Based on the binary product described by any Latin square, the Hadamard quasigroup product is introduced in this paper as a natural generalization of the classical Hadamard product of matrices. The successive iteration of this new product is endowed with a cyclic behaviour that enables one to define a pair of new isomorphism invariants of Latin squares. Of particular interest is the set of Latin squares for which this iteration preserves the Latin square property, which requires the existence of successive localized Latin transversals within the Latin square under consideration. In order to enumerate and classify, up to isomorphism, these Latin squares, we propose a computational algebraic geometry approach based on the computation of reduced Gröbner bases. To illustrate this point, we obtain the classification of the sought Latin squares, for order up to six, by using the open computer algebra system for polynomial computations Singular.
Citation: Raúl M. Falcón, Víctor Álvarez, José Andrés Armario, María Dolores Frau, Félix Gudiel, María Belén Güemes. A computational approach to analyze the Hadamard quasigroup product[J]. Electronic Research Archive, 2023, 31(6): 3245-3263. doi: 10.3934/era.2023164
Based on the binary product described by any Latin square, the Hadamard quasigroup product is introduced in this paper as a natural generalization of the classical Hadamard product of matrices. The successive iteration of this new product is endowed with a cyclic behaviour that enables one to define a pair of new isomorphism invariants of Latin squares. Of particular interest is the set of Latin squares for which this iteration preserves the Latin square property, which requires the existence of successive localized Latin transversals within the Latin square under consideration. In order to enumerate and classify, up to isomorphism, these Latin squares, we propose a computational algebraic geometry approach based on the computation of reduced Gröbner bases. To illustrate this point, we obtain the classification of the sought Latin squares, for order up to six, by using the open computer algebra system for polynomial computations Singular.
[1] | G. Kolesova, C. W. H. Lam, L. Thiel, On the number of $8\times 8$ Latin squares, J. Comb. Theory Ser. A, 54 (1990), 143–148. https://doi.org/10.1016/0097-3165(90)90015-O doi: 10.1016/0097-3165(90)90015-O |
[2] | A. Hulpke, P. Kaski, P. R. J. Östergård, The number of Latin squares of order 11, Math. Comput., 80 (2011), 1197–1219. https://doi.org/10.1090/S0025-5718-2010-02420-2 doi: 10.1090/S0025-5718-2010-02420-2 |
[3] | B. D. McKay, A. Meynert, W. Myrvold, Small Latin squares, quasigroups, and loops, J. Comb. Des., 15 (2007), 98–119. https://doi.org/10.1002/jcd.20105 doi: 10.1002/jcd.20105 |
[4] | R. M. Falcón, R. J. Stones, Enumerating partial Latin rectangles, Electron. J. Comb. 27 (2020), P2.47. https://doi.org/10.37236/9093 |
[5] | B. D. McKay, I. M. Wanless, Enumeration of Latin squares with conjugate symmetry, J. Comb. Des., 30 (2022), 105–130. https://doi.org/10.1002/jcd.21814 doi: 10.1002/jcd.21814 |
[6] | M. K. Kinyon, J. D. H. Smith, P. Vojtěchovský, Sylow theory for quasigroups Ⅱ: Sectional action, J. Comb. Des. 25 (2017), 159–184. https://doi.org/10.1002/jcd.21535 doi: 10.1002/jcd.21535 |
[7] | R. M. Falcón, Recognition and analysis of image patterns based on Latin squares by means of Computational Algebraic Geometry, Mathematics, 9 (2021), 666. https://doi.org/10.3390/math9060666 doi: 10.3390/math9060666 |
[8] | R. M. Falcón, A new quasigroup isomorphism invariant arising from fractal image patterns, Quasigroups Relat. Syst., 1 (2022), 81–90. Available from: https://ibn.idsi.md/vizualizare_articol/157488. |
[9] | R. M. Falcón, V. Álvarez, F. Gudiel, A computational algebraic geometry approach to analyze pseudo-random sequences based on Latin squares, Adv. Comput. Math., 45 (2019), 1769–1792. https://doi.org/10.1007/s10444-018-9654-0 doi: 10.1007/s10444-018-9654-0 |
[10] | J. D. H. Smith, S. G. Wang, Isomorphism invariants for linear quasigroups, Sao Palo J. Math. Sci., 14 (2020), 152–164. https://doi.org/10.1007/s40863-019-00130-x doi: 10.1007/s40863-019-00130-x |
[11] | W. Decker, G.M. Greuel, G. Pfister, H. Schonemann, Singular 4-3-1, A computer algebra system for polynomial computations, 2023. Available from: http://www.singular.uni-kl.de. |
[12] | A. D. Keedwell, J. Dénes, Latin Squares and Their Applications, 2$^{nd}$ edition, Elsevier/North-Holland, Amsterdam, 2015. |
[13] | M. Kreuzer, L. Robbiano, Computational Commutative Algebra 1, Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/978-3-540-70628-1 |
[14] | A. Hashemi, D. Lazard, Sharper complexity bounds for zero-dimensional Grobner bases and polynomial system solving, Int. J. Algebra Comput., 21 (2011), 703–713. https://doi.org/10.1142/S0218196711006364 doi: 10.1142/S0218196711006364 |
[15] | Y. N. Lakshman, On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal, in STOC '90: Proceedings of the twenty-second annual ACM symposium on Theory of Computing, ACM, New York, (1990), 555–563. https://doi.org/10.1145/100216.100294 |
[16] | J. Gago-Vargas, I. Hartillo, J. Martí n-Morales, J. M. Ucha-Enríquez, Sudokus and Gröbner bases: Not only a divertimento, in CASC 2006: Computer Algebra in Scientific Computing, (2006), 155–165. https://doi.org/10.1007/11870814_13 |
[17] | R. M. Falcón, J. Martín-Morales, Gröbner bases and the number of Latin squares related to autotopisms of order $\leq 7$, J. Symb. Comput., 42 (2007), 1142–1154. https://doi.org/10.1016/j.jsc.2007.07.004 doi: 10.1016/j.jsc.2007.07.004 |
era-31-06-164-s001.zip |