Research article Special Issues

Estimation of the time cost with pinning control for stochastic complex networks


  • Received: 16 May 2022 Revised: 08 July 2022 Accepted: 18 July 2022 Published: 27 July 2022
  • In this paper, the finite-time and fixed-time stochastic synchronization of complex networks with pinning control are investigated. Considering the time and energy cost of control, combining the advantages of finite-time control technology and pinning control technology, efficient protocols are proposed. Compared with the existing research, the influence of noise is considered, and sufficient conditions for the network to achieve stochastic synchronization in a finite time are given in this paper. Based on the stability theory of stochastic differential equations, the upper bound of the setting time is estimated. Finally, the effects of control parameters, noise intensity, and the number of control agents on the network synchronization rate are studied. Numerical simulations verify the validity and correctness of the theoretical results.

    Citation: Jiaqi Chang, Xiangxin Yin, Caoyuan Ma, Donghua Zhao, Yongzheng Sun. Estimation of the time cost with pinning control for stochastic complex networks[J]. Electronic Research Archive, 2022, 30(9): 3509-3526. doi: 10.3934/era.2022179

    Related Papers:

  • In this paper, the finite-time and fixed-time stochastic synchronization of complex networks with pinning control are investigated. Considering the time and energy cost of control, combining the advantages of finite-time control technology and pinning control technology, efficient protocols are proposed. Compared with the existing research, the influence of noise is considered, and sufficient conditions for the network to achieve stochastic synchronization in a finite time are given in this paper. Based on the stability theory of stochastic differential equations, the upper bound of the setting time is estimated. Finally, the effects of control parameters, noise intensity, and the number of control agents on the network synchronization rate are studied. Numerical simulations verify the validity and correctness of the theoretical results.



    加载中


    [1] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Sochet, Novel type of phase transition in a system of self-driven particles., Phys. Rev. Lett., 75 (1995), 1226–1229. https://doi.org/10.1103/PhysRevLett.75.1226 doi: 10.1103/PhysRevLett.75.1226
    [2] T. Vicsek, A. Zafeiris, Collective motion, Phys. Rep. Rev. Sec. Phys. Lett., 517 (2012), 71–140. https://doi.org/10.1016/j.physrep.2012.03.004
    [3] D. J. Watts, S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440–442. https://doi.org/10.1038/30918 doi: 10.1038/30918
    [4] A. L. Barabási, Emergence of scaling in random networks, Science, 286 (1999), 509–512. https://doi.org/10.1126/science.286.5439.509 doi: 10.1126/science.286.5439.509
    [5] L. M. Pecora, T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), 2315–2320. https://doi.org/10.1103/PhysRevLett.80.2109 doi: 10.1103/PhysRevLett.80.2109
    [6] M. Timme, F. Wolf, T. Geisel, Topological speed limits to network synchronization, Phys. Rev. Lett., 92 (2004), 074101. https://doi.org/10.1103/PhysRevLett.92.074101 doi: 10.1103/PhysRevLett.92.074101
    [7] Y. Kim, M. Mesbahi, On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian, IEEE Trans. Autom. Control, 51 (2006), 116–120. https://doi.org/10.1109/TAC.2005.861710 doi: 10.1109/TAC.2005.861710
    [8] M. Timme, Does dynamics reflect topology in directed networks?, Europhys. Lett., 76 (2006), 367–373. https://doi.org/10.1209/epl/i2006-10289-y doi: 10.1209/epl/i2006-10289-y
    [9] G. X. Qi, H. B. Huang, C. K. Shen, H. J. Wang, L. Chen, Predicting the synchronization time in coupled-map networks, Phys. Rev. E, 77 (2008), 056205. https://doi.org/10.1103/PhysRevE.77.056205 doi: 10.1103/PhysRevE.77.056205
    [10] G. X. Qi, H. B. Huang, L. Chen, H. J. Wang, C. K. Shen, Fast synchronization in neuronal networks, EPL, 82 (2008), 38003. https://doi.org/10.1209/0295-5075/82/38003 doi: 10.1209/0295-5075/82/38003
    [11] G. Yan, G. Chen, J. Lu, Z. Fu, Synchronization performance of complex oscillator networks, Phys. Rev. E, 80 (2009), 056116. https://doi.org/10.1103/PhysRevE.80.056116 doi: 10.1103/PhysRevE.80.056116
    [12] H. Du, S. Li, C. Qian, Finite-time attitude tracking control of spacecraft with application to attitude synchronization, IEEE Trans. Autom. Control, 56 (2011), 2711–2717. https://doi.org/10.1109/TAC.2011.2159419 doi: 10.1109/TAC.2011.2159419
    [13] A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57 (2012), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869
    [14] G. Ji, C. Hu, J. Yu, H. Jiang, Finite-time and fixed-time synchronization of discontinuous complex networks: A unified control framework design, J. Frankl. Inst. Eng. Appl. Math., 355 (2018), 4665–4685. https://doi.org/10.1016/j.jfranklin.2018.04.026 doi: 10.1016/j.jfranklin.2018.04.026
    [15] X. Yang, J. Lam, D. W. C. Ho, Z. Feng, Fixed-time synchronization of complex networks with impulsive effects via nonchattering control, IEEE Trans. Autom. Control, 62 (2017), 5511–5521. https://doi.org/10.1109/TAC.2017.2691303 doi: 10.1109/TAC.2017.2691303
    [16] W. Zhang, X. Yang, C. Li, Fixed-time stochastic synchronization of complex networks via continuous control, IEEE T. Cybern., 49 (2019), 3099–3104. https://doi.org/10.1109/TCYB.2018.2839109 doi: 10.1109/TCYB.2018.2839109
    [17] X. Liu, D. W. C. Ho, Q. Song, W. Xu, Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances, IEEE T. Cybern., 49 (2019), 2398–2403. https://doi.org/10.1109/TCYB.2018.2821119 doi: 10.1109/TCYB.2018.2821119
    [18] Y. Xu, X. Wu, N. Li, L. Liu, C. Xie, C. Li, Fixed-time synchronization of complex networks with a simpler nonchattering controller, IEEE Trans. Circuits Syst. II-Express Briefs, 67 (2020), 700–704. https://doi.org/10.1109/TCSII.2019.2920035 doi: 10.1109/TCSII.2019.2920035
    [19] J. Hu, G. Sui, X. Li, Fixed-time synchronization of complex networks with time-varying delays, Chaos Solitons Fractals, 140 (2020), 110216. https://doi.org/10.1016/j.chaos.2020.110216 doi: 10.1016/j.chaos.2020.110216
    [20] N. Li, X. Wu, J. Feng, Y. Xu, J. Lu, Fixed-time synchronization of coupled neural networks with discontinuous activation and mismatched parameters, IEEE Trans. Neural Networks Learn. Syst., 32 (2021), 2470–2482. https://doi.org/10.1109/TNNLS.2020.3005945 doi: 10.1109/TNNLS.2020.3005945
