In this manuscript, the notion of absolutely invertible was extended consistently from semi-normed rings to the class of general topological rings. Then, the closure of the absolutely invertibles multiplied by a certain element was proved to be contained in the set of topological divisors of the element. Also, a sufficient condition for the closed unit ball of a complete unital normed ring to become a closed unit neighborhood of zero was found. Finally, two applications to classical operator theory were provided, i.e., every Banach space of dimension of at least $ 2 $ could be equivalently re-normed in such a way that the group of surjective linear isometries was not a normal subgroup of the group of isomorphisms, and every infinite-dimensional Banach space, containing a proper complemented subspace isomorphic to it, could be equivalently re-normed so that the set of surjective linear operators was not dense in the Banach algebra of bounded linear operators.
Citation: Francisco Javier García-Pacheco, María de los Ángeles Moreno-Frías, Marina Murillo-Arcila. On absolutely invertibles[J]. Electronic Research Archive, 2024, 32(12): 6578-6592. doi: 10.3934/era.2024307
In this manuscript, the notion of absolutely invertible was extended consistently from semi-normed rings to the class of general topological rings. Then, the closure of the absolutely invertibles multiplied by a certain element was proved to be contained in the set of topological divisors of the element. Also, a sufficient condition for the closed unit ball of a complete unital normed ring to become a closed unit neighborhood of zero was found. Finally, two applications to classical operator theory were provided, i.e., every Banach space of dimension of at least $ 2 $ could be equivalently re-normed in such a way that the group of surjective linear isometries was not a normal subgroup of the group of isomorphisms, and every infinite-dimensional Banach space, containing a proper complemented subspace isomorphic to it, could be equivalently re-normed so that the set of surjective linear operators was not dense in the Banach algebra of bounded linear operators.
[1] |
P. H. Enflo, M. S. Moslehian, J. B. Seoane-Sepúlveda, A history of solving some famous problems in mathematical analysis, Br. J. Hist. Math., 37 (2022), 64–80. https://doi.org/10.1080/26375451.2022.2037358 doi: 10.1080/26375451.2022.2037358
![]() |
[2] | J. B. Conway, A Course in Functional Analysis, $2^{nd}$ edition, Springer-Verlag, New York, 1990. |
[3] | J. B. Conway, A course in Operator Theory, American Mathematical Society, Providence, 2000. |
[4] | N. Dunford, J. T. Schwartz, Linear Operators, Part 1: General Theory, John Wiley & Sons, New York, 1988. |
[5] | N. Dunford, J. T. Schwartz, Linear Operators, Part 2: Spectral Theory, Self Adjoint Operators in Hilbert Space, John Wiley & Sons, New York, 1988. |
[6] | N. Dunford, J. T. Schwartz, Linear Operators, Part 3: Spectral Operators, John Wiley & Sons, New York, 1988. |
[7] |
F. J. García-Pacheco, S. Sáez-Martínez, Normalizing rings, Banach J. Math. Anal., 14 (2020), 1143–1176. https://doi.org/10.1007/s43037-020-00055-0 doi: 10.1007/s43037-020-00055-0
![]() |
[8] | G. J. Murphy, $C^*$-Algebras and Operator Theory, Academic Press, Boston, 1990. https://doi.org/10.1016/C2009-0-22289-6 |
[9] | F. J. García-Pacheco, Abstract Calculus-A Categorical Approach, CRC Press, New York, 2021. https://doi.org/10.1201/9781003166559 |
[10] |
R. I. Loebl, V. I. Paulsen, Some remarks on $C^{\ast} $-convexity, Linear Algebra Appl., 35 (1981), 63–78. https://doi.org/10.1016/0024-3795(81)90266-4 doi: 10.1016/0024-3795(81)90266-4
![]() |
[11] | A. Dvurečenskij, S. Pulmannová, New Trends in Quantum Structures, Springer, Dordrecht, 2000. https://doi.org/10.1007/978-94-017-2422-7 |
