Liquid crystals are a typical type of soft matter that are intermediate between conventional crystalline solids and isotropic fluids. The nematic phase is the simplest liquid crystal phase, and has been studied the most in the mathematical community. There are various continuum models to describe liquid crystals of nematic type, and $ Q $-tensor theory is one among them. The aim of this paper is to give a brief review of recent PDE results regarding the $ Q $-tensor theory in dynamic configurations.
Citation: Xiang Xu. Recent analytic development of the dynamic $ Q $-tensor theory for nematic liquid crystals[J]. Electronic Research Archive, 2022, 30(6): 2220-2246. doi: 10.3934/era.2022113
Liquid crystals are a typical type of soft matter that are intermediate between conventional crystalline solids and isotropic fluids. The nematic phase is the simplest liquid crystal phase, and has been studied the most in the mathematical community. There are various continuum models to describe liquid crystals of nematic type, and $ Q $-tensor theory is one among them. The aim of this paper is to give a brief review of recent PDE results regarding the $ Q $-tensor theory in dynamic configurations.
[1] | S. Chandrasekhar, Liquid Crystals, Cambridge U. Press, Cambridge, 1977. |
[2] | P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Oxford Science Publications, Oxford, 1993. |
[3] | J. Ericksen, Liquid crystals with variable degree of orientation, Arch Rational Mech. Anal., 113 (1990), 97–120. https://doi.org/10.1007/BF00380413 doi: 10.1007/BF00380413 |
[4] | E. Virga, Variational Theories for Liquid Crystals, Applied Mathematics and Mathematical Computation, 8, Chapman & Hall, London, 1994. https://doi.org/10.1007/978-1-4899-2867-2 |
[5] | F. C. Frank, On the theory of liquid crystals, Discuss. Faraday Soc., 25 (1958), 19–28. |
[6] | N. J. Mottram, J. P. Newton, Introduction to Q-tensor theory, arXiv preprint, arXiv: 1409.3542, 2014. |
[7] | R. Hardt, D. Kinderlehrer, F. H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys., 105 (1986), 547–570. https://doi.org/10.1007/BF01238933 doi: 10.1007/BF01238933 |
[8] | O. Alper, R. Hardt, F. H. Lin, Defects of liquid crystals with variable degree of orientation, Calc. Var. Partial Dif., 56 (2017), Paper No. 128. https://doi.org/10.1007/s00526-017-1218-5 doi: 10.1007/s00526-017-1218-5 |
[9] | F. H. Lin, On nematic liquid crystals with variable degree of orientation, Comm. Pure Appl. Math., 44 (1991), 453–468. https://doi.org/10.1002/cpa.3160440404 doi: 10.1002/cpa.3160440404 |
[10] | J. Ball, Mathematics of liquid crystals, Cambridge Centre for Analysis short course, (2012), 13–17. |
[11] | A. Zarnescu, Topics in the Q-tensor theory of liquid crystals, Topics in mathematical modeling and analysis, 187–252, Jindrich Necas Cent. Math. Model. Lect. Notes, 7, Matfyzpress, Prague, 2012. |
[12] | M. Paicu, A. Zarnescu, Global existence and regularity for the full coupled Navier-Stokes and Q-tensor system, SIAM J. Math. Anal., 43 (2011), 2009–2049. https://doi.org/10.1137/10079224X doi: 10.1137/10079224X |
[13] | M. Paicu, A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system, Arch. Ration. Mech. Anal., 203 (2012), 45–67. https://doi.org/10.1007/s00205-011-0443-x doi: 10.1007/s00205-011-0443-x |
[14] | A. N. Beris, B. J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, Oxford Engineerin Science Series, No. 36, Oxford university Press, Oxford, New York, 1994. |
[15] | F. De Anna, A global 2D well-posedness result on the order tensor liquid crystal theory, J. Differ. Equ., 262 (2017), 3932–3979. https://doi.org/10.1016/j.jde.2016.12.006 doi: 10.1016/j.jde.2016.12.006 |
[16] | M. M. Dai, E. Feireisl, E. Rocca, G. Schimperna, M. Schonbek, On asymptotic isotropy for a hydrodynamic model of liquid crystals, Asymptot. Anal., 97 (2016), 189–210. https://doi.org/10.3233/ASY-151348 doi: 10.3233/ASY-151348 |
[17] | H. R. Du, X. P. Hu, C. Y. Wang, Suitable weak solutions for the co-rotational Beris-Edwards system in dimension three, Arch. Ration. Mech. Anal., 238 (2020), 749–803. https://doi.org/10.1007/s00205-020-01554-y doi: 10.1007/s00205-020-01554-y |
[18] | F. Guillén-González, M. A. Rodríguez-Bellido, Weak solutions for an initial-boundary Q-tensor problem related to liquid crystals, Nonlinear Anal., 112 (2015), 84–104. https://doi.org/10.1016/j.na.2014.09.011 doi: 10.1016/j.na.2014.09.011 |
[19] | H. Abels, G. Dolzmann, Y. N. Liu, Strong solutions for the Beris–Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions, Adv. Differ. Equ., 21 (2016), 109–152. |
[20] | F. Guillén-González, M. A. Rodríguez-Bellido, Weak time regularity and uniqueness for a Q-tensor model, SIAM J. Math. Anal., 46 (2014), 3540–3567. https://doi.org/10.1137/13095015X doi: 10.1137/13095015X |
[21] | F. De Anna, A. Zarnescu, Uniqueness of weak solutions of the full coupled Navier–Stokes and Q-tensor system in 2D, Commun. Math. Sci., 14 (2016), 2127–2178. https://doi.org/10.4310/CMS.2016.v14.n8.a3 doi: 10.4310/CMS.2016.v14.n8.a3 |
[22] | C. Cavaterra, E. Rocca, H. Wu, X. Xu, Global strong solutions of the full Navier–Stokes and Q-tensor system for nematic liquid crystal flows in two dimensions, SIAM J. Math. Anal., 48 (2016), 1368–1399. https://doi.org/10.1137/15M1048550 doi: 10.1137/15M1048550 |
[23] | H. Abels, G. Dolzmann, Y. N. Liu, Well-posedness of a fully coupled Navier–Stokes/Q-tensor system with inhomogeneous boundary data, SIAM J. Math. Anal., 46 (2014), 3050–3077. https://doi.org/10.1137/130945405 doi: 10.1137/130945405 |
[24] | J. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 22–34. https://doi.org/10.1122/1.548883 doi: 10.1122/1.548883 |
[25] | F. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265–283. https://doi.org/10.1007/BF00251810 doi: 10.1007/BF00251810 |
[26] | W. Wang, P. W. Zhang, Z. F. Zhang, Rigorous derivation from Landau–de Gennes theory to Ericksen–Leslie theory, SIAM J. Math. Anal., 47 (2015), 127–158. https://doi.org/10.1137/13093529X doi: 10.1137/13093529X |
[27] | F. H. Lin, C. Y. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130361. https://doi.org/10.1098/rsta.2013.0361 doi: 10.1098/rsta.2013.0361 |
[28] | G. Iyer, X. Xu, A. Zarnescu, Dynamic cubic instability in a 2D Q-tensor model for liquid crystals, Math. Mod. Methods Appl. Sci., 25 (2015), 1477–1517. https://doi.org/10.1142/S0218202515500396 doi: 10.1142/S0218202515500396 |
[29] | H. Wu, X. Xu, A. Zarnescu, Dynamics and flow effects in the Beris-Edwards system modelling nematic liquid crystals, Arch. Rational Mech. Anal., 231 (2019), 1217–1267. https://doi.org/10.1007/s00205-018-1297-2 doi: 10.1007/s00205-018-1297-2 |
[30] | A. Contreras, X. Xu, W. J. Zhang, An elementary proof of eigenvalue preservation for the co-rotational Beris-Edwards system, J. Nonlinear Sci., 29 (2019), 789–801. https://doi.org/10.1007/s00332-018-9503-9 doi: 10.1007/s00332-018-9503-9 |
[31] | A. C. Murza, A. E. Teruel, A. Zarnescu, Shear flow dynamics in the Beris-Edwards model of nematic liquid crystals, Proc. R. Soc. A, 474 (2018), 20170673. https://doi.org/10.1098/rspa.2017.0673 doi: 10.1098/rspa.2017.0673 |
[32] | T. Qian, P. Sheng, Generalized hydrodynamic equations for nematic liquid crystals, Phys. Rev. E, 58 (1998), 7475. https://doi.org/10.1103/PhysRevE.58.7475 doi: 10.1103/PhysRevE.58.7475 |
[33] | F. Leslie, Theory of flow phenomena in liquid crystals, Adv. Liquid Crystals, 4 (1979), 1–81. https://doi.org/10.1016/B978-0-12-025004-2.50008-9 doi: 10.1016/B978-0-12-025004-2.50008-9 |
[34] | S. R. Li, W. Wang, Rigorous justification of the uniaxial limit from the Qian-Sheng inertial Q-tensor theory to the Ericksen-Leslie theory, SIAM J. Math. Anal., 52 (2020), 4421–4468. https://doi.org/10.1137/19M129200X doi: 10.1137/19M129200X |
[35] | F. De Anna, A. Zarnescu, Global well-posedness and twist-wave solutions for the inertial Qian-Sheng model of liquid crystals, J. Differ. Equ., 264 (2018), 1080–1118. |
[36] | J. Ericksen, Twisted waves in liquid crystals, Q. J. Mech. Appl. Math., 21 (1968), 463–465. https://doi.org/10.1093/qjmam/21.4.463 doi: 10.1093/qjmam/21.4.463 |
[37] | N. Jiang, Y. L. Luo, Y. Ma, S. J. Tang, Entropy inequality and energy dissipation of inertial Qian-Sheng model for nematic liquid crystals, J. Hyperbolic Differ. Equ., 18 (2021), 221–256. https://doi.org/10.1142/S0219891621500065 doi: 10.1142/S0219891621500065 |
[38] | E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu, On a hyperbolic system arising in liquid crystals modeling, J. Hyperbolic Differ. Equ., 15 (2018), 15–35. https://doi.org/10.1142/S0219891618500029 doi: 10.1142/S0219891618500029 |
[39] | G. Chen, T. Huang, W. S. Liu, Poiseuille flow of nematic liquid crystals via the full Ericksen-Leslie model, Arch. Ration. Mech. Anal., 236 (2020), 839–891. https://doi.org/10.1007/s00205-019-01484-4 doi: 10.1007/s00205-019-01484-4 |
[40] | M. W. Fei, W. Wang, P. W. Zhang, Z. F. Zhang, On the isotropic-nematic phase transition for the liquid crystal, Peking Math. J., 1 (2018), 141–219. https://doi.org/10.1007/s42543-018-0005-3 doi: 10.1007/s42543-018-0005-3 |
[41] | T. Laux, Y. N. Liu, Nematic-Isotropic Phase Transition in Liquid Crystals: A Variational Derivation of Effective Geometric Motions, Arch. Ration. Mech. Anal., 241 (2021), 1785–1814. https://doi.org/10.1007/s00205-021-01681-0 doi: 10.1007/s00205-021-01681-0 |
[42] | Y. Y. Cai, J. Shen, X. Xu, A stable scheme and its convergence analysis for a $2D$ dynamic $Q$-tensor model of nematic liquid crystals, Math. Mod. Methods Appl. Sci., 27 (2017), 1459–1488. https://doi.org/10.1142/S0218202517500245 doi: 10.1142/S0218202517500245 |
[43] | J. Ball, Analysis of liquid crystals and their defects, Lecture notes of the Scuola Estiva GNFM, Ravello 17–22 Sep. 2018. |
[44] | J. Ball, A. Majumdar, Nematic liquid crystals: from Maier-Saupe to a continuum theory, Mol. Cryst. Liq. Cryst., 525 (2010), 1–11. https://doi.org/10.1080/15421401003795555 doi: 10.1080/15421401003795555 |
[45] | J. Ball, A. Majumdar, Passage from the mean-field Maier-Saupe to the continuum Landau-de Gennes theory for nematic liquid crystals, work in progress. |
[46] | J. Ball, A. Zarnescu, Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., 202 (2011), 493–535. https://doi.org/10.1007/s00205-011-0421-3 doi: 10.1007/s00205-011-0421-3 |
[47] | P. Bauman, D. Phillips, Regularity and the behavior of eigenvalues for minimizers of a constrained Q-tensor energy for liquid crystals, Calc. Var. Partial Dif., 55 (2016), 55–81. https://doi.org/10.1007/s00526-016-1009-4 doi: 10.1007/s00526-016-1009-4 |
[48] | X. F. Chen, X. Xu, Existence and uniqueness of global classical solutions of a gradient flow of the Landau–de Gennes energy, Proc. Amer. Math. Soc., 144 (2016), 1251–1263. https://doi.org/10.1090/proc/12803 doi: 10.1090/proc/12803 |
[49] | T. A. Davis, E. C. Gartland, Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals, SIAM J. Numer. Anal., 35 (1998), 336–362. https://doi.org/10.1137/S0036142996297448 doi: 10.1137/S0036142996297448 |
[50] | L. C. Evans, O. Kneuss, H. Tran, Partial regularity for minimizers of singular energy functionals, with application to liquid crystal models, Trans. Amer. Math. Soc., 368 (2016), 3389–3413. |
[51] | E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu, Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Commun. Math. Sci., 12 (2014), 317–343. https://doi.org/10.4310/CMS.2014.v12.n2.a6 doi: 10.4310/CMS.2014.v12.n2.a6 |
[52] | E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu, Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy, Ann. di Mat. Pura ed Appl., 194 (2015), 1269–1299. https://doi.org/10.1007/s10231-014-0419-1 doi: 10.1007/s10231-014-0419-1 |
[53] | Z. Y. Geng, J. J. Tong, Regularity of minimizers of a tensor-valued variational obstacle problem in three dimensions, Calc. Var., 59 (2020), Paper No. 57. https://doi.org/10.1007/s00526-020-1717-7 doi: 10.1007/s00526-020-1717-7 |
[54] | J. R. Huang, S. J. Ding, Global well-posedness for the dynamical Q-tensor model of liquid crystals, Sci. China Math., 58 (2015), 1349–1366. https://doi.org/10.1007/s11425-015-4990-8 doi: 10.1007/s11425-015-4990-8 |
[55] | T. Huang, N. Zhao, On the regularity of weak small solution of a gradient flow of the Landau–de Gennes energy, Proc. Amer. Math. Soc., 147 (2019), 1687–1698. https://doi.org/10.1090/proc/14337 doi: 10.1090/proc/14337 |
[56] | J. Katriel, G. Kventsel, G. Luckhurst, T. Sluckin, Free energies in the Landau and molecular field approaches, Liq. Cryst., 1 (1986), 337–355. https://doi.org/10.1080/02678298608086667 doi: 10.1080/02678298608086667 |
[57] | G. Kitavtsev, J. M. Robbins, V. Slastikov, A. Zarnescu, Liquid crystal defects in the Landau-de Gennes theory in two dimensions-beyond the one-constant approximation, Math. Mod. Methods Appl. Sci., 26 (2016), 2769–2808. https://doi.org/10.1142/S0218202516500664 doi: 10.1142/S0218202516500664 |
[58] | F. H. Lin, C. Poon, On Ericksen's model for liquid crystals, J. Geom. Anal., 4 (1994), 379–392. https://doi.org/10.1007/BF02921587 doi: 10.1007/BF02921587 |
[59] | J. Y. Lin, C. Zhou, Existence of solutions to the biaxial nematic liquid crystals with two order parameter tensors, Math. Methods Appl. Sci., 43 (2020), 6430–6453. https://doi.org/10.1002/mma.6387 doi: 10.1002/mma.6387 |
[60] | Y. N. Liu, X. Y. Lu, X. Xu, Regularity of a gradient flow generated by the anisotropic Landau-de Gennes energy with a singular potential, SIAM J. Math. Anal., 53 (2021), 3338–3365. https://doi.org/10.1137/20M1386499 doi: 10.1137/20M1386499 |
[61] | Y. N. Liu, W. Wang, On the initial boundary value problem of a Navier-Stokes/Q-tensor model for liquid crystals, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3879–3899. https://doi.org/10.3934/dcdsb.2018115 doi: 10.3934/dcdsb.2018115 |
[62] | Y. N. Liu, H. Wu, X. Xu, Global well-posedness of the two dimensional Beris-Edwards system with general Laudau-de Gennes free energy, J. Differ. Equ., 267 (2019), 6958–7001. https://doi.org/10.1016/j.jde.2019.07.010 doi: 10.1016/j.jde.2019.07.010 |
[63] | X. Y. Lu, X. Xu, W. J. Zhang, Blowup rate estimates of a singular potential and its gradient in the Landau-de Gennes theory, Journal of Nonlinear Sci., 32 (2022), 1–30. https://doi.org/10.1007/s00332-021-09761-x doi: 10.1007/s00332-021-09761-x |
[64] | W. Maier, A. Saupe, A simple molecular statistical theory of the nematic crystalline-liquid phase, I Z Naturf. a, 14 (1959), 882–889. |
[65] | A. Majumdar, A. Zarnescu, Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond, Arch. Ration. Mech. Anal., 196 (2010), 227–280. https://doi.org/10.1007/s00205-009-0249-2 doi: 10.1007/s00205-009-0249-2 |
[66] | C. D. Schimming, J. Vinals, S. W. Walker, Numerical method for the equilibrium configurations of a Maier-Saupe bulk potential in a Q-tensor model of an anisotropic nematic liquid crystal, J. Comput. Phys., 441 (2021), Paper No. 110441. https://doi.org/10.1016/j.jcp.2021.110441 doi: 10.1016/j.jcp.2021.110441 |
[67] | M. Wilkinson, Strict physicality of global weak solutions of a Navier-Stokes Q-tensor system with singular potential, Arch. Ration. Mech. Anal., 218 (2015), 487–526. https://doi.org/10.1007/s00205-015-0864-z doi: 10.1007/s00205-015-0864-z |
[68] | A. Zarnescu, Mathematical problems of nematic liquid crystals: between dynamical and stationary problems, Trans. R. Soc. Lond. Ser. A., 379 (2021), Paper No. 20200432. https://doi.org/10.1098/rsta.2020.0432 doi: 10.1098/rsta.2020.0432 |