    [21] Y. Xu, X. Wu, B. Mao, J. Lu, C. Xie, Fixed-time synchronization in the pth moment for time-varying delay stochastic multilayer networks, IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), 1135–1144. https://doi.org/10.1109/TSMC.2020.3012469 doi: 10.1109/TSMC.2020.3012469
    [22] T. Chen, X. Liu, W. Lu, Pinning complex networks by a single controller, IEEE Trans. Circuits Syst. I-Regul. Pap., 54 (2007), 1317–1326. https://doi.org/10.1109/TCSI.2007.895383 doi: 10.1109/TCSI.2007.895383
    [23] Y. Sun, W. Li, H. Shi, D. Zhao, S. Azaele, Finite-time and fixed-time consensus of multiagent networks with pinning control and noise perturbation, SIAM J. Appl. Math., 79 (2019), 111–130. https://doi.org/10.1137/18M1174143 doi: 10.1137/18M1174143
    [24] X. Zhang, W. Zhou, H. R. Karimi, Y. Sun, Finite- and fixed-time cluster synchronization of nonlinearly coupled delayed neural networks via pinning control, IEEE Trans. Neural Networks Learn. Syst., 32 (2021), 5222–5231. https://doi.org/10.1109/TNNLS.2020.3027312 doi: 10.1109/TNNLS.2020.3027312
    [25] X. Liu, T. Chen, Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE T. Cybern., 48 (2018), 240–252. https://doi.org/10.1109/TCYB.2016.2630703 doi: 10.1109/TCYB.2016.2630703
    [26] L. Zhou, C. Wang, L. Zhou, Cluster synchronization on multiple sub-networks of complex networks with nonidentical nodes via pinning control, Nonlinear Dyn., 83 (2016), 1079–1100. https://doi.org/10.1007/s11071-015-2389-2 doi: 10.1007/s11071-015-2389-2
    [27] G. Wen, W. Yu, G. Hu, J. Cao, X. Yu, Pinning synchronization of directed networks with switching topologies: A multiple lyapunov functions approach, IEEE Trans. Neural Networks Learn. Syst., 26 (2015), 3239–3250. https://doi.org/10.1109/TNNLS.2015.2443064 doi: 10.1109/TNNLS.2015.2443064
    [28] X. Yang, J. Cao, Finite-time stochastic synchronization of complex networks, Appl. Math. Model., 34 (2010), 3631–3641. https://doi.org/10.1016/j.apm.2010.03.012 doi: 10.1016/j.apm.2010.03.012
    [29] Y. Sun, W. Li, D. Zhao, Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies, Chaos, 22 (2012), 023152. https://doi.org/10.1063/1.4731265 doi: 10.1063/1.4731265
    [30] J. Zhuang, J. Cao, L. Tang, Y. Xia, M. Perc, Synchronization analysis for stochastic delayed multilayer network with additive couplings, IEEE Trans. Syst. Man Cybern. Syst., 50 (2020), 4807–4816. https://doi.org/10.1109/TSMC.2018.2866704 doi: 10.1109/TSMC.2018.2866704
    [31] W. Zhang, C. Li, H. Li, X. Yang, Cluster stochastic synchronization of complex dynamical networks via fixed-time control scheme, Neural Networks, 124 (2020), 12–19. https://doi.org/10.1016/j.neunet.2019.12.019 doi: 10.1016/j.neunet.2019.12.019
    [32] W. Zhang, X. Yang, C. Li, Fixed-time stochastic synchronization of complex networks via continuous control, IEEE T. Cybern., 49 (2019), 3099–3104. https://doi.org/10.1109/TCYB.2018.2839109 doi: 10.1109/TCYB.2018.2839109
    [33] W. Jiang, L. Li, Z. Tu, Y. Feng, Semiglobal finite-time synchronization of complex networks with stochastic disturbance via intermittent control, Int. J. Robust Nonlinear Control, 29 (2019), 2351–2363. https://doi.org/10.1002/rnc.4496 doi: 10.1002/rnc.4496
    [34] L. Wang, F. Xiao, Finite-time consensus problems for networks of dynamic agents, IEEE Trans. Autom. Control, 55 (2010), 950–955. https://doi.org/10.1109/TAC.2010.2041610 doi: 10.1109/TAC.2010.2041610
    [35] G. H. Hardy, J. E. Littlewoodwrited, Inequalities, U.K.: Cambridge University Press, 1952.
    [36] J. Yin, S. Khoo, Z. Man, X. Yu, Finite-time stability and instability of stochastic nonlinear systems, Automatica, 47 (2011), 2671–2677. https://doi.org/10.1016/j.automatica.2011.08.050 doi: 10.1016/j.automatica.2011.08.050
    [37] J. Yu, S. Yu, J. Li, Y. Yan, Fixed-time stability theorem of stochastic nonlinear systems, Int. J. Control, 92 (2019), 2194–2200. https://doi.org/10.1080/00207179.2018.1430900 doi: 10.1080/00207179.2018.1430900
    [38] P. E. Kloeden, P. Eckhard, Numerical Solution of Stochastic Differential Equations, Springer, Heidelberg, 1992.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1255) PDF downloads(67) Cited by(4)

Article outline

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog