{2\alpha}$.

When b = 0, $\alpha = 1$, and ρ =constant, the above system (1.1) reduces to the classical 3D stationary Navier-Stokes system

$$\begin{cases} -\Delta u + (u \cdot \nabla)u + \nabla P = 0, & \text{in } \mathbb{R}^3, \\ \operatorname{div} u = 0, & \operatorname{in } \mathbb{R}^3. \end{cases}$$
(1.2)

The Liouville problem for (1.2) still remains open: Is zero the only decay solution of (1.2) that verifies the finite Dirichlet integral condition?

$$D(u) = \int_{\mathbb{R}^3} |\nabla u|^2 \, dx < \infty. \tag{1.3}$$

There are numerous results on the Liouville problem for (1.2). One of the first results is due to Galdi [1], who proved that $u \in L^{\frac{9}{2}}(\mathbb{R}^3)$ is sufficient to imply that u = 0. In [2], Chae showed that $\Delta u \in L^{\frac{6}{3}}(\mathbb{R}^3)$, which with the same scaling as (1.3), implies that u = 0. In [3], Seregin proved that u = 0 if $u \in L^6(\mathbb{R}^3) \cap BMO^{-1}$. Sufficient conditions involving the head pressure for the triviality of the solution to the Navier–Stokes equations are studied by Chae in [4–6]. In [7], Chae and Wolf proved that the solution u to (1.2) is trivial if the L^s mean oscillation of the potential function V of u has a certain growth condition near infinity. In [8], Chae and Yoneda proved that if the solution $u \in \dot{H}^1(\mathbb{R}^3)$ to (1.2) satisfies additional conditions characterized by the decays near infinity and by the oscillation, then u = 0. In [9, 10], Jarrín and his collaborators studied the Liouville-type theorems in Lorentz and Morrey spaces. Kozono, Terasawa, and Wakasugi proved in [11] that u = 0 if the vorticity $\omega = o(|x|^{-\frac{5}{3}})$ as $|x| \to \infty$ or $||u||_{L^{\frac{9}{2},\infty}} \le \delta D(u)^{\frac{1}{3}}$ for a small constant δ . For more studies on the Liouville problem of the stationary Navier–Stokes equations, we refer to [12–14] and references therein.

For the compressible Navier-Stokes system

$$\begin{cases} -\Delta u + \operatorname{div}\left(\rho u \otimes u\right) + \nabla P = 0, \quad \operatorname{div}\left(\rho u\right) = 0 \quad \operatorname{in} \mathbb{R}^d \\ P = a\rho^{\gamma}, \gamma > 1, \end{cases}$$
(1.4)

Chae [15] showed that the (1.4) has only a trivial solution $u = 0, \rho$ =constant, provided that

$$\begin{split} \|\rho\|_{L^{\infty}(\mathbb{R}^{d})} + \|\nabla u\|_{L^{2}(\mathbb{R}^{d})} + \|u\|_{L^{\frac{d}{d-1}}(\mathbb{R}^{d})} < \infty, & \text{when } 2 \le d \le 6, \\ \|\rho\|_{L^{\infty}(\mathbb{R}^{d})} + \|\nabla u\|_{L^{2}(\mathbb{R}^{d})} + \|u\|_{L^{\frac{d}{d-1}}(\mathbb{R}^{d})} + \|u\|_{L^{\frac{3d}{d-1}}(\mathbb{R}^{d})} < \infty, & \text{when } d \ge 7. \end{split}$$

In [16], Li and Yu proved several improved Liouville-type theorems for the *d*-dimensional stationary compressible Navier–Stokes system. Particularly, they showed that $\rho \in L^{\infty}(\mathbb{R}^d)$ and $u \in \dot{H}^1(\mathbb{R}^d)$ are sufficient to guarantee u = 0 and ρ =constant when $d \ge 4$. See [17–19] and references therein for more studies on the Liouville problem of the stationary compressible Navier–Stokes system.

When $\alpha \in (0, 1)$, b = 0 and ρ =constant, system (1.1) reduces to the following stationary fractional Navier-Stokes system:

$$\begin{cases} (-\Delta)^{\alpha} u + (u \cdot \nabla) u + \nabla P = 0, & \text{ in } \mathbb{R}^3, \\ \operatorname{div} u = 0, & \operatorname{in } \mathbb{R}^3. \end{cases}$$
(1.5)

To our knowledge, there are few results on the Liouville problem of such a system. In [20], Wang and Xiao proved that the smooth solution $u \in \dot{H}^{\alpha}(\mathbb{R}^3) \cap L^{\frac{9}{2}}(\mathbb{R}^3)$ of (1.5) is trivial for $\alpha \in (0, 1)$. In [21], Yang proved the same result for $\frac{5}{6} \leq \alpha < 1$. Recently, Chamorro and Poggi [22] proved an almost sharp Liouville's theorem for the stationary fractional Navier–Stokes system.

For the stationary fractional compressible Navier-Stokes system

$$\begin{cases} (-\Delta)^{\alpha} u + \operatorname{div} \left(\rho u \otimes u\right) + \nabla P = 0, & \text{in } \mathbb{R}^d \\ \operatorname{div} u = 0, & \text{in } \mathbb{R}^d \end{cases}$$

Electronic Research Archive

Wang and Xiao [20] proved that ρ =constant and u = 0 provided that

$$\begin{split} \|\rho\|_{L^{\infty}(\mathbb{R}^{d})} + \|u\|_{\dot{H}^{\alpha}(\mathbb{R}^{d})} + \|u\|_{L^{\frac{d}{d-1}}(\mathbb{R}^{d})} < \infty, \qquad \text{when } \alpha \geq \frac{1}{2}, \\ \|\rho\|_{L^{\infty}(\mathbb{R}^{d})} + \|u\|_{\dot{H}^{\alpha}(\mathbb{R}^{d})} + \|u\|_{L^{\frac{d}{d-1}}(\mathbb{R}^{d})} + \|u\|_{L^{\frac{3d}{d-1}}(\mathbb{R}^{d})} < \infty, \qquad \text{when } \alpha < \frac{1}{2}. \end{split}$$

When $\alpha = \beta = 1$ and ρ =constant, system (1.1) reduces to the usual MHD system. There are also many results on the Liouville-type theorems for the stationary MHD system. In [23], Chae, Degond, and Liu proved that the solution to the stationary incompressible MHD and Hall-MHD system is trivial if $u, b \in L^{\frac{9}{2}}(\mathbb{R}^3) \cap L^{\infty}(\mathbb{R}^3)$ and $\nabla u, \nabla b \in L^2(\mathbb{R}^3)$. Later, Zeng [24] improved this result by removing the boundedness assumption of *b* and the finite Dirichlet integral assumption $\nabla u, \nabla b \in L^2(\mathbb{R}^3)$. Another interesting result of Chae and Weng [25] showed that u = b = 0 if $u \in L^3(\mathbb{R}^3)$ and $\nabla u, \nabla b \in L^2(\mathbb{R}^3)$. In [26], Chae and Wolf proved Liouville-type theorems for the stationary MHD and the stationary Hall-MHD systems by assuming suitable growth conditions at infinity for the mean oscillations for the potential functions. This work has been generalized in [27] by Chae et al.. In [28, 29], Wang studied the Liouville-type theorems for the planar stationary MHD equations. For more related studies, we refer to [30–35] and references therein.

Recently, many authors have been interested in the Liouville-type theorems for the stationary Navier-Stokes equations and the stationary MHD system in anisotropic Lebesgue spaces. The anisotropic Lebesgue space is defined as follows:

Definition. Let $u = u(x_1, x_2, x_3)$ be a measurable function on \mathbb{R}^3 and $1 \le p, q, r \le \infty$. We say that u belongs to the anisotropic Lebesgue space $L_{x_1}^p L_{x_2}^q L_{x_3}^r (\mathbb{R}^3)$, provided that

$$\|u\|_{L^{p}_{x_{1}}L^{q}_{x_{2}}L^{r}_{x_{3}}(\mathbb{R}^{3})} = \left\|\left\|\|u\|_{L^{p}_{x_{1}}(\mathbb{R})}\right\|_{L^{q}_{x_{2}}(\mathbb{R})}\right\|_{L^{r}_{x_{3}}(\mathbb{R})} < \infty.$$

Here $\|\cdot\|_{L^p_t(\mathbb{R})}$ *denotes the* L^p *norm with respect to the variable* x_i .

Clearly, $L_{x_1}^p L_{x_2}^p L_{x_3}^p (\mathbb{R}^3)$ coincides with the usual Lebesgue space $L^p(\mathbb{R}^3)$. Throughout the paper, for any vector $\vec{p} = (p_1, p_2, p_3)$, we use the notation $\|\cdot\|_{L^{\vec{p}}(\mathbb{R}^3)}$ to denote $\|\cdot\|_{L^{p_1}_{x_1}L^{p_2}_{x_2}L^{p_3}_{x_3}(\mathbb{R}^3)}$.

In [36], Luo and Yin proved that the bounded smooth solution $u \in \dot{H}^1(\mathbb{R}^3)$ to (1.2) is trivial if

$$u_i \in L_{x_1}^{p_i} L_{x_2}^{q_i} L_{x_3}^{r_i}(\mathbb{R}^3)$$
 with $\frac{1}{p_i} + \frac{1}{q_i} + \frac{1}{r_i} = \frac{2}{3}$, $i = 1, 2, 3$.

Note that when $p_i = q_i = r_i = \frac{9}{2}$, this result recovers the classical result of Galdi [1]. Moreover, each component u_j of the velocity u may belong to different anisotropic spaces. Phan [37] proved that the solution $u \in H^1_{loc}(\mathbb{R}^3)$ to (1.2) is trivial if

$$u \in L^{q}_{x_{1}}L^{q}_{x_{2}}L^{r}_{x_{3}}(\mathbb{R}^{3}) \quad \text{with } \frac{2}{q} + \frac{1}{r} \ge \frac{2}{3}.$$

This result requires all components u_1, u_2 and u_3 lie in the same anisotropic space. Chae [38] proved that the solution $u \in L^6(\mathbb{R}^3) \cap L^q(\mathbb{R}^3)$ to (1.2) is trivial if

$$u_j \in L^s_{x_l} L^s_{x_k} L^{\frac{q}{q-2}}_{x_j}(\mathbb{R}^3)$$
 with $\frac{4}{q} + \frac{2}{s} \ge 1$, $s \in [1, \infty]$, $q \in (2, \infty)$, $\forall j = 1, 2, 3$.

Electronic Research Archive

Volume 33, Issue 3, 1306–1322.

1

Note that a different order of integration for different components is allowed. In [39], Chae generalized this result to MHD equations. Fan and Wang [40] also studied the Liouville problem for the stationary incompressible MHD system; they proved that $u, b \in L_{x_1}^q L_{x_2}^q L_{x_3}^r(\mathbb{R}^3)$ implies that u = b = 0, provided that $q, r \in [3, +\infty)$ and $\frac{2}{q} + \frac{1}{r} \ge \frac{2}{3}$. They also claimed that u = b = 0 if $u, b \in L_{x_1}^p L_{x_2}^q L_{x_3}^r(\mathbb{R}^3)$ with $p, q, r \in [3, \infty)$ and $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \ge \frac{2}{3}$. For the studies on Liouville-type theorems for the stationary compressible MHD system, we refer to Wu [41] and references therein.

Recently, Zeng [42] studied the Liouville-type theorems for the stationary fractional incompressible MHD system and proved that the solution $(u, b) \in \dot{H}^{\alpha}(\mathbb{R}^3) \times \dot{H}^{\beta}(\mathbb{R}^3)$ is trivial provided that $u = (u_1, u_2, u_3), b = (b_1, b_2, b_3)$ such that $(u_j, b_j) \in L^{\vec{p}_j}(\mathbb{R}^3) \times L^{\vec{q}_j}(\mathbb{R}^3)$ with

$$\sum_{l=1}^{3} \frac{1}{p_{j,l}} \geq \frac{2}{3}, \quad \sum_{l=1}^{3} \frac{1}{q_{j,l}} \geq \frac{2}{3}, \quad p_{j,l}, q_{j,l} \in [3, +\infty), \quad \forall j, l = 1, 2, 3.$$

Different from the above-mentioned results on the MHD system, which require all components u_1, u_2, u_3 and b_1, b_2, b_3 to lie in the same space, the result of Zeng [42] allows each component u_i and b_i to belong to different anisotropic spaces.

Inspired by the aforementioned results, this paper aims to establish a Liouville-type theorem for the stationary fractional compressible magnetohydrodynamic equations in anisotropic Lebesgue spaces. Our main result is as follows.

Theorem 1. Let $0 < \alpha, \beta < 1$, $(\rho, u, B) \in L^{\infty}(\mathbb{R}^3) \times \dot{H}^{\alpha}(\mathbb{R}^3) \times \dot{H}^{\beta}(\mathbb{R}^3)$ be a smooth solution to (1.1); then u = b = 0 provided that

$$\begin{cases} u_{i} \in L^{\vec{p}_{i}}(\mathbb{R}^{3}) \quad with \quad \sum_{j=1}^{3} \frac{1}{p_{i,j}} \geq 2 \quad if \quad \frac{1}{2} \leq \alpha < 1, \\ u_{i} \in L^{\vec{p}_{i}}(\mathbb{R}^{3}) \cap L^{\vec{q}_{i}}(\mathbb{R}^{3}) \quad with \quad \sum_{j=1}^{3} \frac{1}{p_{i,j}} \geq 2 \quad and \quad \sum_{j=1} \frac{1}{q_{i,j}} \geq \frac{2}{3} \quad if \quad 0 < \alpha < \frac{1}{2}, \end{cases}$$
(1.6)

and

$$\begin{cases} b_{i} \in L^{\vec{\xi_{i}}}(\mathbb{R}^{3}) \quad with \quad \sum_{j=1}^{3} \frac{1}{\xi_{i,j}} \geq 2 \quad if \quad \frac{1}{2} \leq \beta < 1, \\ b_{i} \in L^{\vec{\xi_{i}}}(\mathbb{R}^{3}) \cap L^{\vec{\eta_{i}}}(\mathbb{R}^{3}) \quad with \quad \sum_{j=1}^{3} \frac{1}{\xi_{i,j}} \geq 2 \quad and \quad \sum_{j=1} \frac{1}{\eta_{i,j}} \geq \frac{2}{3} \quad if \quad 0 < \beta < \frac{1}{2}, \end{cases}$$
(1.7)

where $p_{i,j}, \xi_{i,j} \in [1, \frac{3}{2}]$ and $q_{i,j}, \eta_{i,j} \in [3, +\infty)$ for i, j = 1, 2, 3.

Remark 2. *The assumption* (1.7) *can be replaced by the following assumption:*

$$b_i \in L^{\vec{\xi}_i}(\mathbb{R}^3) \quad with \quad \sum_{j=1}^3 \frac{1}{\xi_{i,j}} \ge \frac{2}{3}, \quad \xi_{i,j} \in [3, +\infty) \quad for \ i, j = 1, 2, 3.$$
 (1.8)

See (3.12) for the estimates of I_{12} and I_2 in the proof of Theorem 1 for details. Moreover, by the embedding $\dot{H}^{\beta}(\mathbb{R}^3) \hookrightarrow L^{\frac{6}{3-2\beta}}(\mathbb{R}^3)$ (see [43, Theorem 1.38, p.29] for example) and the fact that $\frac{3-2\beta}{6} \times 3 \ge 1$

Electronic Research Archive

 $\frac{2}{3}$ when $0 < \beta \le \frac{5}{6}$, the additional assumption (1.8) (and also (1.7)) on b can be omitted if $\frac{1}{2} \le \beta \le \frac{5}{6}$. Here $\beta \ge \frac{1}{2}$ is needed to ensure that $\frac{6}{3-2\alpha} \ge 3$. To emphasize this observation, we state the following Corollary:

Corollary 3. Let $0 < \alpha, \beta < 1$, $(\rho, u, B) \in L^{\infty}(\mathbb{R}) \times \dot{H}^{\alpha}(\mathbb{R}) \times \dot{H}^{\beta}(\mathbb{R})$ be a smooth solution to (1.1); then u = b = 0 provided that one of the following conditions is fulfilled:

(a) $\frac{1}{2} \le \alpha < 1, \beta > \frac{5}{6} \text{ or } 0 < \beta < \frac{1}{2}, u_i \in L^{\vec{p_i}}(\mathbb{R}^3), b_i \in L^{\vec{\xi_i}}(\mathbb{R}^3) \text{ with }$

$$\sum_{j=1}^{3} \frac{1}{p_{i,j}} \ge 2, \quad \sum_{j=1}^{3} \frac{1}{\xi_{i,j}} \ge \frac{2}{3}, \quad p_{i,j} \in [1, \frac{3}{2}], \quad \xi_{i,j} \in [3, +\infty)$$

for i, j = 1, 2, 3; or (b) $\frac{1}{2} \le \alpha < 1, \frac{1}{2} \le \beta \le \frac{5}{6}, u_i \in L^{\vec{p_i}}(\mathbb{R}^3)$ with

$$\sum_{j=1}^{3} \frac{1}{p_{i,j}} \ge 2, \quad p_{i,j} \in [1, \frac{3}{2}]$$

for i, j = 1, 2, 3; or (c) $0 < \alpha < \frac{1}{2}, \beta > \frac{5}{6}$ or $0 < \beta < \frac{1}{2}, u_i \in L^{\vec{p_i}}(\mathbb{R}^3) \cap L^{\vec{q_i}}(\mathbb{R}^3), b_i \in L^{\vec{\xi_i}}(\mathbb{R}^3)$ with

$$\sum_{j=1}^{3} \frac{1}{p_{i,j}} \ge 2, \quad \sum_{j=1}^{3} \frac{1}{q_{i,j}} \ge \frac{2}{3}, \quad \sum_{j=1}^{3} \frac{1}{\xi_{i,j}} \ge \frac{2}{3}, \quad p_{i,j} \in [1, \frac{3}{2}], \quad q_{i,j}, \xi_{i,j} \in [3, +\infty)$$

for i, j = 1, 2, 3; or (d) $0 < \alpha < \frac{1}{2}, \frac{1}{2} \le \beta \le \frac{5}{6}, u_i \in L^{\vec{p_i}}(\mathbb{R}^3) \cap L^{\vec{q_i}}(\mathbb{R}^3)$ with

$$\sum_{j=1}^{3} \frac{1}{p_{i,j}} \ge 2, \quad \sum_{j=1}^{3} \frac{1}{q_{i,j}} \ge \frac{2}{3}, \quad p_{i,j} \in [1, \frac{3}{2}], \quad q_{i,j}, \xi_{i,j} \in [3, +\infty)$$

for i, j = 1, 2, 3.

Remark 4. When b = 0, Theorem 1 improves the result of Wang and Xiao [20] for d = 3, since $u \in L^{\frac{3}{2}}(\mathbb{R}^3)$ and $u \in L^{\frac{9}{2}}(\mathbb{R}^3)$ satisfy $\frac{2}{3} \times 3 = 2$ and $\frac{2}{9} \times 3 = \frac{2}{3}$, respectively. Indeed, our result strictly covered the result of [20] for d = 3, $\alpha < \frac{1}{2}$, since their result requires $u \in L^{\frac{3}{2}}(\mathbb{R}^3) \cap L^{\frac{9}{2}}(\mathbb{R}^3)$, but our result (case (d) with b = 0 in Corollary 3) shows that $u \in L^{\frac{3}{2}}(\mathbb{R}^3) \cap L^3(\mathbb{R}^3)$ is sufficient.

2. Preliminaries

2.1. Caffarelli–Silvestre extension

We first recall the well-known Caffarelli–Silvestre extension for the fractional Laplacian operator $(-\Delta)^{\alpha}$ with $\alpha \in (0, 1)$ in [44]. Throughout this paper, we use $\overline{\nabla}$ and $\overline{\text{div}}$ to denote the gradient and divergence operators on \mathbb{R}^4_+ , respectively. We say a distribution $u \in \dot{H}^{\alpha}(\mathbb{R}^3)$ if $|\xi|^{\alpha} \hat{u}(\xi) \in L^2(\mathbb{R}^3)$, where $\hat{u}(\xi)$ denotes the Fourier transform of u. Let $u \in \dot{H}^{\alpha}(\mathbb{R}^3)$ and set $\lambda = 1 - 2\alpha$, according to [44], there is an extension in \mathbb{R}^4_+ , denoted by u^* such that

Electronic Research Archive

$$\left(u^*(x,0)=u(x), \quad x\in\mathbb{R}^3.\right)$$

Furthermore, it holds that

$$-C_{\alpha} \lim_{y \to 0^+} y^{\lambda} \partial_y u^* = (-\Delta)^{\alpha} u(x), \quad x \in \mathbb{R}^3,$$
(2.2)

and

$$\|u\|_{\dot{H}^{\alpha}(\mathbb{R}^{3})}^{2} = \iint_{\mathbb{R}^{4}_{+}} y^{\lambda} \left|\bar{\nabla}u^{*}\right|^{2} dx dy, \qquad (2.3)$$

where C_{α} is a constant depending only on α . This u^* is called the α -extension of u. The following L^p integrability of such u^* plays a crucial role in our proof.

Lemma 5. (Lemma 2.2 in [20]). Let $\alpha \in (0, 1)$ and u^* be the α -extension of $u \in L^p(\mathbb{R}^3)$ given by (2.1); it holds that

$$\left(\iint_{\mathbb{R}^4_+} y^{1-2\alpha} \left| u^* \right|^{\frac{(5-2\alpha)p}{3}} dx dy \right)^{\frac{(5-2\alpha)p}{3}} \le C ||u||_{L^p(\mathbb{R}^3)}.$$
(2.4)

By the embedding theorem $\dot{H}^{\alpha}(\mathbb{R}^3) \hookrightarrow L^{\frac{6}{3-2\alpha}}(\mathbb{R}^3)$, if we choose $p = \frac{6}{3-2\alpha}$ in Lemma 2.1, it holds that

$$\left(\iint_{\mathbb{R}^{4}_{+}} y^{1-2\alpha} \left| u^{*} \right|^{\frac{2(5-2\alpha)}{3-2\alpha}} dx dy \right)^{\frac{3-2\alpha}{2(5-2\alpha)}} \leq C ||u||_{\dot{H}^{\alpha}(\mathbb{R}^{3})}.$$
(2.5)

2.2. Hölder's inequality and interpolation inequality in anisotropic Lebesgue spaces.

The following Hölder's inequality in anisotropic Lebesgue space (see [45] for example) are frequently referred to in the sequel.

Lemma 6. For $\vec{p} = (p_1, p_2, p_3)$, $\vec{q} = (q_1, q_2, q_3)$ and $\vec{r} = (r_1, r_2, r_3)$ with

$$\frac{1}{p_i} + \frac{1}{q_i} = \frac{1}{r_i}, \quad 1 \le p_i, q_i, r_i \le \infty, \quad i = 1, 2, 3,$$

and $f \in L^{\vec{p}}(\mathbb{R}^3)$, $g \in L^{\vec{q}}(\mathbb{R}^3)$, it holds that

$$||fg||_{L^{\vec{r}}(\mathbb{R}^3)} \le ||f||_{L^{\vec{p}}(\mathbb{R}^3)} ||g||_{L^{\vec{q}}(\mathbb{R}^3)}$$

We can also prove the following interpolation inequality in anisotropic Lebesgue space.

Lemma 7. For $\vec{p} = (p_1, p_2, p_3)$, $\vec{q} = (q_1, q_2, q_3)$, $\vec{r} = (r_1, r_2, r_3)$ and $\theta \in [0, 1]$ with

$$\frac{\theta}{p_i} + \frac{1-\theta}{q_i} = \frac{1}{r_i}, \quad 1 \le p_i, q_i, r_i \le \infty, \quad i = 1, 2, 3,$$

and $f \in L^{\vec{p}}(\mathbb{R}^3) \cap L^{\vec{q}}(\mathbb{R}^3)$, it holds that

$$||f||_{L^{\vec{r}}(\mathbb{R}^3)} \le ||f||_{L^{\vec{p}}(\mathbb{R}^3)}^{\theta} ||f||_{L^{\vec{q}}(\mathbb{R}^3)}^{1-\theta}$$

Electronic Research Archive

Proof. By successively using the classical interpolation inequality and Hölder's inequality, we have

$$\begin{split} \|f\|_{L^{\vec{r}}(\mathbb{R}^{3})} &= \left\| \left\| \|f\|_{L^{r_{1}}(\mathbb{R})} \right\|_{L^{r_{2}}(\mathbb{R})} \right\|_{L^{r_{3}}(\mathbb{R})} \\ &\leq \left\| \left\| \|f\|_{L^{p_{1}}(\mathbb{R})} \|f\|_{L^{q_{1}}(\mathbb{R})} \right\|_{L^{r_{2}}(\mathbb{R})} \right\|_{L^{r_{3}}(\mathbb{R})} \\ &\leq \left\| \left\| \|f\|_{L^{p_{1}}(\mathbb{R})} \right\|_{L^{\frac{p_{2}}{\theta}}(\mathbb{R})} \left\| \|f\|_{L^{q_{1}}(\mathbb{R})} \right\|_{L^{q_{2}}(\mathbb{R})} \right\|_{L^{r_{3}}(\mathbb{R})} \\ &= \left\| \left\| \|f\|_{L^{p_{1}}(\mathbb{R})} \right\|_{L^{p_{2}}(\mathbb{R})}^{\theta} \|f\|_{L^{q_{1}}(\mathbb{R})} \|_{L^{q_{2}}(\mathbb{R})} \right\|_{L^{r_{3}}(\mathbb{R})} \\ &\leq \left\| \left\| \|f\|_{L^{p_{1}}(\mathbb{R})} \right\|_{L^{p_{2}}(\mathbb{R})}^{\theta} \left\|_{L^{\frac{p_{3}}{\theta}}} \right\| \|f\|_{L^{q_{1}}(\mathbb{R})} \|_{L^{q_{2}}(\mathbb{R})} \right\|_{L^{\frac{q_{3}}{1-\theta}}(\mathbb{R})} \\ &= \|f\|_{L^{\vec{p}}(\mathbb{R}^{3})}^{\theta} \|f\|_{L^{\vec{q}}(\mathbb{R}^{3})}^{1-\theta}. \end{split}$$

Though the above inequalities are stated for \mathbb{R}^3 , they hold for any domain $\Omega \subset \mathbb{R}^3$ by a simple zero extension argument.

3. Proof of Theorem 1

This section is devoted to proving Theorem 1.

For each R > 0, we denote the cube in \mathbb{R}^3 centered at the origin with radius R by $Q_R = [-R, R]^3$. Let $\psi \in C_0^{\infty}(\mathbb{R})$ be a standard one-dimensional cut-off function such that

$$\psi(x) = \begin{cases} 1, & \text{if } |x| \le 1\\ 0, & \text{if } |x| \ge 2 \end{cases}.$$

For any R > 0, we define

$$\psi_R(x) = \psi(\frac{x_1}{R})\psi(\frac{x_2}{R})\psi(\frac{x_3}{R}), \quad x = (x_1, x_2, x_3) \in \mathbb{R}^3.$$

Then we have

$$\psi_R(x) = \begin{cases} 1, & \text{if } x \in Q_R \\ 0, & \text{if } x \in \mathbb{R}^3 \backslash Q_{2R}. \end{cases}$$

We also denote $\chi_R(y)$ by a real nonincreasing smooth function in \mathbb{R} such that

$$\chi_R(y) = \begin{cases} 0, & \text{if } y \ge 2R \\ 1, & \text{if } y \le R \end{cases},$$

and $|\chi'_R(y)| \leq \frac{C}{R}$ for some constant *C* independent of $y \in \mathbb{R}$ and *R*.

Multiplying (1.1)₂ by $\phi_R u$, integrating by parts, and using the divergence-free property of u, we have

$$\int_{\mathbb{R}^3} (-\Delta)^{\alpha} u \cdot \psi_R u dx = \frac{1}{2} \int_{\mathbb{R}^3} (u \cdot \nabla \psi_R) \rho |u|^2 dx + \int_{\mathbb{R}^3} (b \cdot \nabla) b \cdot \psi_R u dx - \int_{\mathbb{R}^3} \psi_R u \cdot \nabla P \, dx.$$
(3.1)

Electronic Research Archive

Similarly, by testing $(1.1)_3$ with $\psi_R b$, we have

$$\int_{\mathbb{R}^3} (-\Delta)^\beta b \cdot \psi_R b dx = \frac{1}{2} \int_{\mathbb{R}^3} (u \cdot \nabla \psi_R) |b|^2 dx - \int_{\mathbb{R}^3} (b \cdot \nabla \psi_R) (u \cdot b) dx - \int_{\mathbb{R}^3} (b \cdot \nabla) b \cdot \psi_R u dx.$$
(3.2)

On the other hand, by (2.1), we have

$$0 = C_{\alpha} \iint_{\mathbb{R}^{4}_{+}} \overline{\operatorname{div}}(y^{\lambda} \overline{\nabla} u^{*}) \cdot u^{*}(\psi_{R}(x)\chi_{R}(y))dxdy$$

$$= C_{\alpha} \iint_{\mathbb{R}^{4}_{+}} \overline{\operatorname{div}}(y^{\lambda} \overline{\nabla} u^{*} \cdot u^{*}(\psi_{R}(x)\chi_{R}(y)))dxdy - C_{\alpha} \iint_{\mathbb{R}^{4}_{+}} y^{\lambda} |\overline{\nabla} u^{*}|^{2}(\psi_{R}(x)\chi_{R}(y))dxdy \qquad (3.3)$$

$$- C_{\alpha} \iint_{\mathbb{R}^{4}_{+}} y^{\lambda} \overline{\nabla} u^{*} \cdot u^{*} \overline{\nabla}(\psi_{R}(x)\chi_{R}(y))dxdy.$$

Since $\psi_R(x)$ is supported in Q_{2R} and $\chi_R(y) = 1$ in [0, R], the divergence theorem gives

$$\iint_{\mathbb{R}^4_+} \overline{\operatorname{div}}(y^{\lambda} \bar{\nabla} u^* \cdot u^*(\psi_R(x)\chi_R(y))) \, dxdy = -\int_{\mathbb{R}^3} \lim_{y \to 0} (y^{\lambda} \bar{\nabla} u^*) \cdot u\psi_R(x) \, dx. \tag{3.4}$$

Combining (3.3), (3.4) and (2.2), we obtain

$$C_{\alpha} \iint_{\mathbb{R}^{4}_{+}} y^{\lambda} \left| \bar{\nabla} u^{*} \right|^{2} \psi_{R}(x) \chi_{R}(y) dx dy$$

$$= \int_{\mathbb{R}^{3}} (-\Delta)^{\alpha} u \cdot \psi_{R} u dx - C_{\alpha} \iint_{\mathbb{R}^{4}_{+}} y^{\lambda} \bar{\nabla} u^{*} \cdot u^{*} \bar{\nabla} \left(\psi_{R}(x) \chi_{R}(y) \right) dx dy.$$
(3.5)

Similarly, we have

$$C_{\beta} \iint_{\mathbb{R}^{4}_{+}} y^{\mu} \left| \bar{\nabla} b^{*} \right|^{2} \psi_{R}(x) \chi_{R}(y) dx dy$$

$$= \int_{\mathbb{R}^{3}} (-\Delta)^{\beta} b \cdot \psi_{R} b dx - C_{\beta} \iint_{\mathbb{R}^{4}_{+}} y^{\mu} \bar{\nabla} b^{*} \cdot b^{*} \bar{\nabla} \left(\psi_{R}(x) \chi_{R}(y) \right) dx dy,$$
(3.6)

where $\mu = 1 - 2\beta$. Combining (3.1), (3.2), (3.5) and (3.6), we obtain that

$$C_{\alpha} \iint_{\mathbb{R}^{4}_{+}} y^{\lambda} \left| \bar{\nabla} u^{*} \right|^{2} \psi_{R}(x) \chi_{R}(y) dx dy + C_{\beta} \iint_{\mathbb{R}^{4}_{+}} y^{\mu} \left| \bar{\nabla} b^{*} \right|^{2} \psi_{R}(x) \chi_{R}(y) dx dy$$

$$= \int_{\mathbb{R}^{3}} (u \cdot \nabla \psi_{R}) \left(\frac{1}{2} \rho |u|^{2} + \frac{1}{2} |b|^{2} \right) dx - \int_{\mathbb{R}^{3}} (b \cdot \nabla \psi_{R}) (u \cdot b) dx$$

$$- C_{\alpha} \iint_{\mathbb{R}^{4}_{+}} y^{\lambda} \bar{\nabla} u^{*} \cdot u^{*} \bar{\nabla} (\psi_{R}(x) \chi_{R}(y)) dx dy - C_{\beta} \iint_{\mathbb{R}^{4}_{+}} y^{\mu} \bar{\nabla} b^{*} \cdot b^{*} \bar{\nabla} (\psi_{R}(x) \chi_{R}(y)) dx dy \qquad (3.7)$$

$$- \int_{\mathbb{R}^{3}} \psi_{R} u \cdot \nabla P dx$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5}.$$

Now we estimate I_1 . Applying Young's inequality, we have

$$|I_{1}| \leq C \int_{\mathbb{R}^{3}} |\nabla \psi_{R}| \, |u|^{3} \, dx + C \int_{\mathbb{R}^{3}} |\nabla \psi_{R}| \, |b|^{3} \, dx$$

= $I_{11} + I_{12}$. (3.8)

Electronic Research Archive

The estimate of I_{11} is divided into the following three cases:

Case 1: $\frac{5}{6} \le \alpha < 1$. Since $\frac{5}{6} \le \alpha < 1$, we have $\frac{3-2\alpha}{6} \le \frac{2}{9}$. On the other hand, for $p_{i,j} \in [1, \frac{3}{2}]$, we have $\frac{1}{p_{i,j}} \ge \frac{2}{3}$ and $\frac{1}{3p_{i,j}} \ge \frac{2}{9}$. Hence,

$$0 \le \frac{\frac{1}{3p_{i,j}} - \frac{3-2\alpha}{6}}{\frac{1}{p_{i,j}} - \frac{3-2\alpha}{6}} \le \frac{\frac{1}{3} - \frac{3-2\alpha}{6}}{\frac{1}{p_{i,j}} - \frac{3-2\alpha}{6}} < 1.$$

It is easily checked that $f_1(x) = \frac{\frac{1}{3x} - \frac{3-2\alpha}{6}}{\frac{1}{x} - \frac{3-2\alpha}{6}}$ is decreasing in $[1, \frac{3}{2}]$ and $f_2(x) = \frac{\frac{1}{3} - \frac{3-2\alpha}{6}}{\frac{1}{x} - \frac{3-2\alpha}{6}}$ is increasing in $[1, \frac{3}{2}]$. Therefore, for $p_{i,j} \in [1, \frac{3}{2}]$, we have

$$f_1(p_{i,j}) \le f_1(1) = \frac{2\alpha - 1}{3 + 2\alpha} = f_2(1) \le f_2(p_{i,j}) \le f_2\left(\frac{3}{2}\right),$$

which is exactly

$$0 \le \frac{\frac{1}{3p_{i,j}} - \frac{3-2\alpha}{6}}{\frac{1}{p_{i,j}} - \frac{3-2\alpha}{6}} \le \frac{2\alpha - 1}{3 + 2\alpha} \le \frac{\frac{1}{3} - \frac{3-2\alpha}{6}}{\frac{1}{p_{i,j}} - \frac{3-2\alpha}{6}} < 1.$$
(3.9)

Therefore, by choosing $\theta = \frac{2\alpha - 1}{3 + 2\alpha} \in (0, 1)$ and defining $r_{i,j}$ such that

$$\frac{1}{r_{i,j}} = \frac{\theta}{p_{i,j}} + \frac{3 - 2\alpha}{6}(1 - \theta) = \left(\frac{1}{p_{i,j}} - \frac{3 - 2\alpha}{6}\right)\theta + \frac{3 - 2\alpha}{6},$$

we have

$$\frac{1}{r_{i,j}} \in \left[\frac{1}{3p_{i,j}}, \frac{1}{3}\right]$$

by observing (3.9). Therefore,

$$3 \le r_{i,j} \le 3p_{i,j}$$
 and thus $\sum_{j=1}^{3} \frac{1}{r_{i,j}} \ge \sum_{j=1}^{3} \frac{1}{3p_{i,j}} \ge \frac{2}{3}$. (3.10)

Moreover, by using Lemma 7, we have

$$||u_i||_{L^{\vec{r}_i}} \le ||u_i||_{L^{\vec{p}_i}}^{\theta} ||u_i||_{L^{\frac{6}{3-2\alpha}}}^{1-\theta}.$$

Thus, by letting $s_{i,j}$ be such chat

$$\frac{1}{r_{i,j}} + \frac{1}{s_{i,j}} = \frac{1}{3}$$

and

$$C_l(R) = \{R \le |x_l| \le 2R, |x_m| \le 2R, |x_n| \le 2R\}, \{l, m, n\} = \{1, 2, 3\},\$$

Electronic Research Archive

and using Lemma 6, we have

Here we used the fact that

$$\begin{split} \|1\|_{L^{s_{i}^{*}}(C_{l}(R))} &\leq \left(\int_{-2R}^{2R} \left(\int_{-2R}^{2R} \left(\int_{-2R}^{2R} 1^{s_{1}} dx_{1} \right)^{\frac{s_{2}}{s_{1}}} dx_{2} \right)^{\frac{s_{3}}{s^{2}}} dx_{3} \right)^{\frac{1}{s_{3}}} \\ &= \left(\left((4R)^{\frac{s_{2}}{s_{1}}} \cdot 4R \right)^{\frac{s_{3}}{s_{2}}} \cdot 4R \right)^{\frac{1}{s_{3}}} = (4R)^{\sum_{j=1}^{3} \frac{1}{s_{i,j}}} = (4R)^{1 - \sum_{j=1}^{3} \frac{1}{r_{i,j}}}. \end{split}$$

Hence, by (1.6) and (3.10), we have

$$|I_{11}| \to 0$$
 as $R \to \infty$.

Case 2: $\frac{1}{2} \le \alpha < \frac{5}{6}$. By using Lemma 6 and the fractional Sobolev inequality, we have

$$\begin{split} I_{11} &\leq \frac{C}{R} \sum_{l,i=1}^{3} \int_{C_{l}(R)} |u_{i}|^{3} dx \\ &\leq \frac{C}{R} \sum_{l,i=1}^{3} \left(\int_{C_{l}(R)} |u_{i}|^{\frac{6}{3-2\alpha}} dx \right)^{\frac{3(3-2\alpha)}{6}} \left(\int_{C_{l}(R)} dx \right)^{\frac{6\alpha-3}{6}} \\ &\leq \sum_{l,i=1}^{3} R^{\frac{6\alpha-5}{2}} ||u_{i}||^{3}_{L^{\frac{6}{3-2\alpha}}(C_{l}(R))} \\ &\leq \sum_{l,i=1}^{3} R^{\frac{6\alpha-5}{2}} ||u_{i}||^{3}_{\dot{H}^{\alpha}(C_{l}(R))} \to 0 \quad \text{as} \quad R \to \infty. \end{split}$$

Case 3: $\alpha < \frac{1}{2}$. From Lemma 6, it follows that

$$I_{11} \leq \frac{C}{R} \sum_{l,i=1}^{3} \int_{C_{l}(R)} |u_{i}|^{3} dx \leq \frac{C}{R} \sum_{l,i=1}^{3} ||u_{i}||^{3}_{L^{\vec{q}_{i}}(C_{l}(R))} ||1||^{3}_{L^{\vec{z}_{i}(C_{l}(R))}},$$

where

$$\frac{1}{q_{i,j}} + \frac{1}{z_{i,j}} = \frac{1}{3}, \quad \forall i, j = 1, 2, 3.$$

Electronic Research Archive

Thus, by (1.6) we have

$$I_{11} \leq C \sum_{l,i=1}^{3} R^{2-3\sum_{j=1}^{3} \frac{1}{q_{i,j}}} ||u_i||_{L^{\vec{q}_i}(C_l(R))}^3 \to 0 \quad \text{as} \quad R \to \infty.$$

This completes the estimate of I_{11} . Similarly, we have $I_{12} \to 0$ as $R \to \infty$. Hence, $I_1 \to 0$ as $R \to \infty$. The estimate of I_2 follows from the estimates of I_{11} , I_{12} , and the use of Young's inequality,

$$|I_2| \le \int_{\mathbb{R}^3} |\nabla \psi_R| |u| |b|^2 \, dx \le \int_{\mathbb{R}^3} |\nabla \psi_R| |u|^3 \, dx + \int_{\mathbb{R}^3} |\nabla \psi_R| |b|^3 \, dx = I_{11} + I_{12} \to 0 \quad \text{as} \quad R \to \infty.$$

We remark here that we can also get the estimate of I_{12} and then I_2 under assumption (1.8) instead of (1.7). Indeed,

$$\begin{aligned} |I_{12}| &\leq \frac{C}{R} \sum_{l=1}^{3} \int_{C_{l}(R)} |b|^{3} \, dx \leq \frac{C}{R} \sum_{l,i=1}^{3} \int_{C_{l}(R)} |b_{i}|^{3} \, dx \leq \frac{C}{R} \sum_{l,i=1}^{3} ||b_{i}||_{L^{\vec{\xi}_{i}}(C_{l}(R))}^{3} ||1||_{L^{\vec{\tau}_{i}}(C_{l}(R))}^{3} \\ &\leq C \sum_{l,i=1}^{3} R^{2-3\sum_{j=1}^{3} \frac{1}{\xi_{i,j}}} ||b_{i}||_{L^{\vec{\xi}_{i}}(C_{l}(R))}^{3} \to 0 \quad \text{as } R \to \infty, \end{aligned}$$

$$(3.12)$$

where

$$\frac{1}{\xi_{i,j}} + \frac{1}{\tau_{i,j}} = \frac{1}{3}, \quad \forall i, j = 1, 2, 3.$$

Now we estimate I_3 . By the definition of ψ_R and χ_R , we have

$$I_{3} = -C_{\alpha} \sum_{l=1}^{3} \int_{0}^{2R} \int_{C_{l}(R)} y^{\lambda} u_{i}^{*} \partial_{l} u_{i}^{*} \cdot \frac{1}{R} \psi'\left(\frac{x_{l}}{R}\right) \psi\left(\frac{x_{j}}{R}\right) \psi\left(\frac{x_{k}}{R}\right) \chi_{R}(y) dx dy$$
$$-C_{\alpha} \int_{R}^{2R} \int_{\mathbb{R}^{3}} y^{\lambda} \overline{\nabla} u^{*} \cdot u^{*} \psi_{R} \overline{\nabla} \chi_{R}(y) dx dy.$$

Electronic Research Archive

It follows by using Hölder's inequality and (2.5) that

$$\begin{split} |I_{3}| &\leq \sum_{l=1}^{3} \frac{C}{R} \left(\int_{0}^{2R} \int_{C_{l}(R)} y^{\lambda} \left| \bar{\nabla} u^{*} \right|^{2} dx dy \right)^{\frac{1}{2}} \left(\int_{0}^{2R} \int_{C_{l}(R)} y^{\lambda} \left| u^{*} \right|^{\frac{2(5-2\alpha)}{3-2\alpha}} dx dy \right)^{\frac{3-2\alpha}{2(5-2\alpha)}} \\ &\quad \times \left(\int_{0}^{2R} \int_{C_{l}(R)} y^{\lambda} dx dy \right)^{\frac{1}{3-2\alpha}} \\ &\quad + \frac{C}{R} \left(\int_{R}^{2R} \int_{\mathbb{R}^{3}} y^{\lambda} \left| \bar{\nabla} u^{*} \right|^{2} dx dy \right)^{\frac{1}{2}} \left(\int_{R}^{2R} \int_{\mathbb{R}^{3}} y^{\lambda} \left| u^{*} \right|^{\frac{2(5-2\alpha)}{3-2\alpha}} dx dy \right)^{\frac{3-2\alpha}{2(5-2\alpha)}} \\ &\quad \times \left(\int_{R}^{2R} \int_{\mathbb{R}^{3}} y^{\lambda} \psi_{R}^{5-2\alpha}(x) dx dy \right)^{\frac{1}{3-2\alpha}} \\ &\leq C \sum_{l=1}^{3} \left(\int_{0}^{2R} \int_{C_{l}(R)} y^{\lambda} \left| \bar{\nabla} u^{*} \right|^{2} dx dy \right)^{\frac{1}{2}} \left(\int_{0}^{2R} \int_{C_{l}(R)} y^{\lambda} \left| u^{*} \right|^{\frac{2(5-2\alpha)}{3-2\alpha}} dx dy \right)^{\frac{3-2\alpha}{2(5-2\alpha)}} \\ &\quad + C \left(\int_{R}^{2R} \int_{\mathbb{R}^{3}} y^{\lambda} \left| \bar{\nabla} u^{*} \right|^{2} dx dy \right)^{\frac{1}{2}} \left(\int_{R}^{2R} \int_{\mathbb{R}^{3}} y^{\lambda} \left| u^{*} \right|^{\frac{2(5-2\alpha)}{3-2\alpha}} dx dy \right)^{\frac{3-2\alpha}{2(5-2\alpha)}} \\ &\quad \leq C \left\| u \right\|_{\dot{H}^{\alpha}(\mathbb{R}^{3})} \sum_{l=1}^{3} \left(\int_{0}^{2R} \int_{C_{l}(R)} y^{\lambda} \left| \bar{\nabla} u^{*} \right|^{2} dx dy \right)^{\frac{1}{2}} \\ &\quad + C \left(\left\| u \right\|_{\dot{H}^{\alpha}(\mathbb{R}^{3})} \sum_{l=1}^{3} \left(\int_{0}^{2R} \int_{C_{l}(R)} y^{\lambda} \left| \bar{\nabla} u^{*} \right|^{2} dx dy \right)^{\frac{1}{2}} \\ &\quad + C \left\| |u||_{\dot{H}^{\alpha}(\mathbb{R}^{3})} \left(\int_{R}^{2R} \int_{\mathbb{R}^{3}} y^{\lambda} \left| \bar{\nabla} u^{*} \right|^{2} dx dy \right)^{\frac{1}{2}}. \end{split}$$

Recall the fact that

$$\int_0^{2R} \int_{C_l(R)} y^\lambda \left| \bar{\nabla} u^* \right|^2 dx dy + \int_R^{2R} \int_{\mathbb{R}^3} y^\lambda \left| \bar{\nabla} u^* \right|^2 dx dy \le 2 ||u||_{\dot{H}^\alpha(\mathbb{R}^3)}^2,$$

we immediately get that $I_3 \to 0$ as $R \to \infty$. Similarly, $I_4 \to 0$ as $R \to \infty$.

It remains to estimate I_5 . We need a separate treatment for $\gamma > 1$ and $\gamma = 1$. *Case a*: $\gamma \in (1, \infty)$. Rewrite

$$\nabla P = a \nabla \rho^{\gamma} = \left(\frac{a \gamma}{\gamma - 1}\right) \rho \nabla \rho^{\gamma - 1}.$$

This, along with $div(\rho u) = 0$, derives

$$I_{5} = \frac{a\gamma}{\gamma - 1} \int_{\mathbb{R}^{3}} \psi_{R} \rho u \cdot \nabla \rho^{\gamma - 1} dx$$

$$= -\frac{a\gamma}{\gamma - 1} \int_{\mathbb{R}^{3}} \psi_{R} \operatorname{div}(\rho u) \rho^{\gamma - 1} dx + \frac{a\gamma}{\gamma - 1} \int_{\mathbb{R}^{3}} \rho^{\gamma} u \cdot \nabla \psi_{R} dx$$

$$= \frac{a\gamma}{\gamma - 1} \int_{\mathbb{R}^{3}} \rho^{\gamma} u \cdot \nabla \psi_{R} dx.$$

Electronic Research Archive

Then it follows from $u_i \in L^{\vec{p}_i}(\mathbb{R}^3)$ and $\|\rho\|_{L^{\infty}(\mathbb{R}^3)} < \infty$ that

$$\begin{split} |I_{5}| &\leq \frac{C}{R} \sum_{l=1}^{3} \int_{C_{l}(R)} \rho^{\gamma} |u| dx \leq \frac{C}{R} \sum_{l,i=1}^{3} \|\rho\|_{L^{\infty}(\mathbb{R}^{3})}^{\gamma} \|u_{i}\|_{L^{\vec{p}_{i}}(C_{l}(R))} \|1\|_{L^{\vec{l}_{i}}(C_{l}(R))} \\ &\leq C \sum_{l,i=1}^{3} \|\rho\|_{L^{\infty}(\mathbb{R}^{3})}^{\gamma} R^{2 - \sum_{j=1}^{3} \frac{1}{p_{i,j}}} \|u_{i}\|_{L^{\vec{p}_{i}}(C_{l}(R))}, \end{split}$$

where

$$1 = \frac{1}{p_{i,j}} + \frac{1}{t_{i,j}}, \quad \forall i, j = 1, 2, 3.$$
(3.13)

Hence, by (1.6), we have $I_5 \rightarrow 0$ as $R \rightarrow \infty$.

Case b: $\gamma = 1$. Under this circumstance we have

$$\nabla P = a\nabla \rho = a\rho\nabla\ln\rho.$$

By using $div(\rho u) = 0$ again, we obtain

$$I_{13} = a \int_{\mathbb{R}^3} \psi_R \rho u \cdot \nabla \ln \rho dx$$

= $-a \int_{\mathbb{R}^3} \psi_R \operatorname{div}(\rho u) \ln \rho dx + a \int_{\mathbb{R}^3} (\rho \ln \rho) u \cdot \nabla \psi_R dx$
= $a \int_{\mathbb{R}^3} \rho \ln \rho u \cdot \nabla \psi_R dx.$

Note that

$$|t \ln t| \le \begin{cases} Ct^2 & \text{as} \quad t \in (1, \infty); \\ Ct^{\frac{1}{2}} & \text{as} \quad t \in (0, 1]. \end{cases}$$

So

$$\|\rho \ln \rho\|_{L^{\infty}(\mathbb{R}^{3})} \leq C \|\rho\|_{L^{\infty}(\mathbb{R}^{3})}^{2} + C \|\rho\|_{L^{\infty}(\mathbb{R}^{3})}^{\frac{1}{2}}.$$

Accordingly, $u_i \in L^{\vec{p}_i}(\mathbb{R}^3)$ is used to deduce that

$$\begin{split} |I_{13}| &\leq C \sum_{l=1}^{3} \sum_{i=1}^{3} \int_{C_{l}(R)} |\rho \ln \rho| |u_{i}| |\nabla \psi_{R}| dx \\ &\leq \frac{C}{R} \sum_{l,i=1}^{3} ||\rho \ln \rho||_{L^{\infty}(\mathbb{R}^{3})} ||u_{i}||_{L^{\vec{p}_{i}}(C_{l}(R))} ||1||_{L^{\vec{l}_{i}}(C_{l}(R))} \\ &\leq C \sum_{l,i=1}^{3} R^{2 - \sum_{j=1}^{3} \frac{1}{p_{i,j}}} ||\rho \ln \rho||_{L^{\infty}(\mathbb{R}^{3})} ||u_{i}||_{L^{\vec{p}_{i}}(C_{l}(R))} \\ &\leq C \sum_{l,i=1}^{3} R^{2 - \sum_{j=1}^{3} \frac{1}{p_{i,j}}} \left(||\rho||_{L^{\infty}(\mathbb{R}^{3})}^{2} + ||\rho||_{L^{\infty}(\mathbb{R}^{3})}^{\frac{1}{2}} \right) ||u_{i}||_{L^{\vec{p}_{i}}(C_{l}(R))}, \end{split}$$

where $\vec{t_i}$ is determined by (3.13). Hence, by (1.6), we have $I_5 \to 0$ as $R \to \infty$. Concluding the above two cases, we obtain

$$I_5 \to 0$$
 as $R \to \infty$.

Electronic Research Archive

Concluding the above estimates for I_1, I_2, I_3, I_4 , and I_5 and letting $R \to \infty$ in (3.7), we obtain

$$C_{\alpha} \iint_{\mathbb{R}^4_+} y^{\lambda} \left| \bar{\nabla} u^* \right|^2 dx dy + C_{\beta} \iint_{\mathbb{R}^4_+} y^{\mu} \left| \bar{\nabla} b^* \right|^2 dx dy = 0,$$

which implies that $u^* = b^* = \text{constant}$. Hence, $u = u^*(x, 0)$ and $b = b^*(x, 0)$ are both constant vector fields. Since $(u_j, b_j) \in L^{\vec{p}_j}(\mathbb{R}^3) \times L^{\vec{q}_j}(\mathbb{R}^3)$, we conclude that u = b = 0. This completes the proof of Theorem 1.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China Grant no. 12001069 and the Team Building Project for Graduate Tutors in Chongqing (yds223010).

Conflict of interest

The authors declare there are no conflicts of interest.

References

- G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd edition, Springer Monographs in Mathematics, Springer, New York, 2011. https://doi.org/10.1007/978-0-387-09620-9
- 2. D. Chae, Liouville-type theorem for the forced Euler equations and the Navier-Stokes equations, *Commun. Math. Phys.*, **326** (2014), 37–48. https://doi.org/10.1007/s00220-013-1868-x
- 3. G. Seregin, Liouville type theorem for stationary Navier-Stokes equations, *Nonlinearity*, **29** (2016), 2191–2195. https://doi.org/10.1088/0951-7715/29/8/2191
- 4. D. Chae, Note on the Liouville type problem for the stationary Navier-Stokes equations in \mathbb{R}^3 , *J. Differ. Equations*, **268** (2020), 1043–1049. https://doi.org/10.1016/j.jde.2019.08.027.
- 5. D. Chae, Relative decay conditions on Liouville type theorem for the steady Navier-Stokes system, *J. Math. Fluid Mech.*, **23** (2021), 1–6. https://doi.org/10.1007/s00021-020-00549-9
- 6. D. Chae, J. Wolf, On Liouville type theorems for the steady Navier-Stokes equations in \mathbb{R}^3 , J. *Differ. Equations*, **261** (2016), 5541–5560. https://doi.org/10.1016/j.jde.2016.08.014
- 7. D. Chae, J. Wolf, On Liouville type theorem for the stationary Navier-Stokes equations, *Calc. Var. Partial Differ. Equations*, **58** (2019), 1–11. https://doi.org/10.1007/s00526-019-1549-5
- 8. D. Chae, T. Yoneda, On the Liouville theorem for the stationary Navier-Stokes equations in a critical space, *J. Math. Anal. Appl.*, **405** (2013), 706–710. https://doi.org/10.1016/j.jmaa.2013.04.040

- 9. D. Chamorro, O. Jarrín, P. G. Lemarié-Rieusset, Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces, Ann. de l'Institut Henri Poincaré, Anal. non linéaire, 38 (2021), 689-710. https://doi.org/10.1016/j.anihpc.2020.08.006
- 10. O. Jarrín, A remark on the Liouville problem for stationary Navier-Stokes equations in Lorentz and Morrey spaces, J. Math. Anal. Appl., 486 (2020), 123871. https://doi.org/10.1016/j.jmaa.2020.123871
- H. Kozono, Y. Terasawa, Y. Wakasugi, A remark on Liouville-type theorems for the station-11. ary Navier-Stokes equations in three space dimensions, J. Funct. Anal., 272 (2017), 804-818. https://doi.org/10.1016/j.jfa.2016.06.019
- 12. O. Jarrín, A short note on the Liouville problem for the steady-state Navier-Stokes equations, Arch. Math., 121 (2023), 303-315. https://doi.org/10.1007/s00013-023-01891-w
- 13. G. Seregin, Remarks on Liouville type theorems for steady-state Navier-Stokes equations, St. Petersburg Math. J., 30 (2019), 321-328. https://doi.org/10.1090/spmi/1544
- 14. G. Seregin, W. Wang, Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations, St. Petersburg Math. J., 31 (2019), 269–278. https://doi.org/10.1090/spmj/1603
- D. Chae, Remarks on the Liouville type results for the compressible Navier-Stokes equations in 15. R³, Nonlinearity, **25** (2012), 1345. https://doi.org/10.1088/0951-7715/25/5/1345
- 16. D. Li, X. Yu, On some Liouville type theorems for the compressible Navier-Stokes equations, Discrete Contin. Dyn. Syst., 34 (2014), 4719-4733. https://doi.org/10.3934/dcds.2014.34.4719
- 17. Z. Li, P. Niu, Liouville type theorems for the 3D stationary hall-MHD equations, Z. Angew. Math. Mech. ZAMM, 100 (2020), e201900200. https://doi.org/10.1002/zamm.201900200
- 18. Z. Li, P. Niu, Notes on Liouville type theorems for the stationary compressible Navier-Stokes equations, Appl. Math. Lett., 114 (2021), 106908. https://doi.org/10.1016/j.aml.2020.106908
- 19. X. Zhong, A Liouville theorem for the compressible Navier-Stokes equations, Math. Methods Appl. Sci., 41 (2018), 5091–5095. https://doi.org/10.1002/mma.5055
- Y. Wang, J. Xiao, A Liouville type theorem for the stationary fractional Navier-Stokes-Poisson 20. system, J. Math. Fluid Mech., 20 (2018), 485-498. https://doi.org/10.1007/s00021-017-0330-9
- 21. J. Yang, On Liouville type theorem for the steady fractional Navier-Stokes equations in \mathbb{R}^3 , J. Math. Fluid Mech., 24 (2022), 81. https://doi.org/10.1007/s00021-022-00719-x
- 22. D. Chamorro, B. Poggi, On an almost sharp Liouville type theorem for fractional Navier-Stokes equations, Publ. Mat., 69 (2025), 27-43. https://doi.org/10.5565/PUBLMAT6912502
- D. Chae, P. Degond, J. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. 23. Poincaré Anal. Non Linéaire, 31 (2014), 555–565. https://doi.org/10.1016/j.anihpc.2013.04.006
- 24. Y. Zeng, Liouville-type theorem for the steady compressible Hall-MHD system, Math. Methods Appl. Sci., 41 (2018), 205–211. https://doi.org/10.1002/mma.4605
- D. Chae, S. Weng, Liouville type theorems for the steady axially symmetric Navier-Stokes 25. and magnetohydrodynamic equations, Discret. Contin. Dyn. Syst., 36 (2016), 5267-5285. https://doi.org/10.3934/dcds.2016031

1320

- 26. D. Chae, J. Wolf, On Liouville type theorems for the stationary MHD and Hall-MHD systems, *J. Differ. Equations*, **295** (2021), 233–248. https://doi.org/10.1016/j.jde.2021.05.061
- 27. D. Chae, J. Kim, J. Wolf, On Liouville-type theorems for the stationary MHD and the Hall-MHD systems in R³, Z. Angew. Math. Phys., 73 (2022), 66. https://doi.org/10.1007/s00033-022-01701-3
- W. Wang, Y. Wang, Liouville-type theorems for the stationary MHD equations in 2D, *Nonlinear-ity*, **32** (2019), 4483–4505. https://doi.org/10.1088/1361-6544/ab32a6
- 29. W. Wang, Liouville type theorems for the planar stationary MHD equations with growth at infinity, *J. Math. Fluid Mech.* **23** (2021), 88. https://doi.org/10.1007/s00021-021-00615-w
- 30. X. Chen, S. Li, W. Wang, Remarks on Liouville-type theorems for the steady MHD and Hall-MHD equations, *J. Nonlinear Sci.*, **32** (2022), 12. https://doi.org/10.1007/s00332-021-09768-4
- Z. Li, P. Liu, P. Niu, Remarks on Liouville type theorems for the 3D stationary MHD equations, Bull. Korean Math. Soc., 57 (2020), 1151–1164. https://doi.org/10.4134/BKMS.b190828
- Z. Li, Y. Su, Liouville type theorems for the stationary Hall-magnetohydrodynamic equations in local Morrey spaces, *Math. Methods Appl. Sci.*, 45 (2022), 10891–10903. https://doi.org/10.1002/mma.8423
- 33. P. Liu, Liouville-type theorems for the stationary incompressible inhomogeneous Hall-MHD and MHD equations, *Banach J. Math. Anal.*, **17** (2023), 13. https://doi.org/10.1007/s43037-022-00236-z
- 34. B. Yuan, Y. Xiao, Liouville-type theorems for the 3D stationary Navier-Stokes, MHD and Hall-MHD equations, *J. Math. Anal. Appl.*, **491** (2020), 124343. https://doi.org/10.1016/j.jmaa.2020.124343
- 35. S. Schulz, Liouville type theorem for the stationary equations of magneto-hydrodynamics, *Acta Math. Sci.*, **39** (2019), 491–497. https://doi.org/10.1007/s10473-019-0213-7
- W. Luo, Z. Yin, The Liouville theorem and the L² decay for the FENE dumbbell model of polymeric flows, *Arch. Ration. Mech. Anal.*, 224 (2017), 209–231. https://doi.org/10.1007/s00205-016-1072-1
- T. Phan, Liouville type theorems for 3D stationary Navier-Stokes equations in weighted mixed-norm Lebesgue spaces, *Dyn. Partial Differ. Equations*, 17 (2020), 229–243. https://dx.doi.org/10.4310/DPDE.2020.v17.n3.a2
- 38. D. Chae, Anisotropic Liouville type theorem for the stationary Naiver-Stokes equations in ℝ³, *Appl. Math. Lett.*, **142** (2023), 108655. https://doi.org/10.1016/j.aml.2023.108655
- 39. D. Chae, Anisotropic Liouville type theorem for the MHD system in \mathbb{R}^n , *J. Math. Phys.*, **64** (2023), 121501. https://doi.org/10.1063/5.0159958
- 40. H. Fan, M. Wang, The Liouville type theorem for the stationary magnetohydrodynamic equations in weighted mixed-norm Lebesgue spaces, *Dyn. Partial Differ. Equations*, **18** (2021), 327–340. https://doi.org/10.1063/5.0036229
- 41. F. Wu, Liouville-type theorems for the 3D compressible magnetohydrodynamics equations, *Nonlinear Anal. Real World Appl.*, **64** (2022), 103429. https://doi.org/10.1016/j.nonrwa.2021.103429

- 42. Y. Zeng, On Liouville type theorems for the 3D stationary fractional MHD system in anisotropic Lebesgue spaces, *preprint*.
- 43. H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), Springer, Heidelberg, **343** (2011). https://doi.org/10.1007/978-3-642-16830-7
- 44. L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, *Comm. Partial Differ. Equations*, **32** (2007), 1245–1260. https://doi.org/10.1080/03605300600987306
- 45. A. Benedek, R. Panzone, The space *L^p*, with mixed norm, *Duke Math. J.*, **28** (1961), 301–324. https://doi.org/10.1215/S0012-7094-61-02828-9

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)