Research article

Martingale transforms on Banach function spaces

  • Received: 15 August 2021 Revised: 06 December 2021 Accepted: 20 December 2021 Published: 21 April 2022
  • We establish the boundedness of martingale transforms on Banach function spaces by using the Rubio de Francia extrapolation theory and the interpolation theorem by Zygmund. The main result also yields the boundedness of the martingale transforms on rearrangement-invariant Banach function spaces, Orlicz spaces, Lorentz-Karamata spaces, Zygmund spaces, Lebesgue spaces with variable exponents, Morrey spaces with variable exponents and Lorentz-Karamata Morrey spaces.

    Citation: Kwok-Pun Ho. Martingale transforms on Banach function spaces[J]. Electronic Research Archive, 2022, 30(6): 2247-2262. doi: 10.3934/era.2022114

    Related Papers:

  • We establish the boundedness of martingale transforms on Banach function spaces by using the Rubio de Francia extrapolation theory and the interpolation theorem by Zygmund. The main result also yields the boundedness of the martingale transforms on rearrangement-invariant Banach function spaces, Orlicz spaces, Lorentz-Karamata spaces, Zygmund spaces, Lebesgue spaces with variable exponents, Morrey spaces with variable exponents and Lorentz-Karamata Morrey spaces.



    加载中


    [1] K.-P. Ho, Doob's inequality, Burkholder-Gundy inequality and martingale transforms on martingale Morrey spaces, Acta Math. Sci., 38, (2018) 93–109. https://doi.org/10.1016/S0252-9602(17)30119-4 doi: 10.1016/S0252-9602(17)30119-4
    [2] K.-P. Ho, Martingale transforms and fractional integrals on rearrangement-invariant martingale Hardy spaces, Period. Math. Hung., 81 (2020), 159–173. https://doi.org/10.1007/s10998-020-00318-1 doi: 10.1007/s10998-020-00318-1
    [3] Y. Jiao, L. Wu, M. Popa, Operator-valued martingale transforms in rearrangement-invariant spaces and applications. Sci. China Math., 56 (2013), 831–844. https://doi.org/10.1007/s11425-013-4570-8 doi: 10.1007/s11425-013-4570-8
    [4] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, vol. 1568 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1994. https://doi.org/10.1007/BFb0073448
    [5] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, 1988.
    [6] E. Nakai, G. Sadasue, Martingale Morrey-Campanato spaces and fractional integrals, J. of Funct. Spac. Appl., 2012 (2012), Article ID 673929. https://doi.org/10.1155/2012/673929 doi: 10.1155/2012/673929
    [7] K.-P. Ho, Boundedness of operators and inequalities on Morrey-Banach spaces, Publ. Res. Inst. Math. Sci, (to appear).
    [8] R. L. Long, Martingale spaces and inequalities. Peking University Press, Beijing, 1993. https://doi.org/10.1007/978-3-322-99266-6
    [9] Y. Jiao, D. Zhou, Z. Hao, W. Chen, Martingale Hardy spaces with variable exponents, Banach J. Math. Anal., 10 (2016), 750–770. https://doi.org/10.1215/17358787-3649326 doi: 10.1215/17358787-3649326
    [10] M. Izumisawa, N. Kazamaki, Weighted norm inequalities for martingales, Tohoku Math. J., 29 (1977), 115–124. https://doi.org/10.2748/tmj/1178240700 doi: 10.2748/tmj/1178240700
    [11] A. Osȩkowski, Weighted inequalities for martingale transforms and stochastic integrals, Mathematika, 63 (2017), 433–450. https://doi.org/10.1112/S0025579316000322 doi: 10.1112/S0025579316000322
    [12] M. Kikuchi, Averaging operators and martingale inequalities in rearrangement invariant function spaces, Canad. Math. Bull., 42 (1999), 321–334. https://doi.org/10.4153/CMB-1999-038-7 doi: 10.4153/CMB-1999-038-7
    [13] K.-P. Ho, Atomic decompositions, dual spaces and interpolations of martingale Hardy-Lorentz-Karamata spaces, Q. J. Math., 65 (2013), 985–1009. https://doi.org/10.1093/qmath/hat038 doi: 10.1093/qmath/hat038
    [14] Y. Jiao, G. Xie, D. Zhou, Dual spaces and John-Nirenberg inequalities of martingale Hardy-Lorentz-Karamata spaces, Q. J. Math., 66 (2015), 605–623. https://doi.org/10.1093/qmath/hav003 doi: 10.1093/qmath/hav003
    [15] Q. Wu, D. Zhou, L. Peng, Martingale inequalities on Hardy-Lorentz-Karamata spaces, J. Math. Inequal., 13 (2019), 135–146. https://doi.org/10.7153/jmi-2019-13-10 doi: 10.7153/jmi-2019-13-10
    [16] L, Wu., D. Zhou, Y. Jiao, Modular inequalities in martingale Orlicz-Karamata spaces, Math. Nachr., 291 (2018), 1450–1462. https://doi.org/10.1002/mana.201700070 doi: 10.1002/mana.201700070
    [17] K.-P. Ho, Fourier type transforms on rearrangement-invariant quasi-Banach function spaces, Glasgow Math. J., 61 (2019), 231–248. https://doi.org/10.1017/S0017089518000186 doi: 10.1017/S0017089518000186
    [18] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces Ⅰ and Ⅱ, Springer, New York, 1996. https://doi.org/10.1007/978-3-540-37732-0
    [19] K.-P. Ho, Exponential probabilistic inequalities, Lith. Math. J., 58 (2018), 399–407. https://doi.org/10.1007/s10986-018-9410-7 doi: 10.1007/s10986-018-9410-7
    [20] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with Variable Exponents, Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [21] Y. Jiao, D. Zhou, F. Weisz, Z. Hao, Corrigendum: Fractional integral on martingale Hardy spaces with variable exponents, Fract. Calc. Appl. Anal., 20 (2017), 1051–1052. https://doi.org/10.1515/fca-2017-0055 doi: 10.1515/fca-2017-0055
    [22] Y. Jiao, D. Zhou, F. Weisz, L. Wu, Variable martingale Hardy spaces and their applications in Fourier analysis, Dissertationes Math., 550 (2020), 1–67. https://doi.org/10.4064/dm807-12-2019 doi: 10.4064/dm807-12-2019
    [23] P. Liu, Doob's maximal inequalities for martingales in variable Lebesgue space, Acta Math. Scientia, 41 (2021), 283–296. https://doi.org/10.1007/s10473-021-0116-2 doi: 10.1007/s10473-021-0116-2
    [24] D. E. Edmunds, W. D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer, 2004. https://doi.org/10.1007/978-3-662-07731-3
    [25] W. Chen, K.-P. Ho, Y. Jiao, D. Zhou, Weighted mixed-norm inequality on Doob's maximal operator and John–Nirenberg inequalities in Banach function spaces, Acta Math. Hungar., 157 (2019), 408–433. https://doi.org/10.1007/s10474-018-0889-5 doi: 10.1007/s10474-018-0889-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1260) PDF downloads(74) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog