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Abstract: In this paper, the finite-time and fixed-time stochastic synchronization of complex networks
with pinning control are investigated. Considering the time and energy cost of control, combining the
advantages of finite-time control technology and pinning control technology, efficient protocols are
proposed. Compared with the existing research, the influence of noise is considered, and sufficient
conditions for the network to achieve stochastic synchronization in a finite time are given in this paper.
Based on the stability theory of stochastic differential equations, the upper bound of the setting time
is estimated. Finally, the effects of control parameters, noise intensity, and the number of control
agents on the network synchronization rate are studied. Numerical simulations verify the validity and
correctness of the theoretical results.
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1. Introduction

Networks are ubiquitous in nature and human society, such as the World Wide Web, electricity
networks, protein interaction networks, ecological networks, and so on. Complex networks are net-
works with high complexity, and studying the collective behavior of complex networks has important
practical significance for our work and life. As one of the basic nonlinear phenomena of complex
networks, synchronization has received extensive attention [1, 2]. Synchronization means that as the
network evolves, all individuals eventually reach the same state through coupling. Complex network
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synchronization has great application prospects in the fields of wireless sensor networks and robot
control.

Synchronization of complex networks has had many interesting results over the past few decades.
At the end of the 20th century, Reference [3] and [4] revealed the small-world characteristics and
scale-free nature of complex networks, setting off a research boom in complex networks. Pecora and
Carroll proposed that the main stability function of a coupled system can be used to describe the syn-
chronization capability of the network, and pointed out that the synchronization is determined by the
network topology [5]. In Reference [6], random matrix theory was shown to be able to predict the
synchronization of networks, and it is pointed out that the speed of synchronization depends on net-
work connectivity. After that, many scholars have studied the synchronization problem of complex
networks [7–10]. It is pointed out in Reference [11] that the convergence speed without time delay
is proportional to the second smallest Laplace eigenvalue of the network, and the time delay can im-
prove the convergence speed of synchronization. However, in the above studies, most of them refer to
asymptotic synchronization, which means the time required to achieve synchronization is infinite.

Existing studies have shown that convergence rate is an important criterion for network synchroniza-
tion research. To speed up the convergence of the system, finite-time synchronization was proposed.
Compared with asymptotic synchronization, finite-time synchronization not only has a faster conver-
gence rate, enabling the system to achieve synchronization within a finite time but also has stronger
disturbance rejection properties [12]. But the settling time of finite-time synchronization depends on
the initial state of the network, that is, the initial state of the network is necessary to estimate the settling
time. To overcome this disadvantage, fixed-time synchronization was proposed [13]. The convergence
time of fixed-time synchronization is independent of the initial state of the network, which expands the
application scope of finite-time synchronization and has been widely studied in recent years [14–21].
For example, in Reference [14], the finite-time and fixed-time synchronization of complex networks
with discontinuous dynamics was discussed. Kinds of control protocols were proposed to achieve syn-
chronization under different conditions. In Reference [20], the fixed-time synchronization problem of
nonlinear coupled neural networks was studied and an estimate of the settling time was given.

Besides the time cost, the energy cost is another important criterion to consider in network syn-
chronization. Most of the existing research controls each agent of the network, which will increase
the control cost of the system. Therefore, to reduce the energy cost, pinning control was proposed,
which refers to selecting part of the agents in the network for control. The pinning control technique
has been successfully applied to the research of multi-agent system consensus and network synchro-
nization [22–27]. In Reference [22], the pinning problem of complex networks controlled by a single
controller was studied. They found that a single controller can pin a coupled complex network to a
homogenous solution without assuming symmetry, irreducibility, or linearity of the couplings. The
finite-time and fixed-time cluster synchronization problem for complex networks with or without pin-
ning control was studied in Reference [25]. Furthermore, the cluster synchronization problem for a
class of the nonlinearly coupled delayed neural networks was investigated in Reference [24] by using
the pinning control technique.

However, most of the above studies do not consider the impact of noise on network synchroniza-
tion. In the real world, as a result of random uncertainties such as stochastic forces on the physical
systems and noisy measurements caