Review

Distributed shop scheduling: A comprehensive review on classifications, models and algorithms


  • Received: 04 June 2023 Revised: 05 July 2023 Accepted: 12 July 2023 Published: 20 July 2023
  • In the intelligent manufacturing environment, modern industry is developing at a faster pace, and there is an urgent need for reasonable production scheduling to ensure an organized production order and a dependable production guarantee for enterprises. Additionally, production cooperation between enterprises and different branches of enterprises is increasingly common, and distributed manufacturing has become a prevalent production model. In light of these developments, this paper presents the research background and current state of distributed shop scheduling. It summarizes relevant research on issues that align with the new manufacturing model, explores hot topics and concerns and focuses on the classification of distributed parallel machine scheduling, distributed flow shop scheduling, distributed job shop scheduling and distributed assembly shop scheduling. The paper investigates these scheduling problems in terms of single-objective and multi-objective optimization, as well as processing constraints. It also summarizes the relevant optimization algorithms and their limitations. It also provides an overview of research methods and objects, highlighting the development of solution methods and research trends for new problems. Finally, the paper analyzes future research directions in this field.

    Citation: Jianguo Duan, Mengting Wang, Qinglei Zhang, Jiyun Qin. Distributed shop scheduling: A comprehensive review on classifications, models and algorithms[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 15265-15308. doi: 10.3934/mbe.2023683

    Related Papers:

  • In the intelligent manufacturing environment, modern industry is developing at a faster pace, and there is an urgent need for reasonable production scheduling to ensure an organized production order and a dependable production guarantee for enterprises. Additionally, production cooperation between enterprises and different branches of enterprises is increasingly common, and distributed manufacturing has become a prevalent production model. In light of these developments, this paper presents the research background and current state of distributed shop scheduling. It summarizes relevant research on issues that align with the new manufacturing model, explores hot topics and concerns and focuses on the classification of distributed parallel machine scheduling, distributed flow shop scheduling, distributed job shop scheduling and distributed assembly shop scheduling. The paper investigates these scheduling problems in terms of single-objective and multi-objective optimization, as well as processing constraints. It also summarizes the relevant optimization algorithms and their limitations. It also provides an overview of research methods and objects, highlighting the development of solution methods and research trends for new problems. Finally, the paper analyzes future research directions in this field.



    加载中


    [1] G. Tang, H. Mai, How does manufacturing intelligentization influence innovation in china from a nonlinear perspective and economic servitization background?, Sustainability, 14 (2022), 14032–14032. https://doi.org/10.3390/su142114032 doi: 10.3390/su142114032
    [2] H. Zhang, G. Xu, R. Pan, H. Ge, A novel heuristic method for the energy-efficient flexible job-shop scheduling problem with sequence-dependent set-up and transportation time, Eng. Optim., 54 (2022), 1646–1667. https://doi.org/10.1080/0305215X.2021.1949007 doi: 10.1080/0305215X.2021.1949007
    [3] Ö. Tosun, M. K. Marichelvam, N. Tosun, A literature review on hybrid flow shop scheduling, J. Oper. Manage., 12 (2020), 156–194. https://doi.org/10.1504/IJAOM.2020.108263 doi: 10.1504/IJAOM.2020.108263
    [4] L. Wang, Shop Scheduling with Genetic Algorithms, Tsinghua University & Springer Press, Beijing, 2003.
    [5] W. Xu, R. Wu, L. Wang, X. Zhao, X. Li, Solving a multi-objective distributed scheduling problem for building material equipment group enterprises by measuring quality indicator with a product gene evaluation approach, Comput. Ind. Eng., 168 (2022), 108142. https://doi.org/10.1016/j.cie.2022.108142 doi: 10.1016/j.cie.2022.108142
    [6] Y. Koren, S. J. Hu, P. Gu, M. Shpitalni, Open-architecture products, CIRP Ann., 62 (2013), 719–729. https://doi.org/10.1016/j.cirp.2013.06.001 doi: 10.1016/j.cirp.2013.06.001
    [7] F. Tao, Q. Qi, A. Liu, A. Kusiak, Data-driven smart manufacturing, J. Manuf. Syst., 48 (2018), 157–169. https://doi.org/10.1016/j.jmsy.2018.01.006 doi: 10.1016/j.jmsy.2018.01.006
    [8] J. Leng, Z. Chen, W. Sha, Z. Lin, J. Lin, Q. Liu, Digital twins-based flexible operating of open architecture production line for individualized manufacturing, Adv. Eng. Inf., 53 (2022), 101676. https://doi.org/10.1016/j.aei.2022.101676 doi: 10.1016/j.aei.2022.101676
    [9] W. Shen, L. Wang, Q. Hao, Agent-based distributed manufacturing process planning and scheduling: a state-of-the-art survey, IEEE Trans. Syst. Man Cybern. Syst., 36 (2006), 563–577. https://doi.org/10.1109/TSMCC.2006.874022 doi: 10.1109/TSMCC.2006.874022
    [10] R. Agarwal, P. De, C. E. Wells, Cooperative distributed problem solving: an investigation in the domain of job shop scheduling, in Proceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences, IEEE, 3 (1995), 4–12. https://doi.org/10.1109/HICSS.1995.375579
    [11] C. P. Gomes, A. Tate, L. Thomas, A distributed scheduling framework, in Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94, IEEE, (1994), 49–55. https://doi.org/10.1109/TAI.1994.346514
    [12] A. Toptal, I. Sabuncuoglu, Distributed scheduling: a review of concepts and applications, Int. J. Prod. Res., 48 (2010), 5235–5262. https://doi.org/10.1080/00207540903121065 doi: 10.1080/00207540903121065
    [13] Z. Shao, W. Shao, D. Pi, Effective heuristics and metaheuristics for the distributed fuzzy blocking flow-shop scheduling problem, Swarm Evol. Comput., 59 (2020), 100747. https://doi.org/10.1016/j.swevo.2020.100747 doi: 10.1016/j.swevo.2020.100747
    [14] S. Apte, N. Petrovsky, Will blockchain technology revolutionize excipient supply chain management?, J. Excipients Food Chem., 7 (2016), 76–78.
    [15] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, F. Sui, Digital twin-driven product design, manufacturing and service with big data, Int. J. Adv. Manuf. Technol., 94 (2018), 3563–3576. https://doi.org/10.1007/s00170-017-0233-1 doi: 10.1007/s00170-017-0233-1
    [16] J. Yli-Huumo, D. Ko, S. Choi, S. Park, K. Smolander, Where is current research on blockchain technology?—a systematic review, PLoS One, 11 (2016), e163477. https://doi.org/10.1371/journal.pone.0163477 doi: 10.1371/journal.pone.0163477
    [17] J. Leng, P. Jiang, K. Xu, Q. Liu, J. L. Zhao, Y. Bian, et al., Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing, J. Clean. Prod., 234 (2019), 767–778. https://doi.org/10.1016/j.jclepro.2019.06.265 doi: 10.1016/j.jclepro.2019.06.265
    [18] Y. Wu, Cloud-edge orchestration for the internet of things: architecture and AI-powered data processing, IEEE Internet Things, 8 (2021), 12792–12805. https://doi.org/10.1109/JIOT.2020.3014845 doi: 10.1109/JIOT.2020.3014845
    [19] J. Leng, Z. Chen, W. Sha, S. Ye, Q. Liu, X. Chen, Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services, J. Manuf. Syst., 63 (2022), 143–161. https://doi.org/10.1016/j.jmsy.2022.03.008 doi: 10.1016/j.jmsy.2022.03.008
    [20] L. Wang, W. Shen, Process Planning and Scheduling for Distributed Manufacturing, Springer Science & Business Media, 2007.
    [21] P. Wu, Y. Wang, J. Cheng, Y. Li, An improved mixed-integer programming approach for bi-objective parallel machine scheduling and location, Comput. Ind. Eng., 174 (2022), 108813. https://doi.org/10.1016/j.cie.2022.108813 doi: 10.1016/j.cie.2022.108813
    [22] V. Heinz, A. Novák, M. Vlk, Z. Hanzálek, Constraint programming and constructive heuristics for parallel machine scheduling with sequence-dependent setups and common servers, Comput. Ind. Eng., 172 (2022), 108586. https://doi.org/10.1016/j.cie.2022.108586 doi: 10.1016/j.cie.2022.108586
    [23] G. Song, R. Leus, Parallel machine scheduling under uncertainty: Models and exact algorithms, INFORMS J. Comput., 34 (2022), 3059–3079. https://doi.org/10.1287/ijoc.2022.1229 doi: 10.1287/ijoc.2022.1229
    [24] N. Farmand, H. Zarei, M. Rasti-Barzoki, Two meta-heuristic algorithms for optimizing a multi-objective supply chain scheduling problem in an identical parallel machines environment, Int. J. Ind. Eng. Comput., 12 (2021), 249–272. https://doi.org/10.5267/j.ijiec.2021.3.002 doi: 10.5267/j.ijiec.2021.3.002
    [25] M. Abedi, H. Seidgar, H. Fazlollahtabar, R. Bijani, Bi-objective optimisation for scheduling the identical parallel batch-processing machines with arbitrary job sizes, unequal job release times and capacity limits, Int. J. Prod. Res., 53 (2015), 1680–1711. https://doi.org/10.1080/00207543.2014.952795
    [26] Y. Zheng, Y. Yuan, Q. Zheng, D. Lei, A hybrid imperialist competitive algorithm for the distributed unrelated parallel machines scheduling problem, Symmetry, 14 (2022), 204. https://doi.org/10.3390/sym14020204 doi: 10.3390/sym14020204
    [27] R. Logendran, B. McDonell, B. Smucker, Scheduling unrelated parallel machines with sequence-dependent setups, Comput. Oper. Res., 34 (2007), 3420–3438. https://doi.org/10.1016/j.cor.2006.02.006 doi: 10.1016/j.cor.2006.02.006
    [28] J. Behnamian, S. F. Ghomi, The heterogeneous multi-factory production network scheduling with adaptive communication policy and parallel machine, Inf. Sci., 219 (2013), 181–196. https://doi.org/10.1016/j.ins.2012.07.020 doi: 10.1016/j.ins.2012.07.020
    [29] D. Lei, M. Liu, An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance, Comput. Ind. Eng., 141 (2020), 106320–106320. https://doi.org/10.1016/j.cie.2020.106320 doi: 10.1016/j.cie.2020.106320
    [30] G. Bektur, T. Saraç, A mathematical model and heuristic algorithms for an unrelated parallel machine scheduling problem with sequence-dependent setup times, machine eligibility restrictions and a common server, Comput. Ind. Eng., 103 (2018), 46–63. https://doi.org/10.1016/j.cor.2018.10.010
    [31] H. Jouhari, D. Lei, M. A. Al-qaness, , M. A. Elaziz, A. A. Ewees, O. Farouk, Sine-cosine algorithm to enhance simulated annealing for unrelated parallel machine scheduling with setup times, Mathematics, 7 (2019), 1120. https://doi.org/10.3390/math7111120 doi: 10.3390/math7111120
    [32] D. Lei, Y. Yuan, J. Cai, D. Bai, An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling, Int. J. Prod. Res., 58 (2020), 597–614. https://doi.org/10.1080/00207543.2019.1598596 doi: 10.1080/00207543.2019.1598596
    [33] D. Li, J. Wang, R. Qiang, R. Chiong, A hybrid differential evolution algorithm for parallel machine scheduling of lace dyeing considering colour families, sequence-dependent setup and machine eligibility, Int. J. Prod. Res., 59 (2020), 1–17. https://doi.org/10.1080/00207543.2020.1740341
    [34] D. Lei, Y. Yuan, J. Cai, An improved artificial bee colony for multi-objective distributed unrelated parallel machine scheduling, Int. J. Prod. Res., 59 (2020), 1–13. https://doi.org/10.1080/00207543.2020.1775911 doi: 10.1080/00207543.2020.1775911
    [35] B. Shahidi-Zadeh, R. Tavakkoli-Moghaddam, A. Taheri-Moghadam, I. Rastgar, Solving a bi-objective unrelated parallel batch processing machines scheduling problem: A comparison study, Comput. Ind. Eng., 88 (2017), 71–90. https://doi.org/10.1016/j.cor.2017.06.019 doi: 10.1016/j.cor.2017.06.019
    [36] Y. He, C. W. Hui, Automatic rule combination approach for single-stage process scheduling problems, AIChE J., 53 (2007), 2026–2047. https://doi.org/10.1002/aic.11236 doi: 10.1002/aic.11236
    [37] Z. Pan, D. Lei, L. Wang, A knowledge-based two-population optimization algorithm for distributed energy-efficient parallel machines scheduling, IEEE Trans. Cybern., 52 (2020), 5051–5063. https://doi.org/10.1109/TCYB.2020.3026571 doi: 10.1109/TCYB.2020.3026571
    [38] L. Zhang, Q. Deng, Y. Zhao, Q. Fan, X. Liu, G. Gong, Joint optimization of demand-side operational utility and manufacture-side energy consumption in a distributed parallel machine environment, Comput. Ind. Eng., 164 (2022), 107863. https://doi.org/10.1016/j.cie.2021.107863 doi: 10.1016/j.cie.2021.107863
    [39] X. Wu, A. Che, A memetic differential evolution algorithm for energy-efficient parallel machine scheduling, Omega, 82 (2018), 155–165. https://doi.org/10.1016/j.omega.2018.01.001 doi: 10.1016/j.omega.2018.01.001
    [40] J. Behnamian, M. Zandieh, S. F. Ghomi, Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm, Expert Syst. Appl., 36 (2009), 9637–9644. https://doi.org/10.1016/j.eswa.2008.10.007
    [41] M. Yazdani, S. Gohari, B. Naderi, Multi-factory parallel machine problems: Improved mathematical models and artificial bee colony algorithm, Comput. Ind. Eng., 81 (2015), 36–45. https://doi.org/10.1016/j.cie.2014.12.023 doi: 10.1016/j.cie.2014.12.023
    [42] J. Behnamian, S. F. Ghomi, The heterogeneous multi-factory production network scheduling with adaptive communication policy and parallel machine, Inf. Sci., 219 (2013), 181–196. https://doi.org/10.1016/j.ins.2012.07.020 doi: 10.1016/j.ins.2012.07.020
    [43] J. Behnamian, Matheuristic for the decentralized factories scheduling problem, Appl. Math. Model., 47 (2017), 668–684. https://doi.org/10.1016/j.apm.2017.02.033 doi: 10.1016/j.apm.2017.02.033
    [44] J. Behnamian, Heterogeneous networked cooperative scheduling with anarchic particle swarm optimization, IEEE Trans. Eng. Manage., 64 (2017), 166–178. https://doi.org/10.1016/j.apm.2017.02.033 doi: 10.1016/j.apm.2017.02.033
    [45] J. Behnamian, S. M. T. F. Ghomi, Multi-objective multi-factory scheduling, RAIRO-Oper. Res., 55 (2021), S1447–S1467. https://doi.org/10.1051/ro/2020044 doi: 10.1051/ro/2020044
    [46] J. Behnamian, H. Asgari, A hyper-heuristic for distributed parallel machine scheduling with machine-dependent processing and sequence-dependent setup times, RAIRO-Oper. Res., 56 (2022), 4129–4143. https://doi.org/10.1051/ro/2022194 doi: 10.1051/ro/2022194
    [47] S. Hatami, R. Ruiz, C. Andrés-Romano, Heuristics for a distributed parallel machine assembly scheduling problem with eligibility constraints, in 2015 International Conference on Industrial Engineering and Systems Management (IESM), (2015), 145–153. https://doi.org/10.1109/IESM.2015.7380149
    [48] S. Hatami, R. R. García, C. A. Romano, The Distributed Assembly Parallel Machine Scheduling Problem with eligibility constraints, Int. J. Eng. Sci., 3 (2015), 13–23. https://doi.org/10.4995/ijpme.2015.3345 doi: 10.4995/ijpme.2015.3345
    [49] A. Hamzadayı, An effective benders decomposition algorithm for solving the distributed permutation flowshop scheduling problem, Comput. Oper. Res., 123 (2020), 105006. https://doi.org/10.1016/j.cor.2020.105006 doi: 10.1016/j.cor.2020.105006
    [50] V. Fernandez-Viagas, J. M. Framinan, A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res., 53 (2015), 1111–1123. https://doi.org/10.1080/00207543.2014.948578 doi: 10.1080/00207543.2014.948578
    [51] J. Y. Mao, Q. K. Pan, Z. H. Miao, L. Gao, S. Chen, A hash map-based memetic algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime, Knowl. Based Syst., 242 (2022), 108413. https://doi.org/10.1016/j.knosys.2022.108413 doi: 10.1016/j.knosys.2022.108413
    [52] K. Wang, Y. Huang, H. Qin, A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown, J. Oper. Res. Soc., 67 (2016), 68–82. https://doi.org/10.1057/jors.2015.50 doi: 10.1057/jors.2015.50
    [53] B. Naderi, R. Ruiz, The distributed permutation flowshop scheduling problem, Comput. Oper. Res., 37 (2010), 754–768. https://doi.org/10.1016/j.cor.2009.06.019 doi: 10.1016/j.cor.2009.06.019
    [54] E. Taillard, Some efficient heuristic methods for the flow shop sequencing problem, Eur. J. Oper. Res., 47 (1990), 65–74. https://doi.org/10.1016/0377-2217(90)90090-X doi: 10.1016/0377-2217(90)90090-X
    [55] J. Gao, R. Chen, W. Deng, An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res., 51 (2013), 641–651. https://doi.org/10.1080/00207543.2011.644819 doi: 10.1080/00207543.2011.644819
    [56] S. Y. Wang, L. Wang, M. Liu, Y. Xu, An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem, Int. J. Prod. Econ., 145 (2013), 387–396. https://doi.org/10.1016/j.ijpe.2013.05.004 doi: 10.1016/j.ijpe.2013.05.004
    [57] D. Ferone, S. Hatami, E. M. González‐Neira, A. A. Juan, P. Festa, A biased‐randomized iterated local search for the distributed assembly permutation flow‐shop problem, Int. Trans. Oper. Res., 27 (2020), 1368–1391. https://doi.org/10.1111/itor.12719 doi: 10.1111/itor.12719
    [58] J. P. Huang, Q. K. Pan, L. Gao, An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times, Swarm Evol. Comput., 59 (2020), 100742. https://doi.org/10.1016/j.swevo.2020.100742 doi: 10.1016/j.swevo.2020.100742
    [59] Y. Xu, L. Wang, S. Wang, M. Liu, An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem, Eng. Optim., 46 (2014), 1269–1283. https://doi.org/10.1080/0305215X.2013.827673 doi: 10.1080/0305215X.2013.827673
    [60] A. Ali, Y. Gajpal, T. Y. Elmekkawy, Distributed permutation flowshop scheduling problem with total completion time objective, Opsearch, (2020), 1–23. https://doi.org/10.1007/s12597-020-00484-3
    [61] A. Hamzadayı, An effective benders decomposition algorithm for solving the distributed permutation flowshop scheduling problem, Comput. Oper. Res., 123 (2020), 105006. https://doi.org/10.1016/j.cor.2020.105006 doi: 10.1016/j.cor.2020.105006
    [62] J. Y. Mao, Q. K. Pan, Z. H. Miao, L. Gao, S. Chen, A hash map-based memetic algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime, Knowl. Based Syst., 242 (2022), 108413. https://doi.org/10.1016/j.knosys.2022.108413 doi: 10.1016/j.knosys.2022.108413
    [63] Y. Yu, F. Q. Zhang, G. D. Yang, Y. Wang, J. P. Huang, Y. Y. Han, A discrete artificial bee colony method based on variable neighborhood structures for the distributed permutation flowshop problem with sequence-dependent setup times, Swarm Evol. Comput., 75 (2022), 101179. https://doi.org/10.1016/j.swevo.2022.101179 doi: 10.1016/j.swevo.2022.101179
    [64] V. Fernandez-Viagas, P. Perez-Gonzalez, J. M. Framinan, The distributed permutation flow shop to minimise the total flowtime, Comput. Ind. Eng., 118 (2018), 464–477. https://doi.org/10.1016/j.cie.2018.03.014 doi: 10.1016/j.cie.2018.03.014
    [65] A. Khare, S. Agrawal, Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res., 59 (2021), 7266–7282. https://doi.org/10.1080/00207543.2020.1837982 doi: 10.1080/00207543.2020.1837982
    [66] Y. Z. Li, Q. K. Pan, X. He, H. Y. Sang, K. Z. Gao, X. L. Jing, The distributed flowshop scheduling problem with delivery dates and cumulative payoffs, Comput. Ind. Eng., 165 (2022), 107961. https://doi.org/10.1016/j.cie.2022.107961 doi: 10.1016/j.cie.2022.107961
    [67] P. A. Villarinho, J. Panadero, L. S. Pessoa, A. A. Juan, F. L. C. Oliveira, A simheuristic algorithm for the stochastic permutation flow‐shop problem with delivery dates and cumulative payoffs, Int. Trans. Oper. Res., 28 (2021), 716–737. https://doi.org/10.1111/itor.12862 doi: 10.1111/itor.12862
    [68] Q. Li, J. Li, X. Zhang, B. Zhang, A wale optimization algorithm for distributed flow shop with batch delivery, Soft Comput., 25 (2021), 1–14.
    [69] A. P. Rifai, H. T. Nguyen, S. Z. M. Dawal, Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling, Appl. Soft Comput., 40 (2016), 42–57. https://doi.org/10.1016/j.asoc.2015.11.034 doi: 10.1016/j.asoc.2015.11.034
    [70] J. Deng, L. Wang, A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem, Swarm Evol. Comput., 32 (2017), 121–131. https://doi.org/10.1016/j.swevo.2016.06.002 doi: 10.1016/j.swevo.2016.06.002
    [71] Z. Yan, R. Shi, K. Du, L. Yi, The role of green production process innovation in green manufacturing: empirical evidence from OECD countries, Appl. Econ., 54 (2022), 6755–6767. https://doi.org/10.1080/00036846.2022.2083569 doi: 10.1080/00036846.2022.2083569
    [72] C. Zhang, W. Ji, Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing job-shop, Procedia CIRP, 83 (2019), 624–629. https://doi.org/10.1016/j.procir.2019.04.095 doi: 10.1016/j.procir.2019.04.095
    [73] X. Wu, A. Che, Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search, Omega, 94 (2020), 102117–102117. https://doi.org/10.1016/j.omega.2019.102117 doi: 10.1016/j.omega.2019.102117
    [74] J. F. Chen, L. Wang, Z. P. Peng, A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling, Swarm Evol. Comput., 50 (2019), 100557–100557. https://doi.org/10.1016/j.swevo.2019.100557 doi: 10.1016/j.swevo.2019.100557
    [75] T. Meng, Q. K. Pan, L. Wang, A distributed permutation flowshop scheduling problem with the customer order constraint, Knowl. Based Syst., 184 (2019), 104894–104894. https://doi.org/10.1016/j.knosys.2019.104894 doi: 10.1016/j.knosys.2019.104894
    [76] K. Wang, Y. Huang, H. Qin, A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown, J. Oper. Res. Soc., 67 (2016), 68–82. https://doi.org/10.1057/jors.2015.50 doi: 10.1057/jors.2015.50
    [77] J. Y. Mao, Q. K. Pan, Z. H. Miao, L. Gao, An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance, Expert Syst. Appl., 169 (2021), 114495. https://doi.org/10.1016/j.eswa.2020.114495 doi: 10.1016/j.eswa.2020.114495
    [78] W. Shao, D. Pi, Z. Shao, Optimization of makespan for the distributed no-wait flow shop scheduling problem with iterated greedy algorithms, Knowl. Based Syst., 137 (2017), 163–181. https://doi.org/10.1016/j.knosys.2017.09.026 doi: 10.1016/j.knosys.2017.09.026
    [79] S. W. Lin, K. C. Ying, Minimizing makespan for solving the distributed no-wait flowshop scheduling problem, Comput. Ind. Eng., 99 (2016), 202–209. https://doi.org/10.1016/j.cie.2016.07.027 doi: 10.1016/j.cie.2016.07.027
    [80] G. Zhang, K. Xing, Differential evolution metaheuristics for distributed limited-buffer flowshop scheduling with makespan criterion, Comput. Oper. Res., 108 (2019), 33–43. https://doi.org/10.1016/j.cor.2019.04.002 doi: 10.1016/j.cor.2019.04.002
    [81] F. Zhao, L. Zhao, L. Wang, H. Song, An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion, Expert Syst. Appl., 160 (2020), 113678. https://doi.org/10.1016/j.eswa.2020.113678 doi: 10.1016/j.eswa.2020.113678
    [82] X. Han, Y. Han, Q. Chen, J. Li, H. Sang, Y. Liu, et al., Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm, Complex Syst., 1 (2021), 198–217. https://doi.org/10.23919/CSMS.2021.0018 doi: 10.23919/CSMS.2021.0018
    [83] X. Han, Y. Han, B. Zhang, H. Qin, J. Li, Y. Liu, et al., An effective iterative greedy algorithm for distributed blocking flowshop scheduling problem with balanced energy costs criterion, Appl. Soft Comput., 129 (2022), 109502. https://doi.org/10.1016/j.asoc.2022.109502 doi: 10.1016/j.asoc.2022.109502
    [84] W. Shao, D. Pi, Z. Shao, A Pareto-based estimation of distribution algorithm for solving multiobjective distributed no-wait flow-shop scheduling problem with sequence-dependent setup time, IEEE Trans. Autom. Sci. Eng., 16 (2019), 1344–1360. https://doi.org/10.1109/TASE.2018.2886303 doi: 10.1109/TASE.2018.2886303
    [85] J. P. Huang, Q. K. Pan, L. Gao, An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times, Swarm Evol. Comput., 59 (2020), 100742. https://doi.org/10.1016/j.swevo.2020.100742 doi: 10.1016/j.swevo.2020.100742
    [86] J. P. Huang, Q. K. Pan, Z. H. Miao, L. Gao, Effective constructive heuristics and discrete bee colony optimization for distributed flowshop with setup times, Eng. Appl. Artif. Intell., 97 (2021), 104016. https://doi.org/10.1016/j.engappai.2020.104016 doi: 10.1016/j.engappai.2020.104016
    [87] T. Meng, Q. K. Pan, L. Wang, A distributed permutation flowshop scheduling problem with the customer order constraint, Knowl. Based Syst., 184 (2019), 104894. https://doi.org/10.1016/j.knosys.2019.104894 doi: 10.1016/j.knosys.2019.104894
    [88] S. Cai, K. Yang, K. Liu, Multi-objective optimization of the distributed permutation flow shop scheduling problem with transportation and eligibility constraints, J. Oper. Res. Soc. China, 6 (2018), 391–416. https://doi.org/10.1007/s40305-017-0165-3 doi: 10.1007/s40305-017-0165-3
    [89] S. Hatami, R. Ruiz, C. A. Romano, Two simple constructive algorithms for the distributed assembly permutation flowshop scheduling problem, in Managing Complexity: Challenges for Industrial Engineering and Operations Management, (2014), 139–145.
    [90] Q. K. Pan, L. Gao, L. X. Yu, F. M. Jose, Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem, Appl. Soft Comput., 81 (2019), 105492. https://doi.org/10.1016/j.asoc.2019.105492 doi: 10.1016/j.asoc.2019.105492
    [91] X. Li, X. Zhang, M. Yin, J. Wang, A genetic algorithm for the distributed assembly permutation flowshop scheduling problem, in 2015 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2015), 3096–3101. https://doi.org/10.1109/CEC.2015.7257275
    [92] D. Ferone, S. Hatami, E. M. González‐Neira, A. A. Juan, P. Festa, A biased‐randomized iterated local search for the distributed assembly permutation flow‐shop problem, Int. Trans. Oper. Res., 27 (2020), 1368–1391. https://doi.org/10.1111/itor.12719 doi: 10.1111/itor.12719
    [93] J. Lin, Z. J. Wang, X. Li, A backtracking search hyper-heuristic for the distributed assembly flow-shop scheduling problem, Swarm Evol. Comput., 36 (2017), 124–135. https://doi.org/10.1016/j.swevo.2017.04.007 doi: 10.1016/j.swevo.2017.04.007
    [94] G. Zhang, K. Xing, F. Cao, Scheduling distributed flowshops with flexible assembly and set-up time to minimise makespan, Int. J. Prod. Res., 56 (2018), 3226–3244. https://doi.org/10.1080/00207543.2017.1401241 doi: 10.1080/00207543.2017.1401241
    [95] J. Deng, L. Wang, S. Y. Wang, X. L. Zheng, A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem, Int. J. Prod. Res., 54 (2016), 3561–3577. https://doi.org/10.1080/00207543.2015.1084063 doi: 10.1080/00207543.2015.1084063
    [96] H. Y. Sang, Q. K. Pan, J. Q. Li, P. Wang, Y. Y. Han, K. Z. Gao, et al., Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with total flowtime criterion, Swarm Evol. Comput., 44 (2019), 64–73. https://doi.org/10.1016/j.swevo.2018.12.001 doi: 10.1016/j.swevo.2018.12.001
    [97] F. Zhao, X. Hu, L.Wang, Z. Li, A memetic discrete differential evolution algorithm for the distributed permutation flow shop scheduling problem, Complex Intell. Syst., 8 (2022), 141–161. https://doi.org/10.1007/s40747-021-00354-5 doi: 10.1007/s40747-021-00354-5
    [98] F. Xiong, K. Xing, Meta-heuristics for the distributed two-stage assembly scheduling problem with bi-criteria of makespan and mean completion time, Int. J. Prod. Res., 52 (2014), 2743–2766. https://doi.org/10.1080/00207543.2014.884290 doi: 10.1080/00207543.2014.884290
    [99] X. Wu, X. Liu, N. Zhao, An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem, Memet Comput., 11 (2019), 335–355. https://doi.org/10.1007/s12293-018-00278-7 doi: 10.1007/s12293-018-00278-7
    [100] Y. Y. Huang, Q. K. Pan, J. P. Huang, P. N. Suganthan, L. Gao, An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem, Comput. Ind. Eng., 152 (2021), 107021. https://doi.org/10.1016/j.cie.2020.107021 doi: 10.1016/j.cie.2020.107021
    [101] G. Wang, X. Li, L. Gao, P. Li, Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D, Swarm Evol. Comput., 62 (2021), 100858. https://doi.org/10.1016/j.swevo.2021.100858 doi: 10.1016/j.swevo.2021.100858
    [102] G. Wang, X. Li, L. Gao, P. Li, An effective multi-objective whale swarm algorithm for energy-efficient scheduling of distributed welding flow shop, Ann. Oper. Res., 310 (2022), 223–255. https://doi.org/10.1007/s10479-021-03952-1 doi: 10.1007/s10479-021-03952-1
    [103] J. Cai, D. Lei, M. Li, A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop, Int. J. Prod. Res., 59 (2020), 1–18. https://doi.org/10.1080/00207543.2020.1780333 doi: 10.1080/00207543.2020.1780333
    [104] J. Cai, R. Zhou, D. Lei, Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks, Appl. Artif. Intell., 90 (2020), 103540–103540. https://doi.org/10.1016/j.engappai.2020.103540 doi: 10.1016/j.engappai.2020.103540
    [105] C. Lu, Q. Liu, B. Zhang, L. Yin, A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop, Expert Syst. Appl., 204 (2022), 117555. https://doi.org/10.1016/j.eswa.2022.117555 doi: 10.1016/j.eswa.2022.117555
    [106] H. Qin, T. Li, Y. Teng, K. Wang, Integrated production and distribution scheduling in distributed hybrid flow shops, Memet Comput., 13 (2021), 185–202. https://doi.org/10.1007/s12293-021-00329-6 doi: 10.1007/s12293-021-00329-6
    [107] C. Lu, L. Gao, J. Yi, X. Li, Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in China, IEEE Trans. Ind. Inf., 17 (2020), 6687–6696. https://doi.org/10.1109/TⅡ.2020.3043734 doi: 10.1109/TⅡ.2020.3043734
    [108] E. Jiang, L. Wang, J. Wang, Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks, Tsinghua Sci. Technol., 26 (2021), 646–663. https://doi.org/10.26599/TST.2021.9010007 doi: 10.26599/TST.2021.9010007
    [109] J. Cai, D. Lei, A cooperated shuffled frog-leaping algorithm for distributed energy-efficient hybrid flow shop scheduling with fuzzy processing time, Complex Intell. Syst., 7 (2021), 2235–2253. https://doi.org/10.1007/s40747-021-00400-2 doi: 10.1007/s40747-021-00400-2
    [110] J. Zheng, L. Wang, J. J. Wang, A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop, Knowl. Based Syst., 194 (2020), 105536. https://doi.org/10.1016/j.knosys.2020.105536 doi: 10.1016/j.knosys.2020.105536
    [111] J. J. Wang, L. Wang, A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop, IEEE Trans. Syst. Man Cybern.: Syst., 50 (2018), 1805–1819. https://doi.org/10.1109/TSMC.2017.2788879 doi: 10.1109/TSMC.2017.2788879
    [112] G. Zhang, K. Xing, Differential evolution metaheuristics for distributed limited-buffer flowshop scheduling with makespan criterion, Comput. Oper. Res., 108 (2019), 33–43. https://doi.org/10.1016/j.cor.2019.04.002 doi: 10.1016/j.cor.2019.04.002
    [113] C. Lu, Y. Huang, L. Meng, L. Gao, B. Zhang, J. Zhou, A Pareto-based collaborative multi-objective optimization algorithm for energy-efficient scheduling of distributed permutation flow-shop with limited buffers, Robot Comput. Integr. Manuf., 74 (2022), 102277. https://doi.org/10.1016/j.rcim.2021.102277 doi: 10.1016/j.rcim.2021.102277
    [114] K. Geng, C. Ye, A memetic algorithm for energy-efficient distributed re-entrant hybrid flow shop scheduling problem, J. Intell. Fuzzy Syst., 41 (2021), 3951–3971. https://doi.org/10.3233/JIFS-202963 doi: 10.3233/JIFS-202963
    [115] J. Dong, C. Ye, Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system, Comput. Ind. Eng., 169 (2022), 108146. https://doi.org/10.1016/j.cie.2022.108146 doi: 10.1016/j.cie.2022.108146
    [116] Y. Alaouchiche, Y. Ouazene, F. Yalaoui, Economic and energetic performance evaluation of unreliable production lines: An integrated analytical approach, IEEE Access, 8 (2020), 185330–185345. https://doi.org/10.1109/ACCESS.2020.3029761 doi: 10.1109/ACCESS.2020.3029761
    [117] B. Naderi, A. Azab, Modeling and heuristics for scheduling of distributed job shops, Expert Syst. Appl., 41 (2014), 7754–7763. https://doi.org/10.1016/j.eswa.2014.06.023 doi: 10.1016/j.eswa.2014.06.023
    [118] M. L. R. Varela, G. D. Putnik, M. M. Cruz-Cunha, Web-based technologies integration for distributed manufacturing scheduling in a virtual enterprise, Int. J. Web Portals (IJWP), 4 (2012), 19–34. https://doi.org/10.4018/jwp.2012040102 doi: 10.4018/jwp.2012040102
    [119] H. Z. Jia, J. Y. Fuh, A. Y. Nee, Y. F. Zhang, Web-based multi-functional scheduling system for a distributed manufacturing environment, Concurr. Eng., 10 (2002), 27–39. https://doi.org/10.1177/1063293X02010001054 doi: 10.1177/1063293X02010001054
    [120] H. Z. Jia, A. Y. Nee, J. Y. Fuh, Y. F. Zhang, A modified genetic algorithm for distributed scheduling problems, J. Intell. Manuf., 14 (2003), 351–362. https://doi.org/10.1023/A:1024653810491 doi: 10.1023/A:1024653810491
    [121] H. Z. Jia, J. Y. Fuh, A. Y. Nee, Y. F. Zhang, Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed manufacturing systems, Comput. Ind. Eng., 53 (2007), 313–320. https://doi.org/10.1016/j.cie.2007.06.024 doi: 10.1016/j.cie.2007.06.024
    [122] F. T. Chan, S. H. Chung, L. Y. Chan, G. Finke, M. K. Tiwari, Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach, Robot Comput. Integr. Manuf., 22 (2006), 493–504. https://doi.org/10.1016/j.rcim.2005.11.005 doi: 10.1016/j.rcim.2005.11.005
    [123] I. J. Jeong, S. B. Yim, A job shop distributed scheduling based on Lagrangian relaxation to minimise total completion time, Int. J. Prod. Res., 47 (2009), 6783–6805. https://doi.org/10.1080/00207540701824217 doi: 10.1080/00207540701824217
    [124] L. De Giovanni, F. Pezzella, An improved genetic algorithm for the distributed and flexible job-shop scheduling problem, Eur. J. Oper. Res., 200 (2010), 395–408. https://doi.org/10.1016/j.ejor.2009.01.008 doi: 10.1016/j.ejor.2009.01.008
    [125] P. Lou, S. K. Ong, A. Y. C. Nee, Agent-based distributed scheduling for virtual job shops, Int. J. Prod. Res., 48 (2010), 3889–3910. https://doi.org/10.1080/00207540902927918 doi: 10.1080/00207540902927918
    [126] B. Naderi, A. Azab, An improved model and novel simulated annealing for distributed job shop problems, J. Adv. Manuf. Technol., 81 (2015), 693–703. https://doi.org/10.1007/s00170-015-7080-8 doi: 10.1007/s00170-015-7080-8
    [127] T. K. Liu, Y. P. Chen, J. H. Chou, Solving distributed and flexible job-shop scheduling problems for a real-world fastener manufacturer, IEEE Access, 2 (2014), 1598–1606. https://doi.org/10.1109/ACCESS.2015.2388486 doi: 10.1109/ACCESS.2015.2388486
    [128] I. Chaouch, O. B. Driss, K. Ghedira, A novel dynamic assignment rule for the distributed job shop scheduling problem using a hybrid ant-based algorithm, Appl. Intell., 49 (2019), 1903–1924. https://doi.org/10.1007/s10489-018-1343-7 doi: 10.1007/s10489-018-1343-7
    [129] Q. Luo, Q. Deng, G. Gong, L. Zhang, W. Han, K. Li, An efficient memetic algorithm for distributed flexible job shop scheduling problem with transfers, Expert Syst. Appl., 160 (2020), 113721. https://doi.org/10.1016/j.eswa.2020.113721 doi: 10.1016/j.eswa.2020.113721
    [130] J. Q. Li, P. Duan, J. Cao, X. P. Lin, Y. Y. Han, A hybrid Pareto-based tabu search for the distributed flexible job shop scheduling problem with E/T criteria, IEEE Access, 6 (2018), 58883–58897. https://doi.org/10.1109/ACCESS.2018.2873401 doi: 10.1109/ACCESS.2018.2873401
    [131] F. T. Chan, S. H. Chung, P. L. Y. Chan, An adaptive genetic algorithm with dominated genes for distributed scheduling problems, Expert Syst. Appl., 29 (2005), 364–371. https://doi.org/10.1016/j.eswa.2005.04.009 doi: 10.1016/j.eswa.2005.04.009
    [132] L. Meng, C. Zhang, Y. Ren, B. Zhang, C. Lv, Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem, Comput. Ind. Eng., 142 (2020), 106347. https://doi.org/10.1016/j.cie.2020.106347 doi: 10.1016/j.cie.2020.106347
    [133] B. Marzouki, O. B. Driss, K. Ghédira, Solving distributed and flexible job shop scheduling problem using a chemical reaction optimization metaheuristic, Procedia Comput. Sci., 126 (2018), 1424–1433. https://doi.org/10.1016/j.procs.2018.08.114 doi: 10.1016/j.procs.2018.08.114
    [134] M. Zandieh, A. R. Khatami, S. H. A. Rahmati, Flexible job shop scheduling under condition-based maintenance: improved version of imperialist competitive algorithm, Appl. Soft Comput., 58 (2017), 449–464. https://doi.org/10.1016/j.asoc.2017.04.060 doi: 10.1016/j.asoc.2017.04.060
    [135] P. H. Lu, M. C. Wu, H. Tan, Y. H. Peng, C. F. Chen, A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems, J. Intell. Manuf., 29 (2018), 19–34. https://doi.org/10.1007/s10845-015-1083-z doi: 10.1007/s10845-015-1083-z
    [136] M. C. Wu, C. S. Lin, C. H. Lin, C. F. Chen, Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems, Comput. Oper. Res., 80 (2017), 101–112. https://doi.org/10.1016/j.cor.2016.11.021 doi: 10.1016/j.cor.2016.11.021
    [137] H. C. Chang, T. K. Liu, Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms, J. Intell. Manuf., 28 (2017), 1973–1986. https://doi.org/10.1007/s10845-015-1084-y doi: 10.1007/s10845-015-1084-y
    [138] W. Xu, Y. Hu, W. Luo, L. Wang, R. Wu, A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission, Comput. Ind. Eng., 157 (2021), 107318. https://doi.org/10.1016/j.cie.2021.107318 doi: 10.1016/j.cie.2021.107318
    [139] L. Meng, Y. Ren, B. Zhang, J. Q. Li, H. Sang, C. Zhang, MILP modeling and optimization of energy-efficient distributed flexible job shop scheduling problem, IEEE Access, 8 (2020), 191191–191203. https://doi.org/10.1109/ACCESS.2020.3032548 doi: 10.1109/ACCESS.2020.3032548
    [140] S. Zhang, X. Li, B. Zhang, S. Wang, Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system, Eur. J. Oper. Res., 283 (2020), 441–460. https://doi.org/10.1016/j.ejor.2019.11.016 doi: 10.1016/j.ejor.2019.11.016
    [141] F. Xiong, K. Xing, Meta-heuristics for the distributed two-stage assembly scheduling problem with bi-criteria of makespan and mean completion time, Int. J. Prod. Res., 52 (2014), 2743–2766. https://doi.org/10.1080/00207543.2014.884290 doi: 10.1080/00207543.2014.884290
    [142] S. Yang, Z. Xu, The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery. Int. J. Prod. Res., 59 (2021), 4053-4071. https://doi.org/10.1080/00207543.2020.1757174 doi: 10.1080/00207543.2020.1757174
    [143] Z. Shao, W. Shao, D. Pi, Effective constructive heuristic and metaheuristic for the distributed assembly blocking flow-shop scheduling problem, Appl. Intell., 50 (2020), 4647–4669. https://doi.org/10.1007/s10489-020-01809-x doi: 10.1007/s10489-020-01809-x
    [144] W. Niu, J. Q. Li, A two-stage cooperative evolutionary algorithm for energy-efficient distributed group blocking flow shop with setup carryover in precast systems, Knowl. Based Syst., 257 (2022), 109890. https://doi.org/10.1016/j.knosys.2022.109890 doi: 10.1016/j.knosys.2022.109890
    [145] F. Jolai, H. Asefi, M. Rabiee, P. Ramezani, Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem, Sci. Iran., 20 (2013), 861–872. https://doi.org/10.1016/j.scient.2012.10.044 doi: 10.1016/j.scient.2012.10.044
    [146] J. Deng, L. Wang, S. Y. Wang, X. L. Zheng, A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem, Int. J. Prod. Res., 54 (2016), 3561–3577. https://doi.org/10.1080/00207543.2015.1084063 doi: 10.1080/00207543.2015.1084063
    [147] F. Nikzad, J. Rezaeian, I. Mahdavi, I. Rastgar, Scheduling of multi-component products in a two-stage flexible flow shop, Appl. Soft Comput., 32 (2015), 132–143. https://doi.org/10.1016/j.asoc.2015.03.006 doi: 10.1016/j.asoc.2015.03.006
    [148] A. Azadeh, M. Jeihoonian, B. M. Shoja, S. H. Seyedmahmoudi, An integrated neural network-simulation algorithm for performance optimisation of the bi-criteria two-stage assembly flow-shop scheduling problem with stochastic activities, Int. J. Prod. Res., 50 (2012), 7271–7284. https://doi.org/10.1080/00207543.2011.645511 doi: 10.1080/00207543.2011.645511
    [149] F. Zhao, D. Shao, L. Wang, T. Xu, N. Zhu, An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem, Knowl. Based Syst., 243 (2022), 108471. https://doi.org/10.1016/j.knosys.2022.108471 doi: 10.1016/j.knosys.2022.108471
    [150] G. Zhang, K. Xing, Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed environment, Comput. Ind. Eng., 125 (2018), 423–433. https://doi.org/10.1016/j.cie.2018.09.007 doi: 10.1016/j.cie.2018.09.007
    [151] D. Lei, B. Su, M. Li, Cooperated teaching-learning-based optimisation for distributed two-stage assembly flow shop scheduling, Int. J. Prod. Res., 59 (2021), 7232–7245. https://doi.org/10.1080/00207543.2020.1836422 doi: 10.1080/00207543.2020.1836422
    [152] N. Shoaardebili, P. Fattahi, Multi-objective meta-heuristics to solve three-stage assembly flow shop scheduling problem with machine availability constraints, Int. J. Prod. Res., 53 (2015), 944–968. https://doi.org/10.1080/00207543.2014.948575 doi: 10.1080/00207543.2014.948575
    [153] Y. Du, J. Q. Li, C. Luo, L. L. Meng, A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with crane transportations, Swarm Evol. Comput., 62 (2021), 100861. https://doi.org/10.1016/j.swevo.2021.100861 doi: 10.1016/j.swevo.2021.100861
    [154] X. Wu, X. Liu, N. Zhao, An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem, Memet. Comput., 11 (2019), 335–355. https://doi.org/10.1007/s12293-018-00278-7 doi: 10.1007/s12293-018-00278-7
    [155] G. Zhang, K. Xing, G. Zhang, Z. He, Memetic algorithm with meta-Lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem, IEEE Access, 8 (2020), 96115–96128. https://doi.org/10.1109/ACCESS.2020.2996305 doi: 10.1109/ACCESS.2020.2996305
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2260) PDF downloads(325) Cited by(5)

Article outline

Figures and Tables

Figures(13)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog