Research article Special Issues

Multiobjective particle swarm optimization with direction search and differential evolution for distributed flow-shop scheduling problem

  • Received: 13 May 2022 Revised: 09 June 2022 Accepted: 13 June 2022 Published: 17 June 2022
  • As a classic problem of distributed scheduling, the distributed flow-shop scheduling problem (DFSP) involves both the job allocation and the operation sequence inside the factory, and it has been proved to be an NP-hard problem. Many intelligent algorithms have been proposed to solve the DFSP. However, the efficiency and quality of the solution cannot meet the production requirements. Therefore, this paper proposes a bi-objective particle swarm optimization with direction search and differential evolution to solve DFSP with the criteria of minimizing makespan and total processing time. The direction search strategy explores the particle swarm in multiple directions of the Pareto front, which enhances the strong convergence ability of the algorithm in different areas of Pareto front and improves the solution speed of the algorithm. The search strategy based on differential evolution is the local search strategy of the algorithm, which can prevent the multiobjective particle swarm optimization from converging prematurely and avoid falling into local optimum, so that a better solution can be found. The combination of these two strategies not only increases the probability of particles moving in a good direction, but also increases the diversity of the particle swarm. Finally, experimental results on benchmark problems show that, compared with traditional multiobjective evolutionary algorithms, the proposed algorithm can accelerate the convergence speed of the algorithm while guaranteeing that the obtained solutions have good distribution performance and diversity.

    Citation: Wenqiang Zhang, Chen Li, Mitsuo Gen, Weidong Yang, Zhongwei Zhang, Guohui Zhang. Multiobjective particle swarm optimization with direction search and differential evolution for distributed flow-shop scheduling problem[J]. Mathematical Biosciences and Engineering, 2022, 19(9): 8833-8865. doi: 10.3934/mbe.2022410

    Related Papers:

  • As a classic problem of distributed scheduling, the distributed flow-shop scheduling problem (DFSP) involves both the job allocation and the operation sequence inside the factory, and it has been proved to be an NP-hard problem. Many intelligent algorithms have been proposed to solve the DFSP. However, the efficiency and quality of the solution cannot meet the production requirements. Therefore, this paper proposes a bi-objective particle swarm optimization with direction search and differential evolution to solve DFSP with the criteria of minimizing makespan and total processing time. The direction search strategy explores the particle swarm in multiple directions of the Pareto front, which enhances the strong convergence ability of the algorithm in different areas of Pareto front and improves the solution speed of the algorithm. The search strategy based on differential evolution is the local search strategy of the algorithm, which can prevent the multiobjective particle swarm optimization from converging prematurely and avoid falling into local optimum, so that a better solution can be found. The combination of these two strategies not only increases the probability of particles moving in a good direction, but also increases the diversity of the particle swarm. Finally, experimental results on benchmark problems show that, compared with traditional multiobjective evolutionary algorithms, the proposed algorithm can accelerate the convergence speed of the algorithm while guaranteeing that the obtained solutions have good distribution performance and diversity.



    加载中


    [1] F. Pezzella, G. Morganti, G. Ciaschetti, A genetic algorithm for the flexible job-shop scheduling problem, Comput. Oper. Res., 35 (2008), 3202–3212. https://doi.org/10.1016/j.cor.2007.02.014 doi: 10.1016/j.cor.2007.02.014
    [2] Z. Shao, D. Pi, W. Shao, Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in distributed environment, Expert Syst. Appl., 145 (2020), 113147. https://doi.org/10.1016/j.eswa.2019.113147 doi: 10.1016/j.eswa.2019.113147
    [3] J. Behnamian, S. Fatemi Ghomi, A survey of multi-factory scheduling, J. Intell. Manuf., 27 (2016), 231–249. https://doi.org/10.1007/s10845-014-0890-y doi: 10.1007/s10845-014-0890-y
    [4] M. Yazdani, S. Gohari, B. Naderi, Multi-factory parallel machine problems: Improved mathematical models and artificial bee colony algorithm, Comput. Ind. Eng., 81 (2015), 36–45. https://doi.org/10.1016/j.cie.2014.12.023 doi: 10.1016/j.cie.2014.12.023
    [5] C. Lu, Y. Huang, L. Meng, L. Gao, B. Zhang, J. Zhou, A pareto-based collaborative multi-objective optimization algorithm for energy-efficient scheduling of distributed permutation flow-shop with limited buffers, Rob. Comput. Integr. Manuf., 74 (2022), 102277. https://doi.org/10.1016/j.rcim.2021.102277 doi: 10.1016/j.rcim.2021.102277
    [6] T. Meng, Q. K. Pan, L. Wang, A distributed permutation flowshop scheduling problem with the customer order constraint, Knowl.-Based Syst., 184 (2019), 104894. https://doi.org/10.1016/j.knosys.2019.104894 doi: 10.1016/j.knosys.2019.104894
    [7] S. Hatami, R. Ruiz, C. Andres-Romano, The distributed assembly permutation flowshop scheduling problem, Int. J. Prod. Res., 51 (2013), 5292–5308. https://doi.org/10.1080/00207543.2013.807955 doi: 10.1080/00207543.2013.807955
    [8] F. Xiong, M. Chu, Z. Li, Y. Du, L. Wang, Just-in-time scheduling for a distributed concrete precast flow shop system, Comput. Oper. Res., 129 (2021), 105204. https://doi.org/10.1016/j.cor.2020.105204 doi: 10.1016/j.cor.2020.105204
    [9] M. Gen, R. Cheng, L. Lin, Network models and optimization: Multiobjective genetic algorithm approach, Springer Science & Business Media, 2008.
    [10] B. Jiao, S. Yan, A niche sharing scheme-based co-evolutionary particle swarm optimization algorithm for flow shop scheduling problem, Syst. Cybernet. Inf., 15 (2017), 46–54.
    [11] X. Yu, M. Gen, Introduction to Evolutionary Algorithms, Springer Science & Business Media, 2010.
    [12] J. Gao, R. Chen, W. Deng, An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res., 51 (2013), 641–651. https://doi.org/10.1080/00207543.2011.644819 doi: 10.1080/00207543.2011.644819
    [13] S. y. Wang, L. Wang, M. Liu, Y. Xu, An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem, Int. J. Prod. Econ., 145 (2013), 387–396. https://doi.org/10.1016/j.ijpe.2013.05.004 doi: 10.1016/j.ijpe.2013.05.004
    [14] Y. Xu, L. Wang, S. Wang, M. Liu, An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem, Eng. Optim., 46 (2014), 1269–1283. https://doi.org/10.1080/0305215X.2013.827673 doi: 10.1080/0305215X.2013.827673
    [15] B. Naderi, R. Ruiz, A scatter search algorithm for the distributed permutation flowshop scheduling problem, Eur. J. Oper. Res., 239 (2014), 323–334. https://doi.org/10.1016/j.ejor.2014.05.024 doi: 10.1016/j.ejor.2014.05.024
    [16] H. Bargaoui, O. B. Driss, K. Ghédira, A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion, Comput. Ind. Eng., 111 (2017), 239–250. https://doi.org/10.1016/j.cie.2017.07.020 doi: 10.1016/j.cie.2017.07.020
    [17] R. Ruiz, Q. K. Pan, B. Naderi, Iterated greedy methods for the distributed permutation flowshop scheduling problem, Omega, 83 (2019), 213–222. https://doi.org/10.1016/j.omega.2018.03.004 doi: 10.1016/j.omega.2018.03.004
    [18] A. Kaveh, T. Bakhshpoori, Artificial bee colony algorithm, in Metaheuristics: Outlines, MATLAB Codes and Examples, Springer, 2019, 19–30. https://doi.org/10.1007/978-3-030-04067-3_3
    [19] F. Zhao, H. Liu, Y. Zhang, W. Ma, C. Zhang, A discrete water wave optimization algorithm for no-wait flow shop scheduling problem, Expert Syst. Appl., 91 (2018), 347–363. https://doi.org/10.1016/j.eswa.2017.09.028 doi: 10.1016/j.eswa.2017.09.028
    [20] J. f. Chen, L. Wang, Z. p. Peng, A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling, Swarm Evol. Comput., 50 (2019), 100557. https://doi.org/10.1016/j.swevo.2019.100557 doi: 10.1016/j.swevo.2019.100557
    [21] V. Fernandez-Viagas, P. Perez-Gonzalez, J. M. Framinan, The distributed permutation flow shop to minimise the total flowtime, Comput. Ind. Eng., 118 (2018), 464–477. https://doi.org/10.1016/j.cie.2018.03.014 doi: 10.1016/j.cie.2018.03.014
    [22] W. Shao, Z. Shao, D. Pi, Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem, Expert Syst. Appl., 183 (2021), 115453. https://doi.org/10.1016/j.eswa.2021.115453 doi: 10.1016/j.eswa.2021.115453
    [23] Y. Del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez, R. G. Harley, Particle swarm optimization: basic concepts, variants and applications in power systems, IEEE Trans. Evol. Comput., 12 (2008), 171–195.
    [24] J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm algorithm, in 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 5 (1997), 4104–4108. https://doi.org/10.1109/ICSMC.1997.637339
    [25] T. Jamrus, C. F. Chien, M. Gen, K. Sethanan, Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing, IEEE Trans. Semicond. Manuf., 31 (2017), 32–41. https://doi.org/10.1109/TSM.2017.2758380 doi: 10.1109/TSM.2017.2758380
    [26] T. Jamrus, C. F. Chien, M. Gen, K. Sethanan, Multistage production distribution under uncertain demands with integrated discrete particle swarm optimization and extended priority-based hybrid genetic algorithm, Fuzzy Optim. Decis. Making, 14 (2015), 265–287. https://doi.org/10.1007/s10700-014-9200-6 doi: 10.1007/s10700-014-9200-6
    [27] C. Moon*, J. Kim, M. Gen, Advanced planning and scheduling based on precedence and resource constraints for e-plant chains, Int. J. Prod. Res., 42 (2004), 2941–2955. https://doi.org/10.1080/00207540410001691956 doi: 10.1080/00207540410001691956
    [28] A. Okamoto, M. Gen, M. Sugawara, Integrated data structure and scheduling approach for manufacturing and transportation using hybrid genetic algorithm, J. Intell. Manuf., 17 (2006), 411–421. https://doi.org/10.1007/s10845-005-0014-9 doi: 10.1007/s10845-005-0014-9
    [29] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997), 341–359.
    [30] E. Jiang, L. Wang, J. Wang, Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks, Tsinghua Sci. Technol., 26 (2021), 646–663. https://doi.org/10.26599/TST.2021.9010007 doi: 10.26599/TST.2021.9010007
    [31] C. A. C. Coello, G. T. Pulido, M. S. Lechuga, Handling multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput., 8 (2004), 256–279. https://doi.org/10.1109/TEVC.2004.826067 doi: 10.1109/TEVC.2004.826067
    [32] B. Naderi, R. Ruiz, The distributed permutation flowshop scheduling problem, Comput. Oper. Res., 37 (2010), 754–768. https://doi.org/10.1016/j.cor.2009.06.019 doi: 10.1016/j.cor.2009.06.019
    [33] J. J. Wang, L. Wang, A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop, IEEE Trans. Syst. Man Cybern.: Syst., 50 (2018), 1805–1819. https://doi.org/10.1109/TSMC.2017.2788879 doi: 10.1109/TSMC.2017.2788879
    [34] A. P. Rifai, H. T. Nguyen, S. Z. M. Dawal, Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling, Appl. Soft Comput., 40 (2016), 42–57. https://doi.org/10.1016/j.asoc.2015.11.034 doi: 10.1016/j.asoc.2015.11.034
    [35] J. Deng, L. Wang, A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem, Swarm Evol. Comput., 32 (2017), 121–131. https://doi.org/10.1016/j.swevo.2016.06.002 doi: 10.1016/j.swevo.2016.06.002
    [36] C. Lu, L. Gao, J. Yi, X. Li, Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in china, IEEE Trans. Ind. Inf., 17 (2020), 6687–6696. https://doi.org/10.1109/TII.2020.3043734 doi: 10.1109/TII.2020.3043734
    [37] S. W. Lin, K. C. Ying, Minimizing makespan for solving the distributed no-wait flowshop scheduling problem, Comput. Ind. Eng., 99 (2016), 202–209. https://doi.org/10.1016/j.cie.2016.07.027 doi: 10.1016/j.cie.2016.07.027