[12] |
S. Abedi, M. S. Moslehian, Extensions of the Hilbert-multi-norm in Hilbert $C^*$-modules, Positivity, 27 (2023), 7. https://doi.org/10.1007/s11117-022-00960-8 doi: 10.1007/s11117-022-00960-8
![]() |
[13] |
S. Abedi, M. S. Moslehian, Power-norms based on Hilbert $C^*$-modules, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 117 (2023), 7. https://doi.org/10.1007/s13398-022-01341-2 doi: 10.1007/s13398-022-01341-2
![]() |
[14] |
R. Eskandari, X. Fang, M. S. Moslehian, Q. Xu, Pedersen-Takesaki operator equation and operator equation $AX = B$ in Hilbert $C^*$-modules, J. Math. Anal. Appl., 521 (2023), 126878. https://doi.org/10.1016/j.jmaa.2022.126878 doi: 10.1016/j.jmaa.2022.126878
![]() |
[15] |
S. Ivković, Semi-Fredholm theory on Hilbert $C^*$-modules, Banach J. Math. Anal., 13 (2019), 989–1016. https://doi.org/10.1215/17358787-2019-0022 doi: 10.1215/17358787-2019-0022
![]() |
[16] |
S. Ivković, Semi-Fredholm theory in $C^*$-algebras, Banach J. Math. Anal., 17 (2023), 51. https://doi.org/10.1007/s43037-023-00277-y doi: 10.1007/s43037-023-00277-y
![]() |
[17] | V. M. Manuilov, E. V. Troitsky, Hilbert $C^*$-modules (Translations of Mathematical Monographs) American Mathematical Society, Providence, 2005. |
[18] |
A. S. Miščenko, A. T. Fomenko, The index of elliptic operators over $C^{\ast} $-algebras, Math. USSR Izv., 15 (1980), 87. https://doi.org/10.1070/IM1980v015n01ABEH001207 doi: 10.1070/IM1980v015n01ABEH001207
![]() |
[19] |
F. J. García-Pacheco, A. Miralles, M. Murillo-Arcila, Invertibles in topological rings: a new approach, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 116 (2022), 38. https://doi.org/10.1007/s13398-021-01183-4 doi: 10.1007/s13398-021-01183-4
![]() |
[20] | R. Doran, Characterizations of $C^*$ Algebras: The Gelfand Naimark Theorems, CRC Press, Boca Raton, 2018. https://doi.org/10.1201/9781315139043 |
[21] |
F. J. García-Pacheco, The AHSP is inherited by $E$-summands, Adv. Oper. Theory, 2 (2017), 17–20. http://doi.org/10.22034/aot.1610.1033 doi: 10.22034/aot.1610.1033
![]() |
[22] |
F. J. García-Pacheco, P. Piniella, Unit neighborhoods in topological rings, Banach J. Math. Anal., 9 (2015), 234–242. http://doi.org/10.15352/bjma/09-4-12 doi: 10.15352/bjma/09-4-12
![]() |
[23] |
P. Piniella, Existence of non-trivial complex unit neighborhoods, Carpathian J. Math., 33 (2017), 107–114. https://doi.org/10.37193/CJM.2017.01.11 doi: 10.37193/CJM.2017.01.11
![]() |
[24] | V. I. Arnautov, S. T. Glavatsky, A. V. Mikhalev, Introduction to the Theory of Topological Rings and Modules, Marcel Dekker, New York, 1996. |
[25] | S. Warner, Topological Fields, Elsevier, Amsterdam, 1989. |
[26] | S. Warner, Topological Rings, Elsevier, Amsterdam, 1993. |
[27] |
F. J. García-Pacheco, P. Piniella, Geometry of balanced and absorbing subsets of topological modules, J. Algebra Appl., 18 (2019), 1950119. https://doi.org/10.1142/S0219498819501196 doi: 10.1142/S0219498819501196
![]() |
[28] | S. Sakai, $C^*$-Algebras and $W^*$-Algebras, Springer Berlin, Heidelberg, 1998. https://doi.org/10.1007/978-3-642-61993-9 |
[29] |
S. J. Bhatt, H. V. Dedania, Banach algebras in which every element is a topological zero divisor, Proc. Am. Math. Soc., 123 (1995), 735–737. https://doi.org/10.2307/2160793 doi: 10.2307/2160793
![]() |
[30] |
J. C. Marcos, A. Rodríguez-Palacios, M. V. Velasco, A note on topological divisors of zero and division algebras, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 109 (2015), 93–100. https://doi.org/10.1007/s13398-014-0168-4 doi: 10.1007/s13398-014-0168-4
![]() |
[31] |
W. Żelazko, On generalized topological divisors of zero, Stud. Math., 85 (1987), 137–148. https://doi.org/10.4064/sm-85-2-137-148 doi: 10.4064/sm-85-2-137-148
![]() |