Citation: Qing Wu, Chunjiang Zhang, Mengya Zhang, Fajun Yang, Liang Gao. A modified comprehensive learning particle swarm optimizer and its application in cylindricity error evaluation problem[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1190-1209. doi: 10.3934/mbe.2019057
[1] | S. Krikpatrick, C. D. Gelatt and M. Vecchi, Optimization by simulated annealing, Science., 220 (1983), 671–680. |
[2] | J. H. Holland, Genetic algorithms and the optimal allocation of trials, Siam. J. Comput., 2 (1973), 88–105. |
[3] | R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, In: Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on IEEE, 39–43. |
[4] | R. Storn and K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Global. Optim., 11 (1997), 341–359. |
[5] | Y. Z. Zhou, W. C. Yi and L. Gao, et al., Adaptive differential evolution with sorting crossover rate for continuous optimization problems, IEEE T. Cy., 47 (2017), 2742–2753. |
[6] | M. Dorigo, M. Birattari and T. Stutzle, Ant colony optimization: artificial ants as a computational intelligence technique, IEEE. Comput. Intell. Mag., 1 (2006), 28–39. |
[7] | S. Birbil and S. C. Fang, An electromagnetism-like mechanism for global optimization, J. Global. Optim., 25 (2003), 263–282. |
[8] | W. Gong, Z. Cai and D. Liang, Engineering optimization by means of an improved constrained differential evolution, Comput. Method. Appl. M., 268 (2014), 884–904. |
[9] | Q. Wu, L. Gao and X. Y. Li, et al., Applying an electromagnetism-like mechanism algorithm on parameters optimization of a multi-pass milling process, Int. J. Prod. Res., 51 (2012), 1777–1788. |
[10] | C. Zhang, Q. Lin and L. Gao, et al., Backtracking Search Algorithm with three constraint handling methods for constrained optimization problems, Expert. Syst. Appl., 42 (2015), 7831–7845. |
[11] | X. Y. Li, L. Gao and Q. K. Pan, et al., An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop, IEEE. T. Syst. Man. Cy. A. |
[12] | X. Y. Li, C. Lu and L. Gao, et al., An Effective Multi-Objective Algorithm for Energy Efficient Scheduling in a Real-Life Welding Shop, IEEE T. Ind. Inform., 14 (2018), 5400–5409. |
[13] | X. Y. Li and L. Gao, An Effective Hybrid Genetic Algorithm and Tabu Search for Flexible Job Shop Scheduling Problem, Int. J. Prod. Econ., 174 (2016), 93–110. |
[14] | V. Vassiliadis and G. Dounias, Nature–inspired intelligence: a review of selected methods and applications. Int. J. Artif. Intell. T., 18 (2009), 487–516. |
[15] | Shi Y, Eberhart R, A modified particle swarm optimizer, In: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., 69–73. |
[16] | J. Kennedy and R. Mendes, Population structure and particle swarm performance, In: Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on IEEE, 2 (2002) 1671–1676. |
[17] | R. Mendes, J. Kennedy and J. Neves, The fully informed particle swarm: Simpler, maybe better, IEEE T. Evolut. Comput., 8 (2004), 204–210. |
[18] | Parsopoulos K E, Vrahatis M N, UPSO – a unified particle swarm optimization scheme, Lecture Series on Computational Sciences, 1 (2004), 868–873. |
[19] | J. J. Liang, A. K. Qin and P. N. Suganthan, et al., Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE T. Evolut. Comput., 10 (2006), 281–295. |
[20] | Y. Shi, H. Liu and L. Gao, et al., Cellular particle swarm optimization, Inform. Sci., 181 (2011), 4460–4493. |
[21] | W. H. Lim and N. A. M. Isa., Adaptive division of labor particle swarm optimization, Expert. Syst. Appl., 42 (2015), 5887–5903. |
[22] | Y. Peng and B. Lu, A hierarchical particle swarm optimizer with latin sampling based memetic algorithm for numerical optimization, Appl. Soft. Comput., 13 (2013), 2823–2836. |
[23] | Ş. Gülcü and H. Kodaz, A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization, Eng. Appl. Artif. Intel., 45 (2015), 33–45. |
[24] | Y. Bao, Z. Hu and T. Xiong, A PSO and pattern search based memetic algorithm for SVMs parameters optimization, Neurocomputing, 117 (2013), 98–106. |
[25] | Y. G. Petalas, K. E. Parsopoulos and M. N. Vrahatis, Memetic particle swarm optimization, Ann. Oper. Res., 156 (2007), 99–127. |
[26] | D. Jia, G. Zheng and B. Qu, et al., A hybrid particle swarm optimization algorithm for high-dimensional problems, Comput. Ind. Eng., 61 (2011), 1117–1122. |
[27] | G. Wu, D. Qiu and Y. Yu, et al., Superior solution guided particle swarm optimization combined with local search techniques, Expert. Syst. Appl., 41 (2014), 7536–7548. |
[28] | M. D. McKay, R. J. Beckman and W. J. Conover, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979), 239–245. |
[29] | Z. Zhao, J. Yang and Z. Hu, et al., A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems, Eur. J. Oper. Res., 250 (2016), 30–45. |
[30] | R. Ferrari, D. Froio and E. Rizzi, et al., Model updating of a historic concrete bridge by sensitivity- and global optimization-based Latin Hypercube Sampling, Eng. Struct., 179 (2019), 139–160. |
[31] | X. Zhang, X. Jiang and P. J. Scott, A reliable method of minimum zone evaluation of cylindricity and conicity from coordinate measurement data, Precis. Eng., 35 (2011), 484–489. |
[32] | H. Lin and Y. Peng, Evaluation of cylindricity error based on an improved GA with uniform initial population, In: Control, Automation and Systems Engineering, 2009. CASE 2009. IITA International Conference on IEEE, 311–314. |
[33] | J. Mao, Y. Cao and J. Yang, Implementation uncertainty evaluation of cylindricity errors based on geometrical product specification (GPS), Measurement, 42 (2009), 742–747. |
[34] | M. Clerc and J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE T. Evolut. Comput., 6 (2002), 58–73. |
[35] | T. Peram, K. Veeramachaneni and C. K. Mohan, Fitness-distance-ratio based particle swarm optimization, In: Proceedings of Swarm Intelligence Symposium, (2003), 174–181. |
[36] | F. Van den Bergh and A. P. Engelbrecht, A cooperative approach to particle swarm optimization, IEEE T. Evolut. Comput., 8 (2004), 225–239. |
[37] | K. Carr and P. Ferreira, Verification of form tolerances part II: Cylindricity and straightness of a median line, Precis. Eng., 17 (1995), 144–156. |
[38] | X. Wen and A. Song, An improved genetic algorithm for planar and spatial straightness error evaluation, Int. J. Mach. Tool. Manu., 43 (2003), 1157–1162. |