    [38] K. C. Ying, S. W. Lin, C. Y. Cheng, C. D. He, Iterated reference greedy algorithm for solving distributed no-idle permutation flowshop scheduling problems, Comput. Ind. Eng., 110 (2017), 413–423. https://doi.org/10.1016/j.cie.2017.06.025 doi: 10.1016/j.cie.2017.06.025
    [39] C. Y. Cheng, K. C. Ying, H. H. Chen, H. S. Lu, Minimising makespan in distributed mixed no-idle flowshops, Int. J. Prod. Res., 57 (2019), 48–60. https://doi.org/10.1080/00207543.2018.1457812 doi: 10.1080/00207543.2018.1457812
    [40] G. Zhang, K. Xing, Differential evolution metaheuristics for distributed limited-buffer flowshop scheduling with makespan criterion, Comput. Oper. Res., 108 (2019), 33–43. https://doi.org/10.1016/j.cor.2019.04.002 doi: 10.1016/j.cor.2019.04.002
    [41] F. Zhao, X. He, L. Wang, A two-stage cooperative evolutionary algorithm with problem-specific knowledge for energy-efficient scheduling of no-wait flow-shop problem, IEEE Trans. Cybern., 51 (2020), 5291–5303. https://doi.org/10.1109/TCYB.2020.3025662 doi: 10.1109/TCYB.2020.3025662
    [42] F. Zhao, L. Zhang, J. Cao, J. Tang, A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem, Comput. Ind. Eng., 153 (2021), 107082. https://doi.org/10.1016/j.cie.2020.107082 doi: 10.1016/j.cie.2020.107082
    [43] F. Zhao, R. Ma, L. Wang, A self-learning discrete jaya algorithm for multiobjective energy-efficient distributed no-idle flow-shop scheduling problem in heterogeneous factory system, IEEE Trans. Cybern., 2021. https://doi.org/10.1109/TCYB.2021.3086181 doi: 10.1109/TCYB.2021.3086181
    [44] H. Jia, J. Y. Fuh, A. Y. Nee, Y. Zhang, Web-based multi-functional scheduling system for a distributed manufacturing environment, Concurrent Eng., 10 (2002), 27–39. https://doi.org/10.1177/1063293X02010001054 doi: 10.1177/1063293X02010001054
    [45] X. Zhang, X. T. Li, M. H. Yin, An enhanced genetic algorithm for the distributed assembly permutation flowshop scheduling problem, Int. J. Bio-Inspired Comput., 15 (2020), 113–124.
    [46] J. J. Wang, L. Wang, An iterated greedy algorithm for distributed hybrid flowshop scheduling problem with total tardiness minimization, in 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), IEEE, (2019), 350–355. https://doi.org/10.1109/COASE.2019.8842885
    [47] M. F. Tasgetiren, Y. C. Liang, M. Sevkli, G. Gencyilmaz, A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem, Eur. J. Oper. Res., 177 (2007), 1930–1947. https://doi.org/10.1016/j.ejor.2005.12.024 doi: 10.1016/j.ejor.2005.12.024
    [48] Q. K. Pan, M. F. Tasgetiren, Y. C. Liang, A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem, Comput. Oper. Res., 35 (2008), 2807–2839. https://doi.org/10.1016/j.cor.2006.12.030 doi: 10.1016/j.cor.2006.12.030
    [49] A. Rahimi-Vahed, S. Mirghorbani, A multi-objective particle swarm for a flow shop scheduling problem, J. Comb. Optim., 13 (2007), 79–102. https://doi.org/10.1007/s10878-006-9015-7 doi: 10.1007/s10878-006-9015-7
    [50] Y. X. Su, R. Chi, Multi-objective particle swarm-differential evolution algorithm, Neural Comput. Appl., 28 (2017), 407–418. https://doi.org/10.1007/s00521-015-2073-y doi: 10.1007/s00521-015-2073-y
    [51] Z. Cui, J. Zhang, D. Wu, X. Cai, H. Wang, W. Zhang, et al., Hybrid many-objective particle swarm optimization algorithm for green coal production problem, Inf. Sci., 518 (2020), 256–271. https://doi.org/10.1016/j.ins.2020.01.018 doi: 10.1016/j.ins.2020.01.018
    [52] W. Zhang, W. Hou, C. Li, W. Yang, M. Gen, Multidirection update-based multiobjective particle swarm optimization for mixed no-idle flow-shop scheduling problem, Complex Syst. Modell. Simul., 1 (2021), 176–197. https://doi.org/10.23919/CSMS.2021.0017 doi: 10.23919/CSMS.2021.0017
    [53] J. Q. Li, M. X. Song, L. Wang, P. Y. Duan, Y. Y. Han, H. Y. Sang, et al., Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop problem with deteriorating jobs, IEEE Trans. Cybern., 50 (2019), 2425–2439. https://doi.org/10.1109/TCYB.2019.2943606 doi: 10.1109/TCYB.2019.2943606
    [54] Q. K. Pan, L. Gao, L. Wang, J. Liang, X. Y. Li, Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem, Expert Syst. Appl., 124 (2019), 309–324. https://doi.org/10.1016/j.eswa.2019.01.062 doi: 10.1016/j.eswa.2019.01.062
    [55] J. P. Huang, Q. K. Pan, Z. H. Miao, L. Gao, Effective constructive heuristics and discrete bee colony optimization for distributed flowshop with setup times, Eng. Appl. Artif. Intell., 97 (2021), 104016. https://doi.org/10.1016/j.engappai.2020.104016 doi: 10.1016/j.engappai.2020.104016
    [56] M. E. Baysal, A. Sarucan, K. Büyüközkan, O. Engin, Artificial bee colony algorithm for solving multi-objective distributed fuzzy permutation flow shop problem, J. Intell. Fuzzy Syst., (2022), 1–11. https://doi.org/10.3233/JIFS-219202 doi: 10.3233/JIFS-219202
    [57] W. L. Liu, Y. J. Gong, W. N. Chen, Z. Liu, H. Wang, J. Zhang, Coordinated charging scheduling of electric vehicles: A mixed-variable differential evolution approach, IEEE Trans. Intell. Transp. Syst., 21 (2019), 5094–5109. https://doi.org/10.1109/TITS.2019.2948596 doi: 10.1109/TITS.2019.2948596
    [58] S. Zhou, L. Xing, X. Zheng, N. Du, L. Wang, Q. Zhang, A self-adaptive differential evolution algorithm for scheduling a single batch-processing machine with arbitrary job sizes and release times, IEEE Trans. Cybern., 51 (2019), 1430–1442. https://doi.org/10.1109/TCYB.2019.2939219 doi: 10.1109/TCYB.2019.2939219
    [59] W. Zhang, Y. Wang, Y. Yang, M. Gen, Hybrid multiobjective evolutionary algorithm based on differential evolution for flow shop scheduling problems, Comput. Ind. Eng., 130 (2019), 661–670. https://doi.org/10.1016/j.cie.2019.03.019 doi: 10.1016/j.cie.2019.03.019
    [60] Y. Y. Han, D. Gong, X. Sun, A discrete artificial bee colony algorithm incorporating differential evolution for the flow-shop scheduling problem with blocking, Eng. Optim., 47 (2015), 927–946. https://doi.org/10.1080/0305215X.2014.928817 doi: 10.1080/0305215X.2014.928817
    [61] W. Zhang, M. Gen, J. Jo, Hybrid sampling strategy-based multiobjective evolutionary algorithm for process planning and scheduling problem, J. Intell. Manuf., 25 (2014), 881–897. https://doi.org/10.1007/s10845-013-0814-2 doi: 10.1007/s10845-013-0814-2
    [62] Y. Li, C. Wang, L. Gao, Y. Song, X. Li, An improved simulated annealing algorithm based on residual network for permutation flow shop scheduling, Complex Intell. Syst., 7 (2021), 1173–1183. https://doi.org/10.1007/s40747-020-00205-9 doi: 10.1007/s40747-020-00205-9
    [63] M. Baioletti, A. Milani, V. Santucci, Algebraic particle swarm optimization for the permutations search space, in 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2017), 1587–1594. https://doi.org/10.1109/CEC.2017.7969492
    [64] E. Taillard, Benchmarks for basic scheduling problems, Eur. J. Oper. Res., 64 (1993), 278–285. https://doi.org/10.1016/0377-2217(93)90182-M doi: 10.1016/0377-2217(93)90182-M
    [65] A. P. Rifai, S. T. W. Mara, A. Sudiarso, Multi-objective distributed reentrant permutation flow shop scheduling with sequence-dependent setup time, Expert Syst. Appl., 183 (2021), 115339. https://doi.org/10.1016/j.eswa.2021.115339 doi: 10.1016/j.eswa.2021.115339
    [66] G. Wang, X. Li, L. Gao, P. Li, An effective multi-objective whale swarm algorithm for energy-efficient scheduling of distributed welding flow shop, Ann. Oper. Res., 310 (2022), 223–255. https://doi.org/10.1007/s10479-021-03952-1 doi: 10.1007/s10479-021-03952-1
    [67] S. Yang, Z. Xu, The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery, Int. J. Prod. Res., 59 (2021), 4053–4071. https://doi.org/10.1080/00207543.2020.1757174 doi: 10.1080/00207543.2020.1757174
    [68] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1 (2011), 3–18.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2350) PDF downloads(151) Cited by(7)

Article outline

Figures and Tables

Figures(14)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog