Research article

Eventual smoothness of generalized solutions to a singular chemotaxis system for urban crime in space dimension 2


  • Received: 08 February 2023 Revised: 15 March 2023 Accepted: 20 March 2023 Published: 28 March 2023
  • This paper is concerned with a chemotaxis system in a two-dimensional setting as follows:

    $ \begin{equation*} \left\{ \begin{split} &u_t = \Delta u-\chi\nabla\cdot\left(u\nabla\ln v\right)-\kappa uv+ru-\mu u^2+ h_1, \\ &v_t = \Delta v- v+ uv+h_2, \end{split} \right. \end{equation*} $

    with the parameters $ \chi, \kappa, \mu > 0 $ and $ r\in \mathbb R $, and with the given functions $ h_1, h_2\geq0 $. This model was originally introduced by Short et al for urban crime with the particular values $ \chi = 2, r = 0 $ and $ \mu = 0 $, and the logistic source term $ ru-\mu u^2 $ was incorporated into ($ \star $) by Heihoff to describe the fierce competition among criminals. Heihoff also proved that the initial-boundary value problem of ($ \star $) possesses a global generalized solution in the two-dimensional setting. The main purpose of this paper is to show that such a generalized solution becomes bounded and smooth at least eventually. In addition, the long-time asymptotic behavior of such a solution is discussed.

    Citation: Zixuan Qiu, Bin Li. Eventual smoothness of generalized solutions to a singular chemotaxis system for urban crime in space dimension 2[J]. Electronic Research Archive, 2023, 31(6): 3218-3244. doi: 10.3934/era.2023163

    Related Papers:

  • This paper is concerned with a chemotaxis system in a two-dimensional setting as follows:

    $ \begin{equation*} \left\{ \begin{split} &u_t = \Delta u-\chi\nabla\cdot\left(u\nabla\ln v\right)-\kappa uv+ru-\mu u^2+ h_1, \\ &v_t = \Delta v- v+ uv+h_2, \end{split} \right. \end{equation*} $

    with the parameters $ \chi, \kappa, \mu > 0 $ and $ r\in \mathbb R $, and with the given functions $ h_1, h_2\geq0 $. This model was originally introduced by Short et al for urban crime with the particular values $ \chi = 2, r = 0 $ and $ \mu = 0 $, and the logistic source term $ ru-\mu u^2 $ was incorporated into ($ \star $) by Heihoff to describe the fierce competition among criminals. Heihoff also proved that the initial-boundary value problem of ($ \star $) possesses a global generalized solution in the two-dimensional setting. The main purpose of this paper is to show that such a generalized solution becomes bounded and smooth at least eventually. In addition, the long-time asymptotic behavior of such a solution is discussed.



    加载中


    [1] M. Short, M. Drsogna, V. Pasour, G. Tita, P. Brantingham, A. Bertozzi, et al., A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18 (2008), 1249–1267. https://doi.org/10.1142/S0218202508003029 doi: 10.1142/S0218202508003029
    [2] M. Short, A. Bertozzi, P. Brantingham, G. Tita, Dissipation and displacement of hotspots in reaction-diffusion model of crime, Proc. Natl. Acad. Sci. USA, 107 (2010), 3961–3965. https://doi.org/0.1073/pnas.0910921107 doi: 10.1073/pnas.0910921107
    [3] F. Heihoff, Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term, Z. Für Angew. Math. Phys., 71 (2020), 80. https://doi.org/10.1007/s00033-020-01304-w doi: 10.1007/s00033-020-01304-w
    [4] N. Bellomo, F. Colasuonno, D. Knopoff, J. Soler, From a systems theory of sociology to modeling the onset and evolution of criminality, Networks Heterog. Media, 10 (2015), 421–441. https://doi.org/10.3934/nhm.2015.10.421 doi: 10.3934/nhm.2015.10.421
    [5] H. Berestycki, J. Nadal, Self-organised critical hot spots of criminal activity, Eur. J. Appl. Math., 21 (2010), 371–399. https://doi.org/10.1017/S0956792510000185 doi: 10.1017/S0956792510000185
    [6] Y. Gu, Q. Wang, G. Yi, Stationary patterns and their selection mechanism of urban crime models with heterogeneous near-repeat victimization effect, Eur. J. Appl. Math., 28 (2017), 141–178. https://doi.org/10.1017/S0956792516000206 doi: 10.1017/S0956792516000206
    [7] A. Pitcher, Adding police to a mathematical model of burglary, Eur. J. Appl. Math., 21 (2010), 401–419. https://doi.org/10.1017/S0956792510000112 doi: 10.1017/S0956792510000112
    [8] M. Short, G. Mohler, P. Brantingham, G. Tita, Gang rivalry dynamics via coupled point process networks, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1459–1477. https://doi.org/10.3934/dcdsb.2014.19.1459 doi: 10.3934/dcdsb.2014.19.1459
    [9] W. Tse, M. Ward, Asynchronous instabilities of crime hotspots for a 1-D reaction-diffusion model of urban crime with focused police patrol, SIAM J. Appl. Dyn. Syst., 17 (2018), 2018–2075. https://doi.org/10.1137/17M1162585 doi: 10.1137/17M1162585
    [10] J. Zipkin, M. Short, A. Bertozzi, Cops on the dots in a mathematical model of urban crime and police response, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1479–1506. https://doi.org/10.3934/dcdsb.2014.19.1479 doi: 10.3934/dcdsb.2014.19.1479
    [11] N. Bellomo, N. Outada, J. Soler, Y. Tao, M. Winkler, Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision, Math. Models Methods Appl. Sci., 32 (2022), 713–792. https://doi.org/10.1142/S0218202522500166 doi: 10.1142/S0218202522500166
    [12] M. D'Orsogna, M. Perc, Statistical physics of crime: a review, Phys. Life Rev., 12 (2015), 1–21. https://doi.org/10.1016/j.plrev.2014.11.001 doi: 10.1016/j.plrev.2014.11.001
    [13] N. Rodríguez, A. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior, Math. Models Methods Appl. Sci., 20 (2010), 1425–1457. https://doi.org/10.1142/S0218202510004696 doi: 10.1142/S0218202510004696
    [14] N. Rodríguez, M. Winkler, On the global existence and qualitative behavior of one-dimensional solutions to a model for urban crime, Eur. J. Appl. Math., 33 (2022), 919–959. https://doi.org/10.1017/S0956792521000279 doi: 10.1017/S0956792521000279
    [15] Q. Wang, D. Wang, Y. Feng, Global well-posedness and uniform boundedness of urban crime models: One-dimensional case, J. Differ. Equations, 269 (2020), 6216–6235. https://doi.org/10.1016/j.jde.2020.04.035 doi: 10.1016/j.jde.2020.04.035
    [16] M. Freitag, Global solutions to a higher-dimensional system related to crime modeling, Math. Meth. Appl. Sci., 41 (2018), 6326–6335. https://doi.org/10.1002/mma.5141 doi: 10.1002/mma.5141
    [17] J. Shen, B. Li, Mathematical analysis of a continuous version of statistical models for criminal behavior, Math. Meth. Appl. Sci., 43 (2020), 409–426. https://doi.org/10.1002/mma.5898 doi: 10.1002/mma.5898
    [18] J. Ahn, K. Kang, J. Lee, Global well-posedness of logarithmic Keller-Segel type systems, J. Differ. Equations, 287 (2021), 185–211. https://doi.org/10.1016/j.jde.2021.03.053 doi: 10.1016/j.jde.2021.03.053
    [19] Y. Tao, M. Winkler, Global smooth solutions in a two-dimensional cross-diffusion system modeling propagation of urban crime, Commun. Math. Sci., 19 (2021), 829–849. https://doi.org/10.4310/CMS.2021.v19.n3.a12 doi: 10.4310/CMS.2021.v19.n3.a12
    [20] M. Winkler, Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 36 (2019), 1747–1790. https://doi.org/10.1016/j.anihpc.2019.02.004 doi: 10.1016/j.anihpc.2019.02.004
    [21] Y. Jiang, L. Yang, Global solvability and stabilization in a three-dimensional cross-diffusion system modeling urban crime propagation, Acta Appl. Math., 178 (2022), 11. https://doi.org/10.1007/s10440-022-00484-z doi: 10.1007/s10440-022-00484-z
    [22] B. Li, L. Xie, Generalized solution to a 2D parabolic-parabolic chemotaxis system for urban crime: Global existence and large time behavior, submitted for publication, 2022.
    [23] N. Rodríguez, M. Winkler, Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation, Math. Models Methods Appl. Sci., 30 (2020), 2105–2137. https://doi.org/10.1142/S0218202520500396 doi: 10.1142/S0218202520500396
    [24] L. Yang, X. Yang, Global existence in a two-dimensional nonlinear diffusion model for urban crime propagation, Nonliear Anal., 224 (2022), 113086. https://doi.org/10.1016/j.na.2022.113086 doi: 10.1016/j.na.2022.113086
    [25] M. Fuest, F. Heihoff, Unboundedness phenomenon in a reduced model of urban crime, preprint, arXiv: 2109.01016.
    [26] B. Li, L. Xie, Global large-data generalized solutions to a two-dimensional chemotaxis system stemming from crime modelling, Discrete Contin. Dyn. Syst. Ser. B, 2022. https://doi.org/10.3934/dcdsb.2022167
    [27] B. Li, Z. Wang, L. Xie, Regularization effect of the mixed-type damping in a higher-dimensional logarithmic Keller-Segel system related to crime modeling, Math. Biosci. Eng., 24 (2023), 4532–4559. https://doi.org/10.3934/mbe.2023210 doi: 10.3934/mbe.2023210
    [28] R. Manásevich, Q. Phan, P. Souplet, Global existence of solutions for a chemotaxis-type system arising in crime modelling, Eur. J. Appl. Math., 24 (2013), 273–296. https://doi.org/10.1017/S095679251200040X doi: 10.1017/S095679251200040X
    [29] N. Rodríguez, On the global well-posedness theory for a class of PDE models for criminal activity, Phys. D Nonlinear Phenom., 260 (2013), 191–200. https://doi.org/10.1016/j.physd.2012.08.003 doi: 10.1016/j.physd.2012.08.003
    [30] D. Wang, Y. Feng, Global well-posedness and uniform boundedness of a higher dimensional crime model with a logistic source term, Math. Meth. Appl. Sci., 45 (2022), 4727–4740. https://doi.org/10.1002/mma.8066 doi: 10.1002/mma.8066
    [31] T. Black, Eventual smoothness of generalized solutions to a singular chemotaxis-Stokes system in 2D, J. Differ. Equations, 265 (2018), 2296–2339. https://doi.org/10.1016/j.jde.2018.04.035 doi: 10.1016/j.jde.2018.04.035
    [32] T. Black, C. Wu, Prescribed signal concentration on the boundary: eventual smoothness in a chemotaxis-Navier-Stokes system with logistic proliferation, Calc. Var., 61 (2022), 96. https://doi.org/10.1007/s00526-022-02201-y doi: 10.1007/s00526-022-02201-y
    [33] M. Ding, J. Lankeit, Generalized solutions to a chemotaxis-Navier-Stokes system with arbitrary superlinear degradation, SIAM J. Math. Anal., 54 (2022), 1022–1052. https://doi.org/10.1137/21M140907X doi: 10.1137/21M140907X
    [34] Y. Tao, M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equations, 252 (2012), 2520–2543. https://doi.org/10.1016/j.jde.2011.07.010 doi: 10.1016/j.jde.2011.07.010
    [35] B. Li, L. Xie, Generalized solution and eventual smoothness in a logarithmic Keller-Segel system for criminal activities, Math. Models Methods Appl. Sci., 2023. https://doi.org/10.1142/S0218202523500306
    [36] M. Aida, K. Osaka, T. Tsujikawa, M. Mimura, Chemotaxis and growth system with sigular sensitivity function, Nonliear Anal. Real Word Appl., 6 (2005), 323–336. https://doi.org/10.1016/j.nonrwa.2004.08.011 doi: 10.1016/j.nonrwa.2004.08.011
    [37] M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176–190. https://doi.org/10.1002/mma.1346 doi: 10.1002/mma.1346
    [38] T. Xiang, Finite time blow-up in the higher dimensional parabolic-elliptic-ODE minimal chemotaxis-haptotaxis system, J. Differ. Equations, 336 (2022), 44–72. https://doi.org/10.1016/j.jde.2022.07.015 doi: 10.1016/j.jde.2022.07.015
    [39] T. Hillen, K. Painter, M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci., 23 (2013), 165–198. https://doi.org/10.1142/S0218202512500480 doi: 10.1142/S0218202512500480
    [40] O. Ladyzhenskaya, N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968.
    [41] N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X
    [42] T. Xiang, Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/with-out growth source, J. Differ. Equations, 258 (2015), 4275–4323. https://doi.org/10.1016/j.jde.2015.01.032 doi: 10.1016/j.jde.2015.01.032
    [43] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equations, 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008
    [44] X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891–1904. https://doi.org/10.3934/dcds.2015.35.1891 doi: 10.3934/dcds.2015.35.1891
    [45] O. Ladyzhenskaya, V. Solonnikov, N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I., 1968.
    [46] M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092–3115. https://doi.org/dx.doi.org/10.1137/140979708 doi: 10.1137/140979708
    [47] K. Fujie, A. Ito, M. Winkler, T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151–169. https://doi.org/10.3934/dcds.2016.36.151 doi: 10.3934/dcds.2016.36.151
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1185) PDF downloads(77) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog