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Abstract: In this manuscript, the notion of absolutely invertible was extended consistently from semi-
normed rings to the class of general topological rings. Then, the closure of the absolutely invertibles
multiplied by a certain element was proved to be contained in the set of topological divisors of the
element. Also, a sufficient condition for the closed unit ball of a complete unital normed ring to become
a closed unit neighborhood of zero was found. Finally, two applications to classical operator theory
were provided, i.e., every Banach space of dimension of at least 2 could be equivalently re-normed
in such a way that the group of surjective linear isometries was not a normal subgroup of the group
of isomorphisms, and every infinite-dimensional Banach space, containing a proper complemented
subspace isomorphic to it, could be equivalently re-normed so that the set of surjective linear operators
was not dense in the Banach algebra of bounded linear operators.
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1. Introduction

The exploration of topological rings and modules is gaining increasing prominence and
importance in functional analysis [1]. For instance, classical operator theory on complex normed
spaces [2–6] has been extended into the framework of normed modules over absolutely valued
rings [7, 8], resulting in the development of a representation theory on the group of topological
isomorphisms on a topological module. Later, in [9], the foundational concepts of operator theory
were further expanded to encompass semi-normed modules over semi-normed rings and, in some
instances, topological modules over topological rings, by utilizing convergence linear topologies to
establish dual module topologies. Key notions from the classical geometry of Banach spaces, such as
internal structure and extremal properties, have similarly been generalized to the broader setting of
topological rings and modules [10].

Another significant area where topological rings and modules are notably present is spectral theory
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and quantum mechanics [11]. The examination of the algebraic characteristics of quantum systems
led to the boost of C∗-algebras and effect algebras, as well as additional related algebraic structures,
including ∗-rings and Hilbert C∗-modules [12–14].

In general, a key distinction between Banach spaces and general topological modules lies in the
fact that finite-dimensional subspaces of a Banach space are always closed, whereas finitely spanned
submodules of a topological module (including Hilbert C∗-modules) do not necessarily possess this
property. This difference is one of the reasons why certain concepts and results from operator theory on
Banach spaces cannot be directly applied to operators on topological modules. One illustrative example
is the Fredholm and semi-Fredholm theory on the standard Hilbert module over a unital C∗-algebra,
where the methods and proofs significantly diverge from those used in the classical Fredholm and
semi-Fredholm theory on Banach spaces. Although Hilbert C∗-modules are complex Banach spaces as
well, the semi-Fredholm theory described in [15–18] differs greatly from the classical theory precisely
because finitely spanned sub-modules can exhibit different behavior from finite-dimensional subspaces.
Another illustrative example comes from the Gelfand theory. One of its strongest results establishes
that the boundary of the invertibles in a C∗-algebra is contained in the set of topological divisors.
Diverse generalizations of this result have been recently provided in [19], some of them involving the
novel notion of absolutely invertible.

The main objective of this manuscript is to extend consistently the notion of absolutely invertible
to the class of general topological rings. The paper is organized as follows: Section 2 deals with the
main properties of absolutely invertibles in (semi-normed) ∗-rings obtaining, in particular, that every
Banach space of dimension of at least 2 can be equivalently re-normed in such a way that the group of
surjective linear isometries is not a normal subgroup of the group of isomorphisms (Theorem 2), and
that every infinite-dimensional Banach space, containing a proper complemented subspace isomorphic
to it, can be equivalently re-normed so that the set of surjective linear operators is not dense in the
Banach algebra of bounded linear operators (Theorem 3 and Corollary 1). In Section 3, the novel
concepts of unit ball and absolutely invertible in the scope of topological rings are introduced in the
literature (Definitions 1 and 2). Section 4 is devoted to the analysis of absolutely invertibles in semi-
normed rings and modules satisfying topological properties such as compactness and completeness.
More concretely, we obtain a new sufficient condition for the closed unit ball of a complete unital
normed ring to be a closed unit neighborhood of zero (Theorem 5). Finally, in Theorem 7 of Section
5, we generalize, to the scope of Hausdorff topological rings via absolutely invertibles, the previously
mentioned result in Gelfand theory, i.e., the boundary of the invertibles in a C∗-algebra is contained in
the set of topological divisors.

2. Absolutely invertibles in semi-normed ∗-rings

If R is an absolutely semi-valued ring, then every invertible u ∈ U(R) satisfies that
∣∣∣u−1
∣∣∣ = |u|−1

in virtue of the multiplicative character of the absolute semivalue. This motivates the definition of
absolutely invertible in semi-normed rings. Let R be a semi-normed ring. We say that u ∈ U(R) is
absolutely invertible (see [19]) provided that

∥∥∥u−1
∥∥∥ = ∥u∥−1. In the Banach algebra of operators on a

Hilbert space, absolutely invertibles were fully characterized in [19] as those isomorphisms which are
positive multiples of a surjective isometry. The subset of absolutely invertibles of a semi-normed ring
R is denoted by U1(R) and it is a subgroup of U(R) if R is unital (∥1∥ = 1). In fact, the existence
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of absolutely invertibles is directly linked to the unital character of R in other words, ∥1∥ = 1 if, and
only if, U1(R) , ∅, meaning in such a situation that 1 ∈ U1(R). Special attention will be paid to the
normalized absolutely invertibles, that is, U1(R) ∩ SR, with SR = {r ∈ R : ∥r∥ = 1}, which is itself a
subgroup of U1(R). Note that both U1(R) ∩ SR and U1(R) are additively symmetric (a subset A of a
ring is said to be additively symmetric provided that A = −A). Another interesting property satisfied
by the absolutely invertibles is the fact that ∥ur∥ = ∥ru∥ = ∥r∥∥u∥ for all u ∈ U1(R) and all r ∈ R.
Actually, if M is a semi-normed R-module, then ∥um∥ = ∥u∥∥m∥ for all m ∈ M and all u ∈ U1(R).

Recall that a ∗-ring is a ring R endowed with an additive and anti-multiplicative involution ∗ : R→
R. Note that involutions preserve the unity and the invertibles, that is, 1∗ = 1 and

(
u−1
)∗
= (u∗)−1.

Let R be a semi-normed ∗-ring. Observe that if ∥r∥ ≤ ∥r∗∥ for all r ∈ R, then ∗ is an isometry.
Indeed, notice that ∥r∗∥ ≤ ∥(r∗)∗∥ = ∥r∥ for all r ∈ R. Therefore, ∥r∗∥ = ∥r∥ for all r ∈ R, meaning that ∗
is an isometry.

We will say that the semi-norm of R is strongly ∗-multiplicative provided that the condition ∥rr∗∥ =
∥r∥2 holds for all r ∈ R; and is ∗-multiplicative if ∥rr∗∥ = ∥r∥ ∥r∗∥ for all r ∈ R. Notice that the
semi-norm of R is strongly ∗-multiplicative if and only if ∗ is an isometry and the semi-norm is ∗-
multiplicative. Indeed, if ∗ is an isometry and the semi-norm is ∗-multiplicative, then it is clear that the
semi-norm is strongly ∗-multiplicative. Conversely, if the semi-norm is strongly ∗-multiplicative, then
∥r∥2 = ∥rr∗∥ ≤ ∥r∥ ∥r∗∥ for all r ∈ R. Therefore, if ∥r∥ > 0, then ∥r∥ ≤ ∥r∗∥, and if ∥r∥ = 0, then we
clearly have that ∥r∥ ≤ ∥r∗∥, reaching the conclusion that ∥r∥ ≤ ∥r∗∥ for all r ∈ R and ∗ is an isometry,
hence the semi-norm is ∗-multiplicative.

In the context of Banach ∗-algebras, it can be proved (see [20]) that the ∗-multiplicative condition
(∥xx∗∥ = ∥x∥ ∥x∗∥) implies the strongly ∗-multiplicative condition (∥xx∗∥ = ∥x∥2) without previously
asking for the involution to be an isometry.

An invertible element u of a ∗-ring R is called unitary provided that u∗ = u−1. The subset of unitary
elements is denoted byUu(R) and it is clearly an ∗-invariant additively symmetric subgroup ofU(R).
This fact motivates our first theorem.

Theorem 1. Let R be a unital semi-normed ∗-ring. Then:

1) If the involution is an isometry, thenU1(R)∗ = U1(R) andU1(R)∩SR is an ∗-invariant additively
symmetric subgroup ofU1(R).

2) If the semi-norm is ∗-multiplicative, thenUu(R) ⊆ U1(R).
3) If the involution is an isometry and the semi-norm is ∗-multiplicative, thenUu(R) ⊆ U1(R) ∩ SR.

Proof. The proof will follow as itemized as the statement of the theorem.

1) Let us prove first that U1(R)∗ = U1(R). Fix any arbitrary r ∈ U1(R). Observe that (r∗)−1 =(
r−1
)∗

, so ∥∥∥(r∗)−1
∥∥∥ = ∥∥∥∥(r−1

)∗∥∥∥∥ = ∥∥∥r−1
∥∥∥ = ∥r∥−1 = ∥r∗∥−1 ,

hence r∗ ∈ U1(R). This shows that U1(R)∗ ⊆ U1(R). Since ∗ is involutive, we obtain that
U1(R)∗ = U1(R). As a consequence,U1(R)∩SR is an ∗-invariant additively symmetric subgroup
ofU1(R) due to the assumption that ∗ is an isometry.
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2) Indeed, if u ∈ Uu(R), since R is unital by hypothesis, then 1 = ∥1∥ =
∥∥∥uu−1

∥∥∥ = ∥uu∗∥ = ∥u∥ ∥u∗∥,

meaning that ∥u∥ = ∥u∗∥−1 =
∥∥∥u−1
∥∥∥−1

, and hence, u ∈ U1(R).
3) From the previous item, we already know that Uu(R) ⊆ U1(R), so it only remains to show

that Uu(R) ⊆ SR. Indeed, if u ∈ Uu(R), then ∥u∥ = ∥u∗∥ =
∥∥∥u−1
∥∥∥ = ∥u∥−1, meaning that

∥u∥ =
∥∥∥u−1
∥∥∥ = 1. Therefore, u ∈ SR.

□

Given a complex Hilbert space H, it is well-known that a bounded operator T ∈ B(H) is a unitary
element of the C∗-algebra B(H) if, and only if, T is a surjective linear isometry [2]. In view of
Theorem 1, U1(B(H)) ∩ SB(H) ⊇ Uu(B(H)). However, in the case of the C∗-algebra B(H), it actually
holds that U1(B(H)) ∩ SB(H) = Uu(B(H)). This happens in accordance with [19] because U1(B(H))
consists of the positive multiples of the surjective linear isometries. According to [19], if dim(H) ≥ 2,
then neither U1(B(H)) nor Uu(B(H)) is a normal subgroup of U(B(H)). However, it is obvious that
Uu(B(H)) is a normal subgroup of U1(B(H)) in virtue of the fact that
U1(B(H)) ∩ SB(H) = Uu(B(H)). In fact, the latest assertion works for general unital
semi-normed rings.

Proposition 1. If R is a unital semi-normed ring, thenU1(R) ∩ SR is a normal subgroup ofU1(R).

Proof. Take arbitrary elements u ∈ U1(R) ∩ SR and r ∈ U1(R) and we will show that r−1ur ∈ U1(R) ∩
SR. Indeed, it is clear that r−1ur ∈ U1(R), so it only remains to show that r−1ur ∈ SR, which is a direct
consequence of the properties satisfied by the absolutely invertibles because

∥∥∥r−1ur
∥∥∥ = ∥∥∥r−1

∥∥∥ ∥u∥∥r∥ =
∥r∥−1∥r∥ = 1. □

A direct consequence of Proposition 1 is the fact thatUu(R) is a normal subgroup ofU1(R) provided
thatUu(R) = U1(R) ∩ SR. However, the next example shows this assertion is not always true.

Example 1. Consider the product ring R := R × C endowed with the 1-norm ∥(x, z)∥1 := |x| + |z| and
the involution given by right-conjugation (x, z)∗ := (x, z). It is not hard to check that this involution is
an isometry but it is not ∗-multiplicative. Also, U1 (R) = ∅ and Uu (R) = {±1} × bd(D), where bd(D)
stands for the boundary of the unit disk, also denoted by T.

A slight modification of Example 1 provides the existence of absolutely invertible elements.

Example 2. Consider the unital semi-normed ring R := C endowed with the 1-norm ∥z∥1 :=
∣∣∣ℜz
∣∣∣+ ∣∣∣ℑz

∣∣∣
and the involution given by conjugation z∗ := z. It is not hard to check that this involution is an isometry
but not ∗-multiplicative. Also,U1 (R) =

{
z ∈ C \ {0} : ℜz = 0 or ℑz = 0

}
andUu (R) = bd(D).

Observe that if R is C endowed with its absolute value and involution given by conjugation, then
the involution is clearly an isometry, the absolute value is ∗-multiplicative,Uu(R) = SC, andU1(R) =
U(R) = C \ {0}, meaning thatUu(R) = U1(R) ∩ SR.

According to [19], if H is a complex Hilbert space, thenU1(B(H)) is precisely the positive multiples
of the surjective linear isometries. On the other hand, U1(B(H)) ∩ SB(H) = Uu(B(H)) consists of the
surjective linear isometries on H. As previously mentioned, by [19], if dim(H) ≥ 2, then Uu(B(H))
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is not a normal subgroup of U(B(H)). This result can be extended to general Banach spaces in an
isomorphic way.

Theorem 2. Let X be a Banach space of dimension of at least 2. There exists an equivalent norm on
X in such a way that the group of surjective linear isometries is not a normal subgroup of the group
of isomorphisms.

Proof. Every Banach space of dimension of at least 2 is isomorphic to a Banach space of the form
H ⊕2 X, where H is a finite-dimensional Hilbert space of dimension of at least 2 and X is another
Banach space. In view of [19], there exist a surjective linear isometry T : H → H and an isomorphism
S : H → H in such a way that S −1 ◦ T ◦ S is not an isometry on H. Consider the operators S ⊕ IX and
T ⊕ IX, which are an isomorphism and a surjective linear isometry on H ⊕2 X, respectively. Observe
that for every h ∈ H and every x ∈ X,[

(S ⊕ IX)−1
◦ (T ⊕ IX) ◦ (S ⊕ IX)

]
(h + x) = S −1(T (S (h))) + x,

in other words, (S ⊕ IX)−1
◦ (T ⊕ IX) ◦ (S ⊕ IX) =

(
S −1 ◦ T ◦ S

)
⊕ IX. Also, notice that∥∥∥∥[(S ⊕ IX)−1

◦ (T ⊕ IX) ◦ (S ⊕ IX)
]

(h + x)
∥∥∥∥2

2
=
∥∥∥S −1(T (S (h))) + x

∥∥∥2
2

=
∥∥∥S −1(T (S (h)))

∥∥∥2 + ∥x∥2 ,
meaning that if (S ⊕ IX)−1

◦ (T ⊕ IX) ◦ (S ⊕ IX) is an isometry on H ⊕2 X, then so is S −1 ◦ T ◦ S on H
because of the following chain of equalities:

∥h∥2 + ∥x∥2 = ∥h + x∥22

=
∥∥∥∥[(S ⊕ IX)−1

◦ (T ⊕ IX) ◦ (S ⊕ IX)
]

(h + x)
∥∥∥∥2

=
∥∥∥S −1(T (S (h)))

∥∥∥2 + ∥x∥2 .
□

Our final efforts in this section are devoted to find examples of algebras of operators for which the
group of isomorphisms is not dense. For this, we will strongly rely on the notion of E-projection,
see [21]. A projection P : X → X on a Banach space X is said to be an E-projection provided that
there exists a 2-dimensional real Banach space E :=

(
R2, ∥ · ∥E

)
in such a way that {(1, 0), (0, 1)} is a

normalized 1-unconditional basis and ∥x∥ = ∥(∥P(x)∥, ∥x − P(x)∥)∥E for all x ∈ X. All ℓp-projections
are E-projections for 1 ≤ p ≤ ∞, but the converse is not true.

Theorem 3. Let X be an infinite dimensional Banach space. If there exists a proper subspace Y of X
isometric to X and E-complemented in X, then the set of surjective operators is not dense in B(X).

Proof. Let T : X → Y be a surjective linear isometry and P : X → X a continuous linear projection of
range Y with ∥x∥ = ∥(∥P(x)∥, ∥x − P(x)∥)∥E. Since all norms are equivalent in R2, there exists K > 0
such that ∥(α, β)∥∞ ≤ K∥(α, β)∥E for all (α, β) ∈ R2. If the surjective operators are dense in B(X),
then we can find S ∈ B(X) surjective such that ∥S − T∥ < 1

K . Fix an arbitrary z0 ∈ ker(P) \ {0}.
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The surjectivity of S allows the existence of x0 ∈ X \ {0} such that S (x0) = z0. Then we obtain the
following contradiction:

∥x0∥ ≤ ∥(∥z0∥, ∥x0∥)∥∞ ≤ K ∥(∥z0∥, ∥x0∥)∥E = K ∥(∥z0∥, ∥T (x0)∥)∥E
= K∥z0 − T (x0)∥ = K∥S (x0) − T (x0)∥

≤ K∥S − T∥∥x0∥ < K
1
K
∥x0∥ = ∥x0∥.

□

Theorem 3 provides plenty of examples of algebras of operators for which the group of invertibles
is not dense.

Corollary 1. Let X be an infinite dimensional Banach space. If there exists a proper subspace Y of X
isomorphic to X which is complemented in X, then X can be equivalently re-normed so that the set of
surjective operators is not dense in B(X).

Proof. Let T : Y → X be an isomorphism and P : X → X a continuous linear projection whose range
is Y . Consider on Y the equivalent norm given by ∥y∥0 := max {∥P(T (y))∥ , ∥T (y) − P(T (y))∥} for all
y ∈ Y and denote Y ′ to Y endowed with the new norm. If W := ker(P) ⊕∞ Y ′, then W and X are
isomorphic, W is linearly isometric to Y ′ by construction of ∥ • ∥0, and Y ′ is E-complemented in W.
Finally, Theorem 3 serves to assure the desired result. □

3. Absolutely invertibles in topological rings

In order to extend the notion of absolutely invertible to topological rings, we need to rely on the
following concept in associative ring theory, which is novel from this work. Recall that a
multiplicatively idempotent subset of a ring is a set A satisfying AA = A.

Definition 1 (Unit ball). Let R be a topological ring. A unit ball in R is an additively symmetric and
multiplicatively idempotent closed neighborhood of 0 in R containing 1.

The closed unit ball of a unital semi-normed ring is the most representative example of the above
notion. Obviously, the entire ring is trivially a unit ball. In fact, if a ring R is endowed with the
trivial topology, then R is the only unit ball. However, if R is endowed with the discrete topology,
then {−1, 0, 1} is the smallest unit ball.

A unit ball B in a topological ring R is said to be unital provided that 1 ∈ bd(B). This fact implies
that B , R because R is trivially open and its boundary is empty. A nontrivial example of a non-unital
unit ball is {−1, 0, 1} in a discrete ring. For instance, Z endowed with its absolute value provides an
example of a unital semi-normed ring whose closed unit ball is a non-unital unit ball.

Definition 2 (Absolutely invertible). Let R be a topological ring endowed with a unit ball B. An
invertible element u ∈ U(R) is said to be absolutely invertible provided that u, u−1 ∈ B. The set of
absolutely invertibles of R is denoted again byU1(R).
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Notice that the notion of absolutely invertible depends on the unit ball. Like we mentioned above,
in a unital semi-normed ring R its closed unit ball BR is an additively symmetric and multiplicatively
idempotent closed neighborhood of 0 containing 1. As a consequence, the definition of absolutely
invertible in topological rings extends properly that of semi-normed rings. However, we will pay
special attention to a particular class of unit balls: the closed unit neighborhoods of zero.

A subset U of a topological space X is called regular open provided that U = int(cl(U)). A subset B
of X is called regular closed provided that B = cl(int(B)). If U ⊆ X is open and B ⊆ X is closed, then
cl(U) and int(B) are regular closed and regular open, respectively. Unit neighborhoods of zero, also
known as unit zero-neighborhoods, constitute a new concept in associative ring theory with plenty of
applications in topological modules. We refer the reader to [7, 22] for a wider perspective on this new
notion.

Let R be a topological ring. Let U, B be subsets of R. Then, U is called an open unit neighborhood
of 0 provided that U is an additively symmetric and multiplicatively idempotent regular open
neighborhood of 0 such that 1 ∈ cl(U); and B is called a closed unit neighborhood of 0 provided that
B is regular closed and its interior is an open unit neighborhood of 0. Notice that B is additively
symmetric and multiplicatively idempotent as well.

Observe that, if U is an open unit neighborhood of zero, then cl(U) is a closed unit neighborhood
of zero, and, if B is a closed unit neighborhood of zero, then int(B) is an open unit neighborhood of
zero. In [22], it is proved that the only proper closed unit neighborhood of 0 in R is [−1, 1], and the
only proper closed unit neighborhood of 0 in C containing the unit complex numbers T is the closed
unit disk D. In [23], other proper closed unit neighborhoods of 0 in C are provided. As far as we know,
it is still unknown whether every topological ring not endowed with the trivial topology has a proper
closed unit neighborhood of zero.

Lemma 1. Let R be a topological ring endowed with a unital unit ball B. Then,U1(R) is an additively
symmetric subgroup ofU(R) entirely contained in bd(B).

Proof. Observe that U1(R) is trivially an additively symmetric subgroup of U(R) in view of the fact
that B is additively symmetric and multiplicatively idempotent. Let us show first thatU1(R) ⊆ bd(B).
Indeed, fix an arbitrary u ∈ U1(B). Suppose on the contrary that u ∈ int(B). Note that u−1int(B)
is an open neighborhood of 0 contained in BB = B, hence u−1int(B) ⊆ int(B), meaning that 1 =
u−1u ∈ int(B), which contradicts the fact that B is unital. As a consequence, u ∈ bd(B). Therefore,
U1(R) ⊆ bd(B). □

Proposition 2. Let R be a topological ∗-ring endowed with a unit ball B. ThenUu(R)∩B∩B∗ ⊆ U1(R).

