
Electronic  
Research Archive

https://www.aimspress.com/journal/era

ERA, 33(3): 1306–1322.
DOI: 10.3934/era.2025058
Received: 28 November 2024
Revised: 18 February 2025
Accepted: 24 February 2025
Published: 05 March 2025

Research article

Liouville-type theorem for the stationary fractional compressible MHD
system in anisotropic Lebesgue spaces

Wenda Pei and Yong Zeng*

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing
400067, China

* Correspondence: Email: yzeng@ctbu.edu.cn.
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1. Introduction and main results

In this paper, we are interested in the Liouville-type theorem in anisotropic Lebesgue spaces for the
following stationary fractional compressible MHD system:

div(ρu) = 0, in R3,

(−∆)αu + div(ρu ⊗ u) − (b · ∇)b + ∇P = 0, in R3,

(−∆)βb + (u · ∇)b − (b · ∇)u = 0, in R3,

div b = 0, in R3.

(1.1)

Here, u = (u1(x), u2(x), u3(x)), b = (b1(x), b2(x), b3(x)) and ρ represent the velocity field, the magnetic
field, and the density, respectively. P(ρ) = aργ is the pressure with constant a > 0 and the adiabatic
exponent γ ≥ 1. α and β are positive constants. The fractional Laplacian (−∆)α is defined at the Fourier
level by the symbol | ξ |2α.

When b = 0, α = 1, and ρ =constant, the above system (1.1) reduces to the classical 3D stationary
Navier-Stokes system  − ∆u + (u · ∇)u + ∇P = 0, in R3,

div u = 0, in R3.
(1.2)
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The Liouville problem for (1.2) still remains open: Is zero the only decay solution of (1.2) that verifies
the finite Dirichlet integral condition?

D(u) =
∫
R3
|∇u|2 dx < ∞. (1.3)

There are numerous results on the Liouville problem for (1.2). One of the first results is due to Galdi
[1], who proved that u ∈ L

9
2 (R3) is sufficient to imply that u = 0. In [2], Chae showed that ∆u ∈

L
6
5 (R3), which with the same scaling as (1.3), implies that u = 0. In [3], Seregin proved that u = 0

if u ∈ L6(R3) ∩ BMO−1. Sufficient conditions involving the head pressure for the triviality of the
solution to the Navier–Stokes equations are studied by Chae in [4–6]. In [7], Chae and Wolf proved
that the solution u to (1.2) is trivial if the Ls mean oscillation of the potential function V of u has a
certain growth condition near infinity. In [8], Chae and Yoneda proved that if the solution u ∈ Ḣ1(R3)
to (1.2) satisfies additional conditions characterized by the decays near infinity and by the oscillation,
then u = 0. In [9, 10], Jarrı́n and his collaborators studied the Liouville-type theorems in Lorentz and
Morrey spaces. Kozono, Terasawa, and Wakasugi proved in [11] that u = 0 if the vorticity ω = o(|x|−

5
3 )

as |x| → ∞ or ∥u∥
L

9
2 ,∞
≤ δD(u)

1
3 for a small constant δ. For more studies on the Liouville problem of

the stationary Navier–Stokes equations, we refer to [12–14] and references therein.
For the compressible Navier–Stokes system−∆u + div (ρu ⊗ u) + ∇P = 0, div (ρu) = 0 in Rd

P = aργ, γ > 1,
(1.4)

Chae [15] showed that the (1.4) has only a trivial solution u = 0, ρ =constant, provided that

∥ρ∥L∞(Rd) + ∥∇u∥L2(Rd) + ∥u∥L d
d−1 (Rd)

< ∞, when 2 ≤ d ≤ 6,

∥ρ∥L∞(Rd) + ∥∇u∥L2(Rd) + ∥u∥L d
d−1 (Rd)

+ ∥u∥
L

3d
d−1 (Rd)

< ∞, when d ≥ 7.

In [16], Li and Yu proved several improved Liouville-type theorems for the d-dimensional stationary
compressible Navier–Stokes system. Particularly, they showed that ρ ∈ L∞(Rd) and u ∈ Ḣ1(Rd) are
sufficient to guarantee u = 0 and ρ =constant when d ≥ 4. See [17–19] and references therein for more
studies on the Liouville problem of the stationary compressible Navier–Stokes system.

When α ∈ (0, 1), b = 0 and ρ =constant, system (1.1) reduces to the following stationary fractional
Navier-Stokes system: (−∆)αu + (u · ∇)u + ∇P = 0, in R3,

div u = 0, in R3.
(1.5)

To our knowledge, there are few results on the Liouville problem of such a system. In [20], Wang and
Xiao proved that the smooth solution u ∈ Ḣα(R3) ∩ L

9
2 (R3) of (1.5) is trivial for α ∈ (0, 1). In [21],

Yang proved the same result for 5
6 ≤ α < 1. Recently, Chamorro and Poggi [22] proved an almost

sharp Liouville’s theorem for the stationary fractional Navier–Stokes system.
For the stationary fractional compressible Navier–Stokes system(−∆)αu + div (ρu ⊗ u) + ∇P = 0, in Rd

div u = 0, in Rd
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Wang and Xiao [20] proved that ρ =constant and u = 0 provided that

∥ρ∥L∞(Rd) + ∥u∥Ḣα(Rd) + ∥u∥L d
d−1 (Rd)

< ∞, when α ≥
1
2
,

∥ρ∥L∞(Rd) + ∥u∥Ḣα(Rd) + ∥u∥L d
d−1 (Rd)

+ ∥u∥
L

3d
d−1 (Rd)

< ∞, when α <
1
2
.

When α = β = 1 and ρ =constant, system (1.1) reduces to the usual MHD system. There are also
many results on the Liouville-type theorems for the stationary MHD system. In [23], Chae, Degond,
and Liu proved that the solution to the stationary incompressible MHD and Hall-MHD system is trivial
if u, b ∈ L

9
2 (R3) ∩ L∞(R3) and ∇u,∇b ∈ L2(R3). Later, Zeng [24] improved this result by removing the

boundedness assumption of b and the finite Dirichlet integral assumption ∇u,∇b ∈ L2(R3). Another
interesting result of Chae and Weng [25] showed that u = b = 0 if u ∈ L3(R3) and ∇u,∇b ∈ L2(R3).
In [26], Chae and Wolf proved Liouville-type theorems for the stationary MHD and the stationary
Hall-MHD systems by assuming suitable growth conditions at infinity for the mean oscillations for the
potential functions. This work has been generalized in [27] by Chae et al.. In [28, 29], Wang studied
the Liouville-type theorems for the planar stationary MHD equations. For more related studies, we
refer to [30–35] and references therein.

Recently, many authors have been interested in the Liouville-type theorems for the stationary
Navier-Stokes equations and the stationary MHD system in anisotropic Lebesgue spaces. The
anisotropic Lebesgue space is defined as follows:

Definition. Let u = u(x1, x2, x3) be a measurable function on R3 and 1 ≤ p, q, r ≤ ∞. We say that u
belongs to the anisotropic Lebesgue space Lp

x1 Lq
x2 Lr

x3
(R3), provided that

∥u∥Lp
x1 Lq

x2 Lr
x3 (R3) =

∥∥∥∥∥∥∥∥∥∥∥u∥Lp
x1 (R)

∥∥∥∥
Lq

x2 (R)

∥∥∥∥∥∥
Lr

x3 (R)

< ∞.

Here ∥ · ∥Lp
xi (R) denotes the Lp norm with respect to the variable xi.

Clearly, Lp
x1 Lp

x2 Lp
x3(R

3) coincides with the usual Lebesgue space Lp(R3). Throughout the paper, for
any vector p⃗ = (p1, p2, p3), we use the notation ∥ · ∥L p⃗(R3) to denote ∥ · ∥Lp1

x1 Lp2
x2 L

p3
x3 (R3).

In [36], Luo and Yin proved that the bounded smooth solution u ∈ Ḣ1(R3) to (1.2) is trivial if

ui ∈ Lpi
x1

Lqi
x2

Lri
x3

(R3) with
1
pi
+

1
qi
+

1
ri
=

2
3
, i = 1, 2, 3.

Note that when pi = qi = ri =
9
2 , this result recovers the classical result of Galdi [1]. Moreover, each

component u j of the velocity u may belong to different anisotropic spaces. Phan [37] proved that the
solution u ∈ H1

loc(R
3) to (1.2) is trivial if

u ∈ Lq
x1

Lq
x2

Lr
x3

(R3) with
2
q
+

1
r
≥

2
3
.

This result requires all components u1, u2 and u3 lie in the same anisotropic space. Chae [38] proved
that the solution u ∈ L6(R3) ∩ Lq(R3) to (1.2) is trivial if

u j ∈ Ls
xl

Ls
xk

L
q

q−2
x j (R3) with

4
q
+

2
s
≥ 1, s ∈ [1,∞], q ∈ (2,∞), ∀ j = 1, 2, 3.
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Note that a different order of integration for different components is allowed. In [39], Chae generalized
this result to MHD equations. Fan and Wang [40] also studied the Liouville problem for the stationary
incompressible MHD system; they proved that u, b ∈ Lq

x1 Lq
x2 Lr

x3
(R3) implies that u = b = 0, provided

that q, r ∈ [3,+∞) and 2
q +

1
r ≥

2
3 . They also claimed that u = b = 0 if u, b ∈ Lp

x1 Lq
x2 Lr

x3
(R3) with

p, q, r ∈ [3,∞) and 1
p +

1
q +

1
r ≥

2
3 . For the studies on Liouville-type theorems for the stationary

compressible MHD system, we refer to Wu [41] and references therein.
Recently, Zeng [42] studied the Liouville-type theorems for the stationary fractional incompress-

ible MHD system and proved that the solution (u, b) ∈ Ḣα(R3) × Ḣβ(R3) is trivial provided that
u = (u1, u2, u3), b = (b1, b2, b3) such that (u j, b j) ∈ L p⃗ j(R3) × Lq⃗ j(R3) with

3∑
l=1

1
p j,l
≥

2
3
,

3∑
l=1

1
q j,l
≥

2
3
, p j,l, q j,l ∈ [3,+∞), ∀ j, l = 1, 2, 3.

Different from the above-mentioned results on the MHD system, which require all components
u1, u2, u3 and b1, b2, b3 to lie in the same space, the result of Zeng [42] allows each component ui

and bi to belong to different anisotropic spaces.
Inspired by the aforementioned results, this paper aims to establish a Liouville-type theorem for the

stationary fractional compressible magnetohydrodynamic equations in anisotropic Lebesgue spaces.
Our main result is as follows.

Theorem 1. Let 0 < α, β < 1, (ρ, u, B) ∈ L∞(R3) × Ḣα(R3) × Ḣβ(R3) be a smooth solution to (1.1);
then u = b = 0 provided that

ui ∈ L p⃗i(R3) with
3∑

j=1

1
pi, j
≥ 2 if

1
2
≤ α < 1,

ui ∈ L p⃗i(R3) ∩ Lq⃗i(R3) with
3∑

j=1

1
pi, j
≥ 2 and

∑
j=1

1
qi, j
≥

2
3

if 0 < α <
1
2
,

(1.6)

and 
bi ∈ Lξ⃗i(R3) with

3∑
j=1

1
ξi, j
≥ 2 if

1
2
≤ β < 1,

bi ∈ Lξ⃗i(R3) ∩ Lη⃗i(R3) with
3∑

j=1

1
ξi, j
≥ 2 and

∑
j=1

1
ηi, j
≥

2
3

if 0 < β <
1
2
,

(1.7)

where pi, j, ξi, j ∈ [1, 3
2 ] and qi, j, ηi, j ∈ [3,+∞) for i, j = 1, 2, 3.

Remark 2. The assumption (1.7) can be replaced by the following assumption:

bi ∈ Lξ⃗i(R3) with
3∑

j=1

1
ξi, j
≥

2
3
, ξi, j ∈ [3,+∞) for i, j = 1, 2, 3. (1.8)

See (3.12) for the estimates of I12 and I2 in the proof of Theorem 1 for details. Moreover, by the
embedding Ḣβ(R3) ↪→ L

6
3−2β (R3) (see [43, Theorem 1.38, p.29] for example) and the fact that 3−2β

6 ×3 ≥

Electronic Research Archive Volume 33, Issue 3, 1306–1322.
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2
3 when 0 < β ≤ 5

6 , the additional assumption (1.8) (and also (1.7)) on b can be omitted if 1
2 ≤ β ≤

5
6 .

Here β ≥ 1
2 is needed to ensure that 6

3−2α ≥ 3. To emphasize this observation, we state the following
Corollary:

Corollary 3. Let 0 < α, β < 1, (ρ, u, B) ∈ L∞(R) × Ḣα(R) × Ḣβ(R) be a smooth solution to (1.1); then
u = b = 0 provided that one of the following conditions is fulfilled:

(a) 1
2 ≤ α < 1, β > 5

6 or 0 < β < 1
2 , ui ∈ L p⃗i(R3), bi ∈ Lξ⃗i(R3) with

3∑
j=1

1
pi, j
≥ 2,

3∑
j=1

1
ξi, j
≥

2
3
, pi, j ∈ [1,

3
2

], ξi, j ∈ [3,+∞)

for i, j = 1, 2, 3; or
(b) 1

2 ≤ α < 1, 1
2 ≤ β ≤

5
6 , ui ∈ L p⃗i(R3) with

3∑
j=1

1
pi, j
≥ 2, pi, j ∈ [1,

3
2

]

for i, j = 1, 2, 3; or
(c) 0 < α < 1

2 , β > 5
6 or 0 < β < 1

2 , ui ∈ L p⃗i(R3) ∩ Lq⃗i(R3), bi ∈ Lξ⃗i(R3) with

3∑
j=1

1
pi, j
≥ 2,

3∑
j=1

1
qi, j
≥

2
3
,

3∑
j=1

1
ξi, j
≥

2
3
, pi, j ∈ [1,

3
2

], qi, j, ξi, j ∈ [3,+∞)

for i, j = 1, 2, 3; or
(d) 0 < α < 1

2 , 1
2 ≤ β ≤

5
6 , ui ∈ L p⃗i(R3) ∩ Lq⃗i(R3) with

3∑
j=1

1
pi, j
≥ 2,

3∑
j=1

1
qi, j
≥

2
3
, pi, j ∈ [1,

3
2

], qi, j, ξi, j ∈ [3,+∞)

for i, j = 1, 2, 3.

Remark 4. When b = 0, Theorem 1 improves the result of Wang and Xiao [20] for d = 3, since
u ∈ L

3
2 (R3) and u ∈ L

9
2 (R3) satisfy 2

3 × 3 = 2 and 2
9 × 3 = 2

3 , respectively. Indeed, our result strictly
covered the result of [20] for d = 3, α < 1

2 , since their result requires u ∈ L
3
2 (R3) ∩ L

9
2 (R3), but our

result (case (d) with b = 0 in Corollary 3) shows that u ∈ L
3
2 (R3) ∩ L3(R3) is sufficient.

2. Preliminaries

2.1. Caffarelli–Silvestre extension

We first recall the well-known Caffarelli–Silvestre extension for the fractional Laplacian operator
(−∆)α with α ∈ (0, 1) in [44]. Throughout this paper, we use ∇̄ and div to denote the gradient and
divergence operators on R4

+, respectively. We say a distribution u ∈ Ḣα(R3) if |ξ|αû(ξ) ∈ L2(R3), where
û(ξ) denotes the Fourier transform of u. Let u ∈ Ḣa

(
R3

)
and set λ = 1 − 2α, according to [44], there is

an extension in R4
+, denoted by u∗ such that

Electronic Research Archive Volume 33, Issue 3, 1306–1322.
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div
(
yλ∇̄u∗

)
= 0, (x, y) ∈ R4

+,

u∗(x, 0) = u(x), x ∈ R3.
(2.1)

Furthermore, it holds that
−Cα lim

y→0+
yλ∂yu∗ = (−∆)αu(x), x ∈ R3, (2.2)

and

∥u∥2
Ḣα(R3) =

"
R4
+

yλ
∣∣∣∇̄u∗

∣∣∣2 dxdy, (2.3)

where Cα is a constant depending only on α. This u∗ is called the α-extension of u. The following Lp

integrability of such u∗ plays a crucial role in our proof.

Lemma 5. (Lemma 2.2 in [20]). Let α ∈ (0, 1) and u∗ be the α-extension of u ∈ Lp
(
R3

)
given by (2.1);

it holds that ("
R4
+

y1−2α |u∗|
(5−2α)p

3 dxdy
) (5−2α)p

3

≤ C∥u∥Lp(R3). (2.4)

By the embedding theorem Ḣα
(
R3

)
↪→ L

6
3−2α

(
R3

)
, if we choose p = 6

3−2α in Lemma 2.1, it holds
that ("

R4
+

y1−2α |u∗|
2(5−2α)

3−2α dxdy
) 3−2α

2(5−2α)

≤ C∥u∥Ḣα(R3). (2.5)

2.2. Hölder’s inequality and interpolation inequality in anisotropic Lebesgue spaces.

The following Hölder’s inequality in anisotropic Lebesgue space (see [45] for example) are fre-
quently referred to in the sequel.

Lemma 6. For p⃗ = (p1, p2, p3) , q⃗ = (q1, q2, q3) and r⃗ = (r1, r2, r3) with

1
pi
+

1
qi
=

1
ri
, 1 ≤ pi, qi, ri ≤ ∞, i = 1, 2, 3,

and f ∈ L p⃗
(
R3

)
, g ∈ Lq⃗

(
R3

)
, it holds that

∥ f g∥Lr⃗(R3) ≤ ∥ f ∥L p⃗(R3)∥g∥Lq⃗(R3)

We can also prove the following interpolation inequality in anisotropic Lebesgue space.

Lemma 7. For p⃗ = (p1, p2, p3) , q⃗ = (q1, q2, q3), r⃗ = (r1, r2, r3) and θ ∈ [0, 1] with

θ

pi
+

1 − θ
qi
=

1
ri
, 1 ≤ pi, qi, ri ≤ ∞, i = 1, 2, 3,

and f ∈ L p⃗
(
R3

)
∩ Lq⃗

(
R3

)
, it holds that

∥ f ∥Lr⃗(R3) ≤ ∥ f ∥
θ
L p⃗(R3)∥ f ∥

1−θ
Lq⃗(R3).

Electronic Research Archive Volume 33, Issue 3, 1306–1322.
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Proof. By successively using the classical interpolation inequality and Hölder’s inequality, we have

∥ f ∥Lr⃗(R3) =
∥∥∥∥∥∥∥∥ f ∥Lr1 (R)

∥∥∥
Lr2 (R)

∥∥∥∥
Lr3 (R)

≤

∥∥∥∥∥∥∥∥ f ∥θLp1 (R)∥ f ∥
1−θ
Lq1 (R)

∥∥∥
Lr2 (R)

∥∥∥∥
Lr3 (R)

≤

∥∥∥∥∥∥∥∥ f ∥θLp1 (R)

∥∥∥
L

p2
θ (R)

∥∥∥∥ f ∥1−θLq1 (R)

∥∥∥
L

q2
1−θ (R)

∥∥∥∥
Lr3 (R)

=
∥∥∥∥∥∥∥∥ f ∥Lp1 (R)

∥∥∥θ
Lp2 (R)

∥ f ∥Lq1 (R)∥
1−θ
Lq2 (R)

∥∥∥∥
Lr3 (R)

≤

∥∥∥∥∥∥∥∥ f ∥Lp1 (R)

∥∥∥θ
Lp2 (R)

∥∥∥∥
L

p3
θ

∥∥∥∥ f ∥Lq1 (R)∥
1−θ
Lq2 (R)

∥∥∥
L

q3
1−θ (R)

=∥ f ∥θL p⃗(R3)∥ f ∥
1−θ
Lq⃗(R3).

□

Though the above inequalities are stated for R3, they hold for any domain Ω ⊂ R3 by a simple zero
extension argument.

3. Proof of Theorem 1

This section is devoted to proving Theorem 1.
For each R > 0, we denote the cube in R3 centered at the origin with radius R by QR = [−R,R]3.

Let ψ ∈ C∞0 (R) be a standard one-dimensional cut-off function such that

ψ(x) =

1, if |x| ≤ 1
0, if |x| ≥ 2

.

For any R > 0, we define

ψR(x) = ψ(
x1

R
)ψ(

x2

R
)ψ(

x3

R
), x = (x1, x2, x3) ∈ R3.

Then we have

ψR(x) =

1, if x ∈ QR

0, if x ∈ R3\Q2R.

We also denote χR(y) by a real nonincreasing smooth function in R such that

χR(y) =

0, if y ≥ 2R

1, if y ≤ R
,

and
∣∣∣χ′R(y)

∣∣∣ ≤ C
R for some constant C independent of y ∈ R and R.

Multiplying (1.1)2 by ϕRu, integrating by parts, and using the divergence-free property of u, we have∫
R3

(−∆)αu · ψRudx =
1
2

∫
R3

(u · ∇ψR) ρ|u|2dx +
∫
R3

(b · ∇)b · ψRudx −
∫
R3
ψRu · ∇P dx. (3.1)

Electronic Research Archive Volume 33, Issue 3, 1306–1322.
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Similarly, by testing (1.1)3 with ψRb, we have∫
R3

(−∆)βb · ψRbdx =
1
2

∫
R3

(u · ∇ψR) |b|2dx −
∫
R3

(b · ∇ψR) (u · b)dx −
∫
R3

(b · ∇)b · ψRudx. (3.2)

On the other hand, by (2.1), we have

0 = Cα

"
R4
+

div(yλ∇̄u∗) · u∗(ψR(x)χR(y))dxdy

= Cα

"
R4
+

div(yλ∇̄u∗ · u∗(ψR(x)χR(y)))dxdy −Cα

"
R4
+

yλ|∇̄u∗|2(ψR(x)χR(y))dxdy

−Cα

"
R4
+

yλ∇̄u∗ · u∗∇̄(ψR(x)χR(y))dxdy.

(3.3)

Since ψR(x) is supported in Q2R and χR(y) = 1 in [0,R], the divergence theorem gives"
R4
+

div(yλ∇̄u∗ · u∗(ψR(x)χR(y))) dxdy = −
∫
R3

lim
y→0

(yλ∇̄u∗) · uψR(x) dx. (3.4)

Combining (3.3), (3.4) and (2.2), we obtain

Cα

"
R4
+

yλ
∣∣∣∇̄u∗

∣∣∣2 ψR(x)χR(y)dxdy

=

∫
R3

(−∆)αu · ψRudx −Cα

"
R4
+

yλ∇̄u∗ · u∗∇̄ (ψR(x)χR(y)) dxdy.
(3.5)

Similarly, we have

Cβ

"
R4
+

yµ
∣∣∣∇̄b∗

∣∣∣2 ψR(x)χR(y)dxdy

=

∫
R3

(−∆)βb · ψRbdx −Cβ

"
R4
+

yµ∇̄b∗ · b∗∇̄ (ψR(x)χR(y)) dxdy,
(3.6)

where µ = 1 − 2β. Combining (3.1), (3.2), (3.5) and (3.6), we obtain that

Cα

"
R4
+

yλ
∣∣∣∇̄u∗

∣∣∣2 ψR(x)χR(y)dxdy +Cβ

"
R4
+

yµ
∣∣∣∣∇⃗b∗

∣∣∣∣2 ψR(x)χR(y)dxdy

=

∫
R3

(u · ∇ψR)
(
1
2
ρ|u|2 +

1
2
|b|2

)
dx −

∫
R3

(b · ∇ψR) (u · b)dx

−Cα

"
R4
+

yλ∇̄u∗ · u∗∇̄ (ψR(x)χR(y)) dxdy −Cβ

"
R4
+

yµ∇̄b∗ · b∗∇̄ (ψR(x)χR(y)) dxdy

−

∫
R3
ψRu · ∇P dx

= I1 + I2 + I3 + I4 + I5.

(3.7)

Now we estimate I1. Applying Young’s inequality, we have

|I1| ≤ C
∫
R3
|∇ψR| |u|3 dx +C

∫
R3
|∇ψR| |b|3dx

= I11 + I12.

(3.8)
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The estimate of I11 is divided into the following three cases:

Case 1: 5
6 ≤ α < 1.

Since 5
6 ≤ α < 1, we have 3−2α

6 ≤ 2
9 . On the other hand, for pi, j ∈ [1, 3

2 ], we have 1
pi, j
≥ 2

3 and
1

3pi, j
≥ 2

9 . Hence,

0 ≤
1

3pi, j
− 3−2α

6

1
pi, j
− 3−2α

6

≤

1
3 −

3−2α
6

1
pi, j
− 3−2α

6

< 1.

It is easily checked that f1(x) =
1
3x−

3−2α
6

1
x−

3−2α
6

is decreasing in [1, 3
2 ] and f2(x) =

1
3−

3−2α
6

1
x−

3−2α
6

is increasing in [1, 3
2 ].

Therefore, for pi, j ∈ [1, 3
2 ], we have

f1(pi, j) ≤ f1(1) =
2α − 1
3 + 2α

= f2(1) ≤ f2(pi, j) ≤ f2

(
3
2

)
,

which is exactly

0 ≤
1

3pi, j
− 3−2α

6

1
pi, j
− 3−2α

6

≤
2α − 1
3 + 2α

≤

1
3 −

3−2α
6

1
pi, j
− 3−2α

6

< 1. (3.9)

Therefore, by choosing θ = 2α−1
3+2α ∈ (0, 1) and defining ri, j such that

1
ri, j
=

θ

pi, j
+

3 − 2α
6

(1 − θ) =
(

1
pi, j
−

3 − 2α
6

)
θ +

3 − 2α
6

,

we have
1

ri, j
∈

[
1

3pi, j
,

1
3

]
by observing (3.9). Therefore,

3 ≤ ri, j ≤ 3pi, j and thus
3∑

j=1

1
ri, j
≥

3∑
j=1

1
3pi, j

≥
2
3
. (3.10)

Moreover, by using Lemma 7, we have

∥ui∥Lr⃗i ≤ ∥ui∥
θ

L p⃗i
∥ui∥

1−θ

L
6

3−2α
.

Thus, by letting si, j be such chat
1

ri, j
+

1
si, j
=

1
3
,

and

Cl(R) = {R ≤ |xl| ≤ 2R, |xm| ≤ 2R, |xn| ≤ 2R}, {l,m, n} = {1, 2, 3},
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and using Lemma 6, we have

I11 ≤
C
R

3∑
l=1

∫
Cl(R)
|u|3ϕ′

( xl

R

)
ϕ
( xm

R

)
ϕ
( xn

R

)
dx ≤

C
R

3∑
l,i=1

∫
Cl(R)
|ui|

3 dx

≤
C
R

3∑
l,i=1

∥ui∥
3
Lr⃗i (Cl(R))

∥1∥3
Ls⃗i (Cl(R))

≤
C
R

3∑
l,i=1

∥ui∥
3θ
L p⃗i (Cl(R))

∥ui∥
3−3θ

L
6

3−2α (Cl(R))
∥1∥3

Ls⃗i (Cl(R))

≤C
3∑

l,i=1

R2−3
∑3

j=1
1

ri, j ∥ui∥
3θ
L p⃗i (Cl(R))

∥ui∥
3−3θ

L
6

3−2α (Cl(R))
.

(3.11)

Here we used the fact that

∥1∥Ls⃗i (Cl(R)) ≤


∫ 2R

−2R

∫ 2R

−2R

(∫ 2R

−2R
1s1 dx1

) s2
s1

dx2


s3
s2

dx3


1
s3

=

((
(4R)

s2
s1 · 4R

) s3
s2
· 4R

) 1
s3

= (4R)
∑3

j=1
1

si, j = (4R)1−
∑3

j=1
1

ri, j .

Hence, by (1.6) and (3.10), we have

|I11| → 0 as R→ ∞.

Case 2: 1
2 ≤ α <

5
6 . By using Lemma 6 and the fractional Sobolev inequality, we have

I11 ≤
C
R

3∑
l,i=1

∫
Cl(R)
|ui|

3 dx

≤
C
R

3∑
l,i=1

(∫
Cl(R)
|ui|

6
3−2α dx

) 3(3−2α)
6

(∫
Cl(R)

dx
) 6α−3

6

≤

3∑
l,i=1

R
6α−5

2 ∥ui∥
3

L
6

3−2α (Cl(R))

≤

3∑
l,i=1

R
6α−5

2 ∥ui∥
3
Ḣα(Cl(R)) → 0 as R→ ∞.

Case 3: α < 1
2 . From Lemma 6, it follows that

I11 ≤
C
R

3∑
l,i=1

∫
Cl(R)
|ui|

3 dx ≤
C
R

3∑
l,i=1

∥ui∥
3
Lq⃗i (Cl(R))

∥1∥3
Lz⃗i(Cl(R)) ,

where
1

qi, j
+

1
zi, j
=

1
3
, ∀i, j = 1, 2, 3.
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Thus, by (1.6) we have

I11 ≤ C
3∑

l,i=1

R2−3
∑3

j=1
1

qi, j ∥ui∥
3
Lq⃗i (Cl(R))

→ 0 as R→ ∞.

This completes the estimate of I11. Similarly, we have I12 → 0 as R → ∞. Hence, I1 → 0 as R → ∞.
The estimate of I2 follows from the estimates of I11, I12, and the use of Young’s inequality,

|I2| ≤

∫
R3
|∇ψR||u||b|2 dx ≤

∫
R3
|∇ψR||u|3 dx +

∫
R3
|∇ψR||b|3 dx = I11 + I12 → 0 as R→ ∞.

We remark here that we can also get the estimate of I12 and then I2 under assumption (1.8) instead
of (1.7). Indeed,

|I12| ≤
C
R

3∑
l=1

∫
Cl(R)
|b|3 dx ≤

C
R

3∑
l,i=1

∫
Cl(R)
|bi|

3 dx ≤
C
R

3∑
l,i=1

∥bi∥
3
Lξ⃗i (Cl(R))

∥1∥3
Lτ⃗i (Cl(R))

≤C
3∑

l,i=1

R2−3
∑3

j=1
1
ξi, j ∥bi∥

3
Lξ⃗i (Cl(R))

→ 0 as R→ ∞,

(3.12)

where

1
ξi, j
+

1
τi, j
=

1
3
, ∀i, j = 1, 2, 3.

Now we estimate I3. By the definition of ψR and χR, we have

I3 = −Cα

3∑
l=1

∫ 2R

0

∫
Cl(R)

yλu∗i ∂lu∗i ·
1
R
ψ′

( xl

R

)
ψ

( x j

R

)
ψ

( xk

R

)
χR(y)dxdy

−Cα

∫ 2R

R

∫
R3

yλ∇̄u∗ · u∗ψR∇̄χR(y)dxdy.
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It follows by using Hölder’s inequality and (2.5) that

|I3| ≤

3∑
l=1

C
R

(∫ 2R

0

∫
Cl(R)

yλ
∣∣∣∇̄u∗

∣∣∣2 dxdy
) 1

2
(∫ 2R

0

∫
Cl(R)

yλ |u∗|
2(5−2α)

3−2α dxdy
) 3−2α

2(5−2α)

×

(∫ 2R

0

∫
Cl(R)

yλdxdy
) 1

5−2α

+
C
R

(∫ 2R

R

∫
R3

yλ
∣∣∣∇̄u∗

∣∣∣2 dxdy
) 1

2
(∫ 2R

R

∫
R3

yλ |u∗|
2(5−2α)

3−2α dxdy
) 3−2α

2(5−2α)

×

(∫ 2R

R

∫
R3

yλψ5−2α
R (x)dxdy

) 1
5−2α

≤C
3∑

l=1

(∫ 2R

0

∫
Cl(R)

yλ|∇̄u∗|2dxdy
) 1

2
(∫ 2R

0

∫
Cl(R)

yλ|u∗|
2(5−2α)

3−2α dxdy
) 3−2α

2(5−2α)

+C
(∫ 2R

R

∫
R3

yλ
∣∣∣∇̄u∗

∣∣∣2 dxdy
) 1

2
(∫ 2R

R

∫
R3

yλ |u∗|
2(5−2α)

3−2α dxdy
) 3−2α

2(5−2α)

≤C∥u∥Ḣα(R3)

3∑
l=1

(∫ 2R

0

∫
Cl(R)

yλ
∣∣∣∇̄u∗

∣∣∣2 dxdy
) 1

2

+C∥u∥Ḣα(R3)

(∫ 2R

R

∫
R3

yλ
∣∣∣∇̄u∗

∣∣∣2 dxdy
) 1

2

.

Recall the fact that∫ 2R

0

∫
Cl(R)

yλ
∣∣∣∇̄u∗

∣∣∣2 dxdy +
∫ 2R

R

∫
R3

yλ
∣∣∣∇̄u∗

∣∣∣2 dxdy ≤ 2∥u∥2
Ḣα(R3),

we immediately get that I3 → 0 as R→ ∞. Similarly, I4 → 0 as R→ ∞.
It remains to estimate I5. We need a separate treatment for γ > 1 and γ = 1.
Case a: γ ∈ (1,∞). Rewrite

∇P = a∇ργ =
(

aγ
γ − 1

)
ρ∇ργ−1.

This, along with div(ρu) = 0, derives

I5 =
aγ
γ − 1

∫
R3
ψRρu · ∇ργ−1dx

= −
aγ
γ − 1

∫
R3
ψR div(ρu)ργ−1dx +

aγ
γ − 1

∫
R3
ργu · ∇ψRdx

=
aγ
γ − 1

∫
R3
ργu · ∇ψRdx.
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Then it follows from ui ∈ L p⃗i(R3) and ∥ρ∥L∞(R3) < ∞ that

|I5| ≤
C
R

3∑
l=1

∫
Cl(R)

ργ|u|dx ≤
C
R

3∑
l,i=1

∥ρ∥
γ

L∞(R3)∥ui∥L p⃗i (Cl(R))∥1∥Lt⃗i (Cl(R))

≤ C
3∑

l,i=1

∥ρ∥
γ

L∞(R3)R
2−

∑3
j=1

1
pi, j ∥ui∥L p⃗i (Cl(R)),

where
1 =

1
pi, j
+

1
ti, j
, ∀i, j = 1, 2, 3. (3.13)

Hence, by (1.6), we have I5 → 0 as R→ ∞.
Case b: γ = 1. Under this circumstance we have

∇P = a∇ρ = aρ∇ ln ρ.

By using div(ρu) = 0 again, we obtain

I13 = a
∫
R3
ψRρu · ∇ ln ρdx

= −a
∫
R3
ψR div(ρu) ln ρdx + a

∫
R3

(ρ ln ρ)u · ∇ψRdx

= a
∫
R3
ρ ln ρu · ∇ψRdx.

Note that

|t ln t| ≤
{

Ct2 as t ∈ (1,∞);
Ct

1
2 as t ∈ (0, 1].

So
∥ρ ln ρ∥L∞(R3) ≤ C∥ρ∥2L∞(R3) +C∥ρ∥

1
2
L∞(R3).

Accordingly, ui ∈ L p⃗i(R3) is used to deduce that

|I13| ≤ C
3∑

l=1

3∑
i=1

∫
Cl(R)
|ρ ln ρ||ui||∇ψR|dx

≤
C
R

3∑
l,i=1

∥ρ ln ρ∥L∞(R3)∥ui∥L p⃗i (Cl(R))∥1∥Lt⃗i (Cl(R))

≤ C
3∑

l,i=1

R2−
∑3

j=1
1

pi, j ∥ρ ln ρ∥L∞(R3)∥ui∥L p⃗i (Cl(R))

≤ C
3∑

l,i=1

R2−
∑3

j=1
1

pi, j

(
∥ρ∥2L∞(R3) + ∥ρ∥

1
2
L∞(R3)

)
∥ui∥L p⃗i (Cl(R)),

where t⃗i is determined by (3.13). Hence, by (1.6), we have I5 → 0 as R → ∞. Concluding the above
two cases, we obtain

I5 → 0 as R→ ∞.
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Concluding the above estimates for I1, I2, I3, I4, and I5 and letting R→ ∞ in (3.7), we obtain

Cα

"
R4
+

yλ
∣∣∣∇̄u∗

∣∣∣2 dxdy +Cβ

"
R4
+

yµ
∣∣∣∇̄b∗

∣∣∣2 dxdy = 0,

which implies that u∗ = b∗ = constant. Hence, u = u∗(x, 0) and b = b∗(x, 0) are both constant vector
fields. Since

(
u j, b j

)
∈ L p⃗ j

(
R3

)
× Lq⃗ j

(
R3

)
, we conclude that u = b = 0. This completes the proof of

Theorem 1.
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linéaire, 38 (2021), 689–710. https://doi.org/10.1016/j.anihpc.2020.08.006

10. O. Jarrı́n, A remark on the Liouville problem for stationary Navier-Stokes equa-
tions in Lorentz and Morrey spaces, J. Math. Anal. Appl., 486 (2020), 123871.
https://doi.org/10.1016/j.jmaa.2020.123871

11. H. Kozono, Y. Terasawa, Y. Wakasugi, A remark on Liouville-type theorems for the station-
ary Navier-Stokes equations in three space dimensions, J. Funct. Anal., 272 (2017), 804–818.
https://doi.org/10.1016/j.jfa.2016.06.019

12. O. Jarrı́n, A short note on the Liouville problem for the steady-state Navier–Stokes equations,
Arch. Math., 121 (2023), 303–315. https://doi.org/10.1007/s00013-023-01891-w

13. G. Seregin, Remarks on Liouville type theorems for steady-state Navier-Stokes equations, St.
Petersburg Math. J., 30 (2019), 321–328. https://doi.org/10.1090/spmj/1544

14. G. Seregin, W. Wang, Sufficient conditions on Liouville type theorems for the 3D steady Navier-
Stokes equations, St. Petersburg Math. J., 31 (2019), 269–278. https://doi.org/10.1090/spmj/1603

15. D. Chae, Remarks on the Liouville type results for the compressible Navier-Stokes equations in
R3, Nonlinearity, 25 (2012), 1345. https://doi.org/10.1088/0951-7715/25/5/1345

16. D. Li, X. Yu, On some Liouville type theorems for the compressible Navier-Stokes equations,
Discrete Contin. Dyn. Syst., 34 (2014), 4719–4733. https://doi.org/10.3934/dcds.2014.34.4719

17. Z. Li, P. Niu, Liouville type theorems for the 3D stationary hall-MHD equations, Z. Angew. Math.
Mech. ZAMM, 100 (2020), e201900200. https://doi.org/10.1002/zamm.201900200

18. Z. Li, P. Niu, Notes on Liouville type theorems for the stationary compressible Navier-Stokes
equations, Appl. Math. Lett., 114 (2021), 106908. https://doi.org/10.1016/j.aml.2020.106908

19. X. Zhong, A Liouville theorem for the compressible Navier-Stokes equations, Math. Methods
Appl. Sci., 41 (2018), 5091–5095. https://doi.org/10.1002/mma.5055

20. Y. Wang, J. Xiao, A Liouville type theorem for the stationary fractional Navier-Stokes-Poisson
system, J. Math. Fluid Mech., 20 (2018), 485–498. https://doi.org/10.1007/s00021-017-0330-9

21. J. Yang, On Liouville type theorem for the steady fractional Navier-Stokes equations in R3, J.
Math. Fluid Mech., 24 (2022), 81. https://doi.org/10.1007/s00021-022-00719-x

22. D. Chamorro, B. Poggi, On an almost sharp Liouville type theorem for fractional Navier-Stokes
equations, Publ. Mat., 69 (2025), 27–43. https://doi.org/10.5565/PUBLMAT6912502

23. D. Chae, P. Degond, J. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H.
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