The purpose of the present work is to solve a third kind of multi-singular nonlinear system using the neuro-swarm computing solver based on the artificial neural networks (ANNs) optimized with the effectiveness of particle swarm optimization (PSO) maintained by a local search proficiency of interior-point algorithm (IPA), i.e., ANN-PSO-IPA. An objective function is designed using the continuous mapping of ANN for nonlinear multi-singular third order system of Emden-Fowler equations and optimization of fitness function carried out with the integrated strength of PSO-IPA. The motivation to design the ANN-PSO-IPA is to present a feasible, reliable and feasible framework to handle with such complicated nonlinear multi-singular third order system of Emden-Fowler model. The designed ANN-PSO-IPA is tested for three different nonlinear variants of the multi-singular third kind of Emden-Fowler system. The obtained numerical results on single/multiple executions of the designed ANN-PSO-IPA are used to endorse the precision, viability and reliability.
Citation: Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Aldawoud Kamal, Juan L.G. Guirao, Dac-Nhuong Le, Tareq Saeed, Mohamad Salama. Neuro-Swarm heuristic using interior-point algorithm to solve a third kind of multi-singular nonlinear system[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5285-5308. doi: 10.3934/mbe.2021268
The purpose of the present work is to solve a third kind of multi-singular nonlinear system using the neuro-swarm computing solver based on the artificial neural networks (ANNs) optimized with the effectiveness of particle swarm optimization (PSO) maintained by a local search proficiency of interior-point algorithm (IPA), i.e., ANN-PSO-IPA. An objective function is designed using the continuous mapping of ANN for nonlinear multi-singular third order system of Emden-Fowler equations and optimization of fitness function carried out with the integrated strength of PSO-IPA. The motivation to design the ANN-PSO-IPA is to present a feasible, reliable and feasible framework to handle with such complicated nonlinear multi-singular third order system of Emden-Fowler model. The designed ANN-PSO-IPA is tested for three different nonlinear variants of the multi-singular third kind of Emden-Fowler system. The obtained numerical results on single/multiple executions of the designed ANN-PSO-IPA are used to endorse the precision, viability and reliability.
[1] | H. J. Lane, On the Theoretical Temperature of the Sun, under the Hypothesis of a gaseous Mass maintaining its Volume by its internal Heat and depending on the laws of gases as known to terrestrial Experiment, Am. J. Sci., 148 (1870), 57-74. |
[2] | R. Emden, Gaskugeln Teubner, Leipzig und Berlin, 1907. |
[3] | I. Ahmad, M. A. Z. Raja, M. Bilal, F. Ashraf, Neural network methods to solve the Lane-Emden type equations arising in thermodynamic studies of the spherical gas cloud model, Neural Comput. Appli., 28 (2017), 929-944. doi: 10.1007/s00521-016-2400-y |
[4] | T. C. Hao, F. Z. Cong, Y. F. Shang, An efficient method for solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions and error estimate, J. Math. Chem., 56 (2018), 2691-2706. doi: 10.1007/s10910-018-0912-7 |
[5] | T. Luo, Z. Xin, H. Zeng, Nonlinear asymptotic stability of the Lane-Emden solutions for the viscous gaseous star problem with degenerate density dependent viscosities, Commun. Math. Phys., 347 (2016), 657-702. doi: 10.1007/s00220-016-2753-1 |
[6] | F. Abbas, P. Kitanov, S. Longo, Approximate solutions to lane-emden equation for stellar configuration, Appl. Math. Inf. Sci., 13 (2019), 143-152. doi: 10.18576/amis/130201 |
[7] | M. A. Soliman, Approximate solution for the Lane-Emden equation of the second kind in a spherical annulus, J. King Saud Univ., Eng. Sci., 31 (2019), 1-5. doi: 10.1016/j.jksus.2017.02.001 |
[8] | V. Radulescu, D. Repovs, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal.: Theory, Methods Appl., 75 (2012), 1524-1530. doi: 10.1016/j.na.2011.01.037 |
[9] | J. A. Khan, M. A. Z. Raja, M. M. Rashidi, M. I. Syam, A. M. Wazwaz, Nature-inspired computing approach for solving non-linear singular Emden-Fowler problem arising in electromagnetic theory, Connect. Science, 27 (2015), 377-396. doi: 10.1080/09540091.2015.1092499 |
[10] | M. Ghergu, V. Radulescu, On a class of singular Gierer-Meinhardt systems arising in morphogenesis, C. R. Math., 344 (2007), 163-168. doi: 10.1016/j.crma.2006.12.008 |
[11] | A. K. Dizicheh, S. Salahshour, A. Ahmadian, D. Baleanu, A novel algorithm based on the Legendre wavelets spectral technique for solving the Lane-Emden equations, Appl. Numer. Math., 153 (2020), 443-456. doi: 10.1016/j.apnum.2020.02.016 |
[12] | W. Adel, Z. Sabir, Solving a new design of nonlinear second-order Lane-Emden pantograph delay differential model via Bernoulli collocation method, Eur. Phys. J. Plus, 135 (2020), 427. doi: 10.1140/epjp/s13360-020-00449-x |
[13] | Z. Sabir, M. G. Sakar, M. Yeskindirova, O. Saldir, Numerical investigations to design a novel model based on the fifth order system of Emden-Fowler equations, Theor. Appl. Mech. Lett., 10 (2020), 333-342. doi: 10.1016/j.taml.2020.01.049 |
[14] | R. Singh, V. Guleria, M. Singh, Haar wavelet quasilinearization method for numerical solution of Emden-Fowler type equations, Math. Comput. Simul., 174 (2020), 123-133. doi: 10.1016/j.matcom.2020.02.004 |
[15] | M. A. Abdelkawy, Z. Sabir, J. L. Guirao, T. Saeed, Numerical investigations of a new singular second-order nonlinear coupled functional Lane-Emden model, Open Phys., 18 (2020), 770-778. doi: 10.1515/phys-2020-0185 |
[16] | Z. Sabir, H. Günerhan, J. L. Guirao, On a new model based on third-order nonlinear multisingular functional differential equations, Math. Probl. Eng., 2020 (2020), 1-9. |
[17] | A. M. Wazwaz, A new algorithm for solving differential equations of Lane-Emden type, Appl. Math. Comput., 118 (2001), 287-310. |
[18] | Z. Sabir, H. A. Wahab, M. Umar, M. G. Sakar, M. A. Z. Raja, Novel design of Morlet wavelet neural network for solving second order Lane-Emden equation, Math. Comput. Simul., 172 (2020), 1-14. doi: 10.1016/j.matcom.2020.01.005 |
[19] | A. H. Bukhari, M. Sulaiman, S. Islam, M. Shoaib, P. Kumam, M. A. Z. Raja, Neuro-fuzzy modeling and prediction of summer precipitation with application to different meteorological stations, Alexandria Eng. J., 59 (2020), 101-116. doi: 10.1016/j.aej.2019.12.011 |
[20] | Z. Sabir, M. A. Z. Raja, J. L. Guirao, M. Shoaib, A novel design of fractional Meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems. Alexandria Eng. J., 60 (2021), 2641-2659. |
[21] | M. A. Z. Raja, M. Umar, Z. Sabir, J. A. Khan, D. Baleanu, A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head, Eur. Phys. J. Plus, 133 (2018), 1-21. doi: 10.1140/epjp/i2018-11804-8 |
[22] | M. A. Z. Raja, Z. Sabir, N. Mehmood, E. S. Al-Aidarous, J. A. Khan, Design of stochastic solvers based on genetic algorithms for solving nonlinear equations, Neural Comput. Appl., 26 (2015), 1-23. |
[23] | A. H. Bukhari, M. A. Z. Raja, M. Sulaiman, S. Islam, M. Shoaib, P. Kumam, Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting, IEEE Access, 8 (2020), 71326-71338. doi: 10.1109/ACCESS.2020.2985763 |
[24] | M. Umar, Z. Sabir, M. A. Z. Raja, Intelligent computing for numerical treatment of nonlinear prey-predator models, Appl. Soft Comput., 80 (2019), 506-524. doi: 10.1016/j.asoc.2019.04.022 |
[25] | Z. Sabir, H. A. Wahab, M. Umar, F. Erdoğan, Stochastic numerical approach for solving second order nonlinear singular functional differential equation, Appl. Math. Comput., 363 (2019), 124605. |
[26] | Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Neuro-swarm intelligent computing to solve the second-order singular functional differential model, Eur. Phys. J. Plus, 135 (2020), 1-19. doi: 10.1140/epjp/s13360-019-00059-2 |
[27] | M. Umar, Z. Sabir, M. A. Z. Raja, F. Amin, T. Saeed, Y. Guerrero-Sanchez, Integrated neuro-swarm heuristic with interior-point for nonlinear SITR model for dynamics of novel COVID-19, Alexandria Eng. J., 60 (2021), 2811-2824. doi: 10.1016/j.aej.2021.01.043 |
[28] | M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics, Symmetry, 12 (2020), 1628. doi: 10.3390/sym12101628 |
[29] | J. L. Guirao, Z. Sabir, T. Saeed, Design and numerical solutions of a novel third-order nonlinear Emden-Fowler delay differential model, Math. Probl. Eng., 2020 (2020), 1-9. |
[30] | Z. Sabir, M. A. Z. Raja, J. L. Guirao, M. Shoaib, A Neuro-Swarming Intelligence-Based Computing for Second Order Singular Periodic Non-linear Boundary Value Problems, Front. Phys., 8 (2020), 224. doi: 10.3389/fphy.2020.00224 |
[31] | M. Umar, Z. Sabir, F. Amin, J. L. Guirao, M. A. Z. Raja, Stochastic numerical technique for solving HIV infection model of CD4+ T cells, Eur. Phys. J. Plus, 135 (2020), 403. doi: 10.1140/epjp/s13360-020-00417-5 |
[32] | M. Umar, Z. Sabir, M. A. Z. Raja, Y. G. Sánchez, A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever, Results Phys., 19 (2020), 103585. doi: 10.1016/j.rinp.2020.103585 |
[33] | T. T. Teo, T. Logenthiran, W. L. Woo, K. Abidi, T. John, N. S. Wade, et al., Optimization of Fuzzy Energy-Management System for Grid-Connected Microgrid Using NSGA-Ⅱ, IEEE Trans. Cybern., 2020 (2020), 1-12. |
[34] | C. S. Chin, X. Ji, W. L. Woo, T. J. Kwee, W. Yang, Modified multiple generalized regression neural network models using fuzzy C-means with principal component analysis for noise prediction of offshore platform, Neural Comput. Appl., 31 (2019), 1127-1142. doi: 10.1007/s00521-017-3143-0 |
[35] | A. M. Wazwaz, The variational iteration method for solving systems of third-order Emden-Fowler type equations, J. Math. Chem., 55 (2017), 799-817. doi: 10.1007/s10910-016-0707-7 |
[36] | T. V. Sibalija, Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008-2018), Appl. Soft Comput., 84 (2019), 105743. doi: 10.1016/j.asoc.2019.105743 |
[37] | A. P. Engelbrecht, Particle swarm optimization with crossover: a review and empirical analysis, Artif. Intell. Rev., 45 (2016), 131-165. doi: 10.1007/s10462-015-9445-7 |
[38] | A. Mehmood, A. Zameer, M. A. Z. Raja, R. Bibi, N. I. Chaudhary, M. S. Aslam, Nature-inspired heuristic paradigms for parameter estimation of control autoregressive moving average systems, Neural Comput. Appl., 31 (2019), 5819-5842. doi: 10.1007/s00521-018-3406-4 |
[39] | A. Mehmood, A. Zameer, M. S. Aslam, M. A. Z. Raja, Design of nature-inspired heuristic paradigm for systems in nonlinear electrical circuits, Neural Compu. Appl., 32 (2020), 7121-7137. doi: 10.1007/s00521-019-04197-7 |
[40] | D. Bouhadjra, A. Kheldoun, A. Zemouche, Performance analysis of stand-alone six-phase induction generator using heuristic algorithms, Math. Comput. Simul., 167 (2020), 231-249. doi: 10.1016/j.matcom.2019.06.011 |
[41] | H. Mesloub, M. T. Benchouia, R. Boumaaraf, A. Goléa, N. Goléa, M. Becherif, Design and implementation of DTC based on AFLC and PSO of a PMSM, Math. Comput. Simul., 167 (2020), 340-355. doi: 10.1016/j.matcom.2018.04.010 |
[42] | M. A. Z. Raja, A. Zameer, A. K. Kiani, A. Shehzad, M. A. R. Khan, Nature-inspired computational intelligence integration with Nelder-Mead method to solve nonlinear benchmark model, Neural Compu. Appl., 29 (2018), 1169-1193. doi: 10.1007/s00521-016-2523-1 |
[43] | L. Casacio, C. Lyra, A. R. Oliveira, Interior point methods for power flow optimization with security constraints, Int. Trans. Oper. Res., 26 (2019), 364-378. |
[44] | A. Zanelli, A. Domahidi, J. Jerez, M. Morari, FORCES NLP: an efficient implementation of interior-point methods for multistage nonlinear nonconvex programs, Int. J. Control, 93 (2020), 13-29. doi: 10.1080/00207179.2017.1316017 |
[45] | E. Chouzenoux, M. C. Corbineau, J. C. Pesquet, A proximal interior point algorithm with applications to image processing, J.Math. Imaging Vision, 2019 (2019), 1-22. |
[46] | Z. Sabir, M. A. Zahoor Raja, D. Baleanu, Fractional Mayer Neuro-swarm heuristic solver for multi-fractional Order doubly singular model based on Lane-Emden equation, Fractals, 29 (2021), 2140017. |
[47] | W. Gao, G. Yel, H. M. Baskonus, C. Cattani, Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation, Aims Math., 5 (2020), 507-521. doi: 10.3934/math.2020034 |
[48] | H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 129-138. doi: 10.2478/AMNS.2019.1.00013 |
[49] | Y. G. Sanchez, Z. Sabir, J. L. Guirao, Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID), Fractals, 28 (2020), 2040026. doi: 10.1142/S0218348X20400265 |
[50] | T. N. Cheema, M. A. Z. Raja, I. Ahmad, S. Naz, H. Ilyas, M. Shoaib, Intelligent computing with Levenberg-Marquardt artificial neural networks for nonlinear system of COVID-19 epidemic model for future generation disease control, Eur. Phys. J. Plus, 135 (2020), 1-35. doi: 10.1140/epjp/s13360-019-00059-2 |
[51] | M. Umar, Z. Sabir, A. Imran, A. H. Wahab, M. Shoaib, M. A. Z. Raja, The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion, Therm. Sci., 24 (2020), 2929-2939. |
[52] | I. Uddin, I. Ullah, M. A. Z. Raja, M. Shoaib, S. Islam, T. Muhammad, Design of intelligent computing networks for numerical treatment of thin film flow of Maxwell nanofluid over a stretched and rotating surface, Surf. Interfaces, 24 (2021), 101107. doi: 10.1016/j.surfin.2021.101107 |
[53] | J. L. Aljohani, E. S. Alaidarous, M. A. Z. Raja, M. Shoaib, M. S. Alhothuali, Intelligent computing through neural networks for numerical treatment of non-Newtonian wire coating analysis model, Sci. Rep., 11 (2021), 1-32. doi: 10.1038/s41598-020-79139-8 |
[54] | M. Dewasurendra, K. Vajravelu, On the method of inverse mapping for solutions of coupled systems of nonlinear differential equations arising in nanofluid flow, heat and mass transfer, Appl. Math. Nonlinear Sci., 3 (2018), 1-14. |
[55] | P. Lakshminarayana, K. Vajravelu, G. Sucharitha, S. Sreenadh, Peristaltic slip flow of a Bingham fluid in an inclined porous conduit with Joule heating, Appl. Math. Nonlinear Sci., 3 (2018), 41-54. |
[56] | Z. Sabir, M. G. Sakar, M. Yeskindirova, O. Saldir, Numerical investigations to design a novel model based on the fifth order system of Emden-Fowler equations, Theor. Appl. Mech. Lett., 10 (2020), 333-342. doi: 10.1016/j.taml.2020.01.049 |
[57] | E. İlhan, İ. O. Kıymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlinear Sci., 5 (2020), 171-188. doi: 10.2478/amns.2020.1.00016 |
[58] | D. W. Brzeziński, Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus, Appl. Math. Nonlinear Sci., 3 (2018), 487-502. doi: 10.2478/AMNS.2018.2.00038 |
[59] | E. İlhan, İ. O. Kıymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlinear Sci., 5 (2020), 171-188. doi: 10.2478/amns.2020.1.00016 |
[60] | D. W. Brzeziński, Comparison of fractional order derivatives computational accuracy-right hand vs left hand definition, Appl. Math. Nonlinear Sci., 2 (2017), 237-248. doi: 10.21042/AMNS.2017.1.00020 |