Proof. Fix an arbitrary u ∈ Uu(R) ∩ B ∩ B∗. All we need to show is that u, u−1 ∈ B. By assumption,
u ∈ B ∩ B∗, meaning that u∗ ∈ B ∩ B∗. Finally, since u ∈ Uu(R), we obtain that u−1 = u∗ ∈ B. □

Under the assumptions of Proposition 2, if B is ∗-invariant (B∗ = B), thenUu(R)∩ B ⊆ U1(R). The
following example shows that, in general, we cannot achieve thatUu(R) ⊆ U1(R).
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Example 3. Consider the topological ring R := C endowed with the involution given by conjugation
z∗ := z. According to [23], the closed unit ball of the 1-norm B := {z ∈ C : ∥z∥1 ≤ 1} is in fact a closed
unit neighborhood of 0 in R. It is not hard to check that B is ∗-invariant. Also, U1 (R) = {1,−1, i,−i}
andUu (R) = bd(D).

The condition of ∗-invariance for a closed unit zero-neighborhood is the topological version of the
isometry condition in the case of semi-normed rings.

Recall that a subset A of a topological module M over a topological ring R is said to be
bounded (see [24–26]), provided that for every neighborhood U of 0 there exists an invertible
v ∈ U(R) such that A ⊆ vU. In the context of topological rings, left bounded refers to bounded when
the ring is a left module over itself.

Lemma 2. Let R be a topological ring, M,N topological R-modules, and T : M → N linear. If T is
continuous, then T (B) is bounded in N for every B ⊆ M bounded. If there exists a 0-neighborhood
V ⊆ M such that T (V) is bounded, then T is continuous.

Proof. Suppose first that T is continuous. Let U be a 0-neighborhood in N. Then, T−1(U) is a 0-
neighborhood in M by the continuity of T . Since B ⊆ M is bounded, there exists u ∈ U(R) with
B ⊆ uT−1(U). Thus, T (B) ⊆ uU. This implies that T (B) is bounded. Conversely, let us assume now
that T is linear and there exists a 0-neighborhood V ⊆ M such that T (V) is bounded. We will prove
that T is continuous. For this, we will show the continuity of T at 0. Fix any arbitrary 0-neighborhood
W ⊆ N. By hypothesis, there exists an invertible u ∈ U(R) in such a way that T (V) ⊆ uW, meaning
that u−1V ⊆ T−1(W), so T−1(W) is a neighborhood of 0 in M. This proves the continuity of T at 0. By
additivity, T is everywhere continuous. □

Lemma 2 has strong consequences on involutions.

Corollary 2. Let R be a topological ∗-ring. If there exists a left- or right-bounded and ∗-invariant
neighborhood W of 0, then ∗ is a homeomorphism.

Proof. Since ∗−1 = ∗, it only suffices to prove is that if V ⊆ R is a neighborhood of 0, then V∗ is
also a neighborhood of 0. Indeed, there exists an invertible u ∈ U(R) such that uW ⊆ V (here we
are assuming that W is left-bounded, and a similar proof applies for the right-bounded case). Then
Wu∗ ⊆ V∗, meaning that V∗ is a neighborhood of 0 in R because u∗ is also invertible. □

Our next results deal with absolutely invertibles in a dense subring. We will strongly rely on the
following technical remark, which can be found in almost any basic Topology textbook.

Remark 1. Let X be a topological space, Y a subset of X, and A ⊆ X. Then, int(A) ∩ Y ⊆ intY(A ∩ Y),
clY(A∩ Y) = cl(A∩ Y)∩ Y, and bdY(A∩ Y) ⊆ bd(A∩ Y)∩ bd(A). If, in addition, Y is dense in X and A
is closed in X, then int(A) ∩ Y = intY(A ∩ Y), bd(A) ∩ Y = bdY(A ∩ Y), and cl(A) ∩ Y = clY(A ∩ Y). As
a consequence, if Y is dense in X and U, B ⊆ X are regular open and regular closed, respectively, then
U ∩ Y is regular open in Y and B ∩ Y is regular closed in Y.

Electronic Research Archive Volume 32, Issue 12, 6578–6592.



6586

Recall that topological rings in which multiplicative inversion is continuous are called topological
inversion rings. Topological division rings are topological inversion rings by default, whereas division
topological rings need not be necessary.

Lemma 3. Let R be a topological inversion ring. Let U be an open subset of R. If 1 ∈ cl(U ∩ U(R)),
then U ⊆ UU.

Proof. Fix an arbitrary u ∈ U. Let (ui)i∈I ⊆ U ∩U(R) be a net converging to 1. By the continuity of the
inversion, we deduce that

(
u−1

i

)
i∈I

also converges to 1 therefore,
(
u−1

i u
)

i∈I
converges to u, which means

that we can find j ∈ I with u−1
j u ∈ U. Finally, u = u j

(
u−1

j u
)
∈ UU. □

Proposition 3. Let R be a topological inversion ring. Let S be a dense subring of R. If U ⊆ R is an
open unit neighborhood of 0 in R such that 1 ∈ cl(U∩U(S )), then U∩S is an open unit neighborhood
of 0 in S .

Proof. According to Remark 1, U ∩ S is a regular open neighborhood of 0 in S and clS (U ∩ S ) =
cl(U) ∩ S . Notice that U ∩ S is additively symmetric and (U ∩ S )(U ∩ S ) ⊆ U ∩ S . Finally, since
1 ∈ cl(U ∩U(S )) by hypothesis, Lemma 3 guarantees that (U ∩ S )(U ∩ S ) = U ∩ S . □

4. Absolutely invertibles in semi-normed rings and modules

As mentioned earlier, semi-normed rings are topological rings and the closed unit ball of a unital
semi-normed ring fits the definition of unit ball for the ring topology induced by the semi-norm.
Therefore, every time that we consider absolutely invertibles in semi-normed rings, it will be in the
original sense [19].

Our first lemma in this section improves a result on the closedness of the invertibles of norm 1
in an absolutely valued ring given in [7]. In what follows throughout this section and the rest of the
manuscript, BM, UM, and SM stand for the closed unit ball, the open unit ball, and the unit sphere of a
semi-normed module M (and the same notation is valid for a semi-normed ring R).

Lemma 4. Let R be a unital normed ring. Then, U1(R) ∩ SR is closed if either one of the following
conditions hold:

1) R is complete.
2) SR is compact.

Proof. Let (un)n∈N ⊆ U1(R) ∩ SR be a sequence converging to an element r ∈ SR. We will distinguish
between the two conditions above:

1) R is complete. In this case, the equality

u−1
p − u−1

q = u−1
q (uq − up)u−1

p

for all p, q ∈ N shows that
(
u−1

n

)
n∈N

is a Cauchy sequence, hence it converges to an element s ∈ SR.
Now it is clear that rs = sr = 1.
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2) In this case, the compactness of SR allows us to deduce the existence of a subsequence
(
unk

)
k∈N

and an element s ∈ SR such that u−1
nk
→ s as k → ∞. Finally, rs = 1 = sr.

□

Notice that, given a semi-normed module M over a semi-normed ring R, in order for UM to be dense
in BM, it only suffices that 1 ∈ cl(UR). Indeed, if (rn)n∈N ⊆ UR converges to 1, then (rnm)n∈N converges
to m for all m ∈ SM and ∥rnm∥ ≤ ∥rn∥∥m∥ < 1 for all n ∈ N.

Lemma 5. Let R be a unital semi-normed ring. Then:

1) If 1 ∈ cl (U1(R) \ SR), then 1 ∈ cl(UR).
2) If BR is compact and 1 ∈ cl ({∥u∥ : u ∈ U1(R) \ SR}), then 1 ∈ cl(UR).

Proof. Suppose first that 1 ∈ cl (U1(R) \ SR). Take a sequence (un)n∈N ⊆ U1(R) \ SR converging to 1.
Notice that if ∥un∥ > 1 for some n ∈ N, then

∥∥∥u−1
n

∥∥∥ = ∥un∥
−1 < 1 therefore, it only suffices to switch u−1

n

for un whenever ∥un∥ > 1 to obtain a sequence in UR converging to 1. Next, assume that BR is compact
and 1 ∈ cl ({∥u∥ : u ∈ U1(R) \ SR}). Consider a sequence (un)n∈N ⊆ U1(R) \ SR such that (∥un∥)n∈N

converges to 1. By using a similar argument as before, we may assume without any loss of generality
that ∥un∥ > 1 for all n ∈ N. The compactness of BR allows us to assume, also without any loss, that
(un)n∈N converges to some r ∈ SR. For every n ∈ N,

∥∥∥1 − ru−1
n

∥∥∥ = ∥∥∥unu−1
n − ru−1

n

∥∥∥ ≤ ∥un − r∥
∥∥∥u−1

n

∥∥∥ =
∥un − r∥ ∥un∥

−1
→ 0 as n → ∞. Finally, simply observe that

∥∥∥ru−1
n

∥∥∥ ≤ ∥r∥ ∥∥∥u−1
n

∥∥∥ = ∥un∥
−1 < 1 for every

n ∈ N. □

A direct consequence of the first observation of this section together with Lemma 5 is the following
theorem, whose proof is omitted and which improves [7].

Theorem 4. Let M be a semi-normed module over a unital semi-normed ring R. If 1 ∈ cl (U1(R) \ SR),
then cl(UM) = BM.

In [27], it was proved that the closed unit ball of a unital absolutely semi-valued real algebra is a
closed unit neighborhood of zero. The proof of the previous result can be easily adapted to prove that
the closed unit ball of a unital real Banach algebra is a closed unit neighborhood of zero. We will
extend this result to normed rings with few extra hypotheses. Let M be a semi-normed module over a
semi-normed ring R. An element e ∈ BM is said to be an extreme point of M provided that the following
condition holds: if e + e = m + n with m, n ∈ BM, then e = m = n; see [22]. According to [28], 1 is an
extreme point of the closed unit ball of every unital real or complex Banach algebra.

Theorem 5. Let R be a complete unital normed ring containing a closed subring S such thatU(S ) =
U1(S ) and 0 ∈ cl(U(S )). If BR is regular closed, UR = int(BR), and 1 is an extreme point of BR, then
BR is a closed unit neighborhood of 0.

Proof. By hypothesis, BR is regular closed and UR = int(BR). As a consequence, UR is regular open.
We will prove that UR is an open unit neighborhood of 0, which suffices to assure that BR is a closed unit
neighborhood of 0 in view of the definition of such notion. First off, UR is clearly additively symmetric
because so is the norm of R. Next, by hypothesis, 1 ∈ BR = cl(int(BR)) = cl(UR). Thus, it only remains
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to show that UR is multiplicatively idempotent, that is, URUR = UR. Observe that URUR ⊆ UR because
of the submultiplicative character of the norm of R. Let us show that UR ⊆ URUR. To accomplish
this, we will show that 1 ∈ cl(UR ∩ U(R)) and apply Lemma 3. Indeed, by hypothesis, there exists a
sequence (sk)k∈N ⊆ U(S ) convergent to 0. We may assume that ∥sk∥ < 1 for all k ∈ N. In view of [19],
for every k ∈ N we have that 1 − sk and 1 + sk are invertible in R and their inverses are

∑∞
n=0 sn

k and∑∞
n=0(−sk)n, respectively. Since S is closed, we conclude that (1 − sk)−1, (1 + sk)−1 ∈ S for all k ∈ N.

Observe that by hypothesis,U(S ) = U1(S ), meaning that (1 − sk)−1, (1 + sk)−1 ∈ U1(S ) for all k ∈ N.
Suppose that there exists k0 ∈ N such that

∥∥∥1 − sk0

∥∥∥ = ∥∥∥1 + sk0

∥∥∥ = 1. Since 1 + 1 = (1 + sk0) + (1 − sk0)
and 1 is an extreme point of BR, we deduce that 1 = 1 + sk0 = 1 − sk0 , which implies the contradiction
that sk0 = −sk0 = 0. As a consequence, for every k ∈ N, 1 − sk and 1 + sk cannot have both norm 1 at
the same time. Now, we construct the sequence (uk)k∈N defined by

uk :=


1 − sk if ∥1 − sk∥ < 1,

(1 − sk)−1 if ∥1 − sk∥ > 1,
1 + sk if ∥1 − sk∥ = 1 & ∥1 + sk∥ < 1,

(1 + sk)−1 if ∥1 − sk∥ = 1 & ∥1 + sk∥ > 1.

In virtue of [19], the inverse map u 7→ u−1 in U(R) is continuous, so both sequences
(
(1 − sk)−1

)
k∈N

and
(
(1 + sk)−1

)
k∈N

converge to 1. As a consequence, (uk)k∈N is a sequence in UR ∩ U(R) converging
to 1. □

Theorem 5 improves considerably [7]. There are plenty of examples of complete unital normed
rings containing a closed subring satisfying the hypothesis of Theorem 5. For example, any real or
complex Banach algebra in particular, or more generally, any complete unital normed algebra, over a
non-discrete absolutely valued field, whose unity is an extreme point.

5. Absolutely invertibles and topological divisors

Given a ring R and an element s ∈ R, the set of left divisors of s is defined as ld(s) := {r ∈ R : ∃t ∈
R \ {0} s = rt}. In a similar way, the set of right divisors rd(s) of s can be defined. In [19, 29–31],
topological zero-divisors were deeply studied. Let R be a topological ring and consider s ∈ R. An
element r ∈ R is said to be a topological left divisor of s provided that there exists a subset T ⊆ R such
that 0 < cl(T ) and s ∈ cl(rT ). The set of topological left divisors of s is denoted by tld(s). In a similar
way, topological right divisors of s can be defined and they are denoted by trd(s). The following two
novel lemmas establish that the condition 0 < cl(T ) in the previous definition is only necessary when
s = 0.

Lemma 6. Let X be a Hausdorff topological space. Let T ⊆ X. If x, y ∈ cl(T ) with x , y, then there
exists a subset S ⊆ T such that x ∈ cl(S ) and y < cl(S ).

Proof. Since X is Hausdorff, we can take U,V neighborhoods of x, y, respectively, such that U∩V = ∅.
Notice that I := {W ⊆ U : W is a neighborhood of x} is a directed set when endowed with the partial
order W1 ≤ W2 ⇐⇒ W2 ⊆ W1. Since x ∈ cl(T ), for every W ∈ I there exists tw ∈ T ∩W. It is clear
that the net (tW)W∈I converges to x. However, by construction, y < cl({tW : W ∈ I}). Finally, simply
take S := {tW : W ∈ I}. □
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Lemma 6 can be adapted to prove that the condition 0 < cl(T ) in the definition of topological divisor
is only necessary when s = 0.

Lemma 7. Let R be a Hausdorff topological ring. Let s ∈ R \ {0}. Then, tld(s) = {r ∈ R : ∃T ⊆ R s ∈
cl(rT )}.

Proof. By definition, it is clear that tld(s) ⊆ {r ∈ R : ∃T ⊆ R s ∈ cl(rT )}. Suppose that r ∈ R is so
that there exists T ⊆ R with s ∈ cl(rT ). Since R is Hausdorff, we can take U,V neighborhoods of s, 0,
respectively, such that U ∩ V = ∅. Notice that I := {W ⊆ U : W is a neighborhood of s} is a directed
set when endowed with the partial order W1 ≤ W2 ⇐⇒ W2 ⊆ W1. Since s ∈ cl(rT ), for every W ∈ I
there exists tw ∈ T such that rtw ∈ W. It is clear that the net (rtW)W∈I converges to s. However, by
construction, 0 < cl({tW : W ∈ I}). Finally, simply take S := {tW : W ∈ I}, and we have that 0 < cl(S )
but s ∈ cl(rS ), meaning that r ∈ tld(s). □

We will first show the relationships between absolutely invertibles and topological divisors in
normed rings.

Theorem 6. Let R be a unital normed ring. Let s ∈ R \ {0}. Then, cl(sU1(R)) \ {0} ⊆ tld(s).

Proof. Fix an arbitrary r ∈ cl(sU1(R)) \ {0}. Take a sequence (un)n∈N ⊆ U1(R) such that (sun)n∈N

converges to r. Since r , 0, no subsequence of (un)n∈N converges to 0. Hence, there exist n0 and K > 0
such that ∥un∥ ≥ K for all n ≥ n0. Then,

∥∥∥u−1
n

∥∥∥ = ∥un∥
−1 ≤ 1

K for all n ≥ n0. Finally, for every n ≥ n0,

∥∥∥ru−1
n − s

∥∥∥ ≤ ∥r − sun∥
∥∥∥u−1

n

∥∥∥ ≤ ∥r − sun∥

K
,

meaning that
(
ru−1

n

)
n∈N

converges to s. In view of Lemma 7, r ∈ tld(s). □

The previous theorem can be reformulated for general topological rings by assuming they are
endowed with a left-bounded closed unit neighborhood B of zero.

Theorem 7. Let R be a Hausdorff topological ring endowed with a left-bounded unit ball B. Let
s ∈ R \ {0}. Then, cl(sU1(R)) \ {0} ⊆ tld(s).

Proof. Let V0 be a fixed neighborhood of 0. By hypothesis, there exist a 0-neighborhood W such that
WW ⊆ V0 and u0 ∈ U(R) such that u0B ⊆ W. Let x ∈ cl(sU1(R)) \ {0} and denote T := U1(R). It
follows that (x +Wu0) ∩ sT , ∅. As a consequence, there exists t ∈ U1(R) such that st − x ∈ Wu0, or,
equivalently, s − xt−1 ∈ W(u0t−1) ⊆ W(u0B) ⊆ WW ⊆ V0. This implies (s + V0) ∩ xT , ∅ and then
x ∈ tld(s) by Lemma 7. □

If the Hausdorff hypothesis is dropped from Theorem 6, then we need to ensure that 0 < cl(U1(R)).
However, many algebras, such as B(H), trivially satisfy that 0 ∈ cl(U1(B(H))), since U1(B(H)) is
precisely the positive multiples of the surjective linear isometries on H (see [19]).
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18. A. S. Miščenko, A. T. Fomenko, The index of elliptic operators over C∗-algebras, Math. USSR
Izv., 15 (1980), 87. https://doi.org/10.1070/IM1980v015n01ABEH001207

19. F. J. Garcı́a-Pacheco, A. Miralles, M. Murillo-Arcila, Invertibles in topological rings: a
new approach, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat., 116 (2022), 38.
https://doi.org/10.1007/s13398-021-01183-4

20. R. Doran, Characterizations of C∗ Algebras: The Gelfand Naimark Theorems, CRC Press, Boca
Raton, 2018. https://doi.org/10.1201/9781315139043

21. F. J. Garcı́a-Pacheco, The AHSP is inherited by E-summands, Adv. Oper. Theory, 2 (2017), 17–20.
http://doi.org/10.22034/aot.1610.1033

22. F. J. Garcı́a-Pacheco, P. Piniella, Unit neighborhoods in topological rings, Banach J. Math. Anal.,
9 (2015), 234–242. http://doi.org/10.15352/bjma/09-4-12

23. P. Piniella, Existence of non-trivial complex unit neighborhoods, Carpathian J. Math., 33 (2017),
107–114. https://doi.org/10.37193/CJM.2017.01.11

24. V. I. Arnautov, S. T. Glavatsky, A. V. Mikhalev, Introduction to the Theory of Topological Rings
and Modules, Marcel Dekker, New York, 1996.

25. S. Warner, Topological Fields, Elsevier, Amsterdam, 1989.

26. S. Warner, Topological Rings, Elsevier, Amsterdam, 1993.

27. F. J. Garcı́a-Pacheco, P. Piniella, Geometry of balanced and absorbing subsets of topological
modules, J. Algebra Appl., 18 (2019), 1950119. https://doi.org/10.1142/S0219498819501196

28. S. Sakai, C∗-Algebras and W∗-Algebras, Springer Berlin, Heidelberg, 1998.
https://doi.org/10.1007/978-3-642-61993-9

Electronic Research Archive Volume 32, Issue 12, 6578–6592.

https://dx.doi.org/https://doi.org/10.1016/0024-3795(81)90266-4
https://dx.doi.org/https://doi.org/10.1007/978-94-017-2422-7
https://dx.doi.org/https://doi.org/10.1007/s11117-022-00960-8
https://dx.doi.org/https://doi.org/10.1007/s13398-022-01341-2
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2022.126878
https://dx.doi.org/https://doi.org/10.1215/17358787-2019-0022
https://dx.doi.org/https://doi.org/10.1007/s43037-023-00277-y
https://dx.doi.org/https://doi.org/10.1070/IM1980v015n01ABEH001207
https://dx.doi.org/https://doi.org/10.1007/s13398-021-01183-4
https://dx.doi.org/https://doi.org/10.1201/9781315139043
https://dx.doi.org/http://doi.org/10.22034/aot.1610.1033
https://dx.doi.org/http://doi.org/10.15352/bjma/09-4-12
https://dx.doi.org/https://doi.org/10.37193/CJM.2017.01.11
https://dx.doi.org/https://doi.org/10.1142/S0219498819501196
https://dx.doi.org/https://doi.org/10.1007/978-3-642-61993-9


6592

29. S. J. Bhatt, H. V. Dedania, Banach algebras in which every element is a topological zero divisor,
Proc. Am. Math. Soc., 123 (1995), 735–737. https://doi.org/10.2307/2160793

30. J. C. Marcos, A. Rodrı́guez-Palacios, M. V. Velasco, A note on topological divisors of zero
and division algebras, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat., 109 (2015), 93–100.
https://doi.org/10.1007/s13398-014-0168-4
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