Research article

Oscillatory solutions and smoothing of a higher-order p-Laplacian operator


  • Received: 22 May 2022 Revised: 14 July 2022 Accepted: 15 July 2022 Published: 28 July 2022
  • The goal of this paper was to provide a general analysis of the solutions to a higher-order p-Laplacian operator with nonlinear advection. Generally speaking, it is well known that any solution to a higher-order operator exhibits oscillations. In the present study, an advection term is introduced. This will allow us to analyze smoothing conditions in the solutions. The study of existence and uniqueness is based on a variational approach. Solutions are analyzed with an energy formulation initially discussed by Saint-Venant and extended in the works by Tikhonov and Täklind. This variational principle is supported by the definition of generalized norms under Hilbert-Sobolev spaces, enabling focus on the oscillating properties of solutions. Afterward, the paper introduces an analysis to characterize the traveling wave kind of solutions together with their characterization to understand the oscillations. Finally, a numerical exploration focuses on the smoothing conditions by the action of the nonlinear advection term. As a main finding to report: There exist a traveling wave speed ($ \lambda $) and an advection coefficient ($ c^* $) for which the profile's first minimum is almost positive, and such positivity holds beyond the first minimum.

    Citation: José Luis Díaz Palencia, Abraham Otero. Oscillatory solutions and smoothing of a higher-order p-Laplacian operator[J]. Electronic Research Archive, 2022, 30(9): 3527-3547. doi: 10.3934/era.2022180

    Related Papers:

  • The goal of this paper was to provide a general analysis of the solutions to a higher-order p-Laplacian operator with nonlinear advection. Generally speaking, it is well known that any solution to a higher-order operator exhibits oscillations. In the present study, an advection term is introduced. This will allow us to analyze smoothing conditions in the solutions. The study of existence and uniqueness is based on a variational approach. Solutions are analyzed with an energy formulation initially discussed by Saint-Venant and extended in the works by Tikhonov and Täklind. This variational principle is supported by the definition of generalized norms under Hilbert-Sobolev spaces, enabling focus on the oscillating properties of solutions. Afterward, the paper introduces an analysis to characterize the traveling wave kind of solutions together with their characterization to understand the oscillations. Finally, a numerical exploration focuses on the smoothing conditions by the action of the nonlinear advection term. As a main finding to report: There exist a traveling wave speed ($ \lambda $) and an advection coefficient ($ c^* $) for which the profile's first minimum is almost positive, and such positivity holds beyond the first minimum.



    加载中


    [1] A. Okubo, S. A. Levin, The basics of diffusion, in diffusion and ecological problems: modern perspectives, Int. Appl. Math., 14 (2001). https://doi.org/10.1007/978-1-4757-4978-6
    [2] D. S. Cohen, J. D. Murray, A generalized diffusion model for growth and dispersal in a population, J. Math. Biol., 12 (1981), 237–249. https://doi.org/10.1007/BF00276132 doi: 10.1007/BF00276132
    [3] E. A. Coutsias, Some Effects of Spatial Nonuniformities in Chemically Reacting Systems, California Institute of Technology, 1980.
    [4] V. Galaktionov, Towards the KPP–problem and log-front shift for higher-order nonlinear PDEs I. Bi-harmonic and other parabolic equations, preprint, arXiv: 1210.3513.
    [5] Y. Egorov, V. Galaktionov, V. Kondratiev, S. Pohozaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range, Adv. Differ. Equation, 9 (2004), 1009–1038.
    [6] J. L. D. Palencia, Analysis of selfsimilar solutions and a comparison principle for an heterogeneous diffusion cooperative system with advection and non-linear reaction, Comput. Appl. Math., 40 (2021), 302. https://doi.org/10.1007/s40314-021-01689-y doi: 10.1007/s40314-021-01689-y
    [7] E. F. Keller, L. A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 30 (1971), 235–248. https://doi.org/10.1016/0022-5193(71)90051-8 doi: 10.1016/0022-5193(71)90051-8
    [8] J. Ahn, C. Yoon, Global well-posedness and stability of constant equilibria in parabolic–elliptic chemotaxis system without gradient sensing, Nonlinearity, 32 (2019), 1327–1351.
    [9] E. Cho, Y. J. Kim, Starvation driven diffusion as a survival strategy of biological organisms, Bull. Math. Biol., 75 (2013), 845–870.
    [10] Y. Tao, M. Winkler, Effects of signal-dependent motilities in a keller–segel-type reactiondiffusion system, Math. Models Methods Appl. Sci., 27 (2017), 1645 https://doi.org/10.1142/S0218202517500282 doi: 10.1142/S0218202517500282
    [11] M. Bhatti, A. Zeeshan, R. Ellahi, O. A. Bég, A. Kadir, Effects of coagulation on the two-phase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium, Chin. J. Phys., 58 (2019), 222–223. https://doi.org/10.1016/j.cjph.2019.02.004. doi: 10.1016/j.cjph.2019.02.004
    [12] R. Ellahi, F. Hussain, F. Ishtiaq, A. Hussain, Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: An application to upgrade industrial sieves/filters, Pramana J. Phys., 93 (2019), 34. https://doi.org/10.1007/s12043-019-1781-8 doi: 10.1007/s12043-019-1781-8
    [13] G. Bognar, Numerical and analytic investigation of some nonlinear problems in fluid mechanics, Comput. Simul. Modern Sci., (2008), 172–179.
    [14] T. Carelman, Problemes Mathematiques Dans la Theorie Cinetique de Gas, AlmquistWiksells, Uppsala, 1957.
    [15] R. Bartnik, J. McKinnon, Particle-like solutions of the Einstein-Yang-Mills equations, Phys. Rev. Lett., 61 (1998), 141–144.
    [16] J. L. Díaz, Non-Lipschitz heterogeneous reaction with a p-Laplacian operator, AIMS Math., 7 (2022), 3395–3417. https://doi.org/10.3934/math.2022189 doi: 10.3934/math.2022189
    [17] S. Zhang, Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. Math. Appl., 59 (2010), 1300–1309, https://doi.org/10.1016/j.camwa.2009.06.034 doi: 10.1016/j.camwa.2009.06.034
    [18] S. Kamin, J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Matemática Iberoamer., 4 (1988), Nº2.
    [19] V. A. Galaktionov, Three types of self-similar blow-up for the fourth order p-Laplacian equation with source, J. Comput. Appl. Math., 223 (2009), 326–355. https://doi.org/10.1016/j.cam.2008.01.027 doi: 10.1016/j.cam.2008.01.027
    [20] A. E. Shishkov, Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations at arbitrary order, Sb. Math., 190 (1999), 1843–1869.
    [21] V. Galaktionov, A. Shishkov, Saint-Venant's principle in blow-up for higher-order quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh, 133 (2003), 1075–1119. https://doi.org/10.1017/S0308210500002821 doi: 10.1017/S0308210500002821
    [22] R. A. Fisher, The advance of advantageous genes, Ann. Eugen., 7 (1937), 355–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x doi: 10.1111/j.1469-1809.1937.tb02153.x
    [23] A. Kolmogoroff, I. Petrovsky, N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem, Dyn. Curved Fronts, (1988), 105–130. https://doi.org/10.1016/B978-0-08-092523-3.50014-9
    [24] D. G. Aronson, Density-dependent interaction-diffusion systems, Dyn. Modell. React. Syst., (1980), 161–176. https://doi.org/10.1016/B978-0-12-669550-2.50010-5
    [25] D. G. Aronson, H. F. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, in Partial Differential Equations and Related Topic, New York, (1975), 5–49. https://doi.org/10.1007/BFb0070595
    [26] D. G. Aronson, H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33–76.
    [27] O. Ladyzhenskaya, Some results on modifications of three-dimensional Navier-Stokes equations, Nonlinear Anal. Continuum Mech., (1998), 73–84.
    [28] V. Rottschäfer, A. Doelman, On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation, Phys. D, 118 (1998), 261–292. https://doi.org/10.1016/S0167-2789(98)00035-9 doi: 10.1016/S0167-2789(98)00035-9
    [29] G. T. Dee, W. V. Sarloos, Bistable systems with propagating fronts leading to pattern formation, Phys. Rev. Lett., 60 (1988). https://doi.org/10.1103/PhysRevLett.60.2641
    [30] L. A. Peletier, W. C. Troy, Spatial patterns: Higher order models in Physics and Mechanics, in Progress in non Linear Differential Equations and Their Applications, Université Pierre et Marie Curie, 2001.
    [31] D. Bonheure, L. Sánchez, Heteroclinics Orbits for some classes of second and fourth order differential equations, Handbook Differ. Equations, 3 (2006), 103–202. https://doi.org/10.1016/S1874-5725(06)80006-4 doi: 10.1016/S1874-5725(06)80006-4
    [32] A. Audrito, J. L. Vázquez, The Fisher–KPP problem with doubly nonlinear "fast" diffusion, Nonlinear Anal., 157 (2017), 212–248. https://doi.org/10.1016/j.na.2017.03.015 doi: 10.1016/j.na.2017.03.015
    [33] O. Rauprich, M. Matsushita, C. J. Weijer, F. Siegert, S. E. Esipov, J. A. Shapiro, Periodic phenomena in proteus mirabilis swarm colony development, J. Bacteriol., 178 (1996), 6525–6538. https://doi.org/10.1128/jb.178.22.6525-6538.1996 doi: 10.1128/jb.178.22.6525-6538.1996
    [34] J. J. Niemela, G. Ahlers, D. S. Cannell, Localized traveling-wave states in binary-fluid convection, Phys. Rev. Lett., 64 (1990), 1365–368. https://doi.org/10.1103/PhysRevLett.64.1365 doi: 10.1103/PhysRevLett.64.1365
    [35] A. C. Durham, E. B. Ridgway, Control of chemotaxis in physarum polycephalum, J. Cell. Biol., 69 (1976), 218–223. https://doi.org/10.1083/jcb.69.1.218 doi: 10.1083/jcb.69.1.218
    [36] W. Strauss, G. Wang, Instabilities of travelling waves of the Kuramoto-Sivashinsky equation, Chin. Ann. Math. B, 23 (2002), 267–276.
    [37] G. Hongjun, L. Changchun, Instabilities of traveling waves of the convective-diffusive Cahn-Hilliard equation, Chaos, Solitons Fractals, 20 (2004), 253–258. https://doi.org/10.1016/S0960-0779(03)00372-2 doi: 10.1016/S0960-0779(03)00372-2
    [38] Z. Li, C. Liu, On the nonlinear instability of traveling waves for a sixth-order parabolic equation, Abstr. Appl. Anal., (2012), 17. https://doi.org/10.1155/2012/739156
    [39] A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, 1983.
    [40] V. Galaktionov, On a spectrum of blow-up patterns for a higher-order semilinear parabolic equation, Proc. Roy. Soc. Edinburgh, 2001. https://doi.org/10.1098/rspa.2000.0733
    [41] A. Montaru, Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity, Disc. Cont. Dyn. Syst., 19 (2013), 231–256. https://doi.org/10.48550/arXiv.1212.2807 doi: 10.48550/arXiv.1212.2807
    [42] R. A. Adams, Anisotropic Sobolev inequalities, Časopis pro Pěstování Mat., 113 (1988), 267–279. http://eudml.org/doc/19616
    [43] A. Benedek, R. Panzone, The spaces Lp with mixed norm, Duke Math. J., 28 (1961), 301–324. https://doi.org/10.1215/S0012-7094-61-02828-9 doi: 10.1215/S0012-7094-61-02828-9
    [44] V. A. Galaktionov, A. E. Shishkov, Higher-order quasilinear parabolic equations with singular initial data, Commun. Contemp. Math., 8 (2006), 1331–354. https://doi.org/10.1142/S0219199706002131 doi: 10.1142/S0219199706002131
    [45] V. Goldshtein, A. Ukhlov, Weighted sobolev spaces and embeddings theorems, Trans. Amer. Soc., 361 (2009), 3829–3850. https://doi.org/10.1090/S0002-9947-09-04615-7 doi: 10.1090/S0002-9947-09-04615-7
    [46] S. Kesavan, Topics in Functional Analysis and Applications, New Age International (formerly Wiley-Eastern), 1989.
    [47] J. Alexander, R. Gardner, C. Jones. A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math., 410 (1990), 167–212. https://doi.org/10.1515/crll.1990.410.167 doi: 10.1515/crll.1990.410.167
    [48] W. H. Enright, P. Muir, A Runge-Kutta type boundary value ODE solver with defect control, SIAM J. SCI. COMP., 1993.
    [49] N. Peykrayegan, M. Ghovatmand, M. Skandari, D. Baleanu, An approximate approach for fractional singular delay integro-differential equations, AIMS Math., 7 (2022), 9156–9171. https://doi.org/10.3934/math.2022507 doi: 10.3934/math.2022507
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1125) PDF downloads(47) Cited by(2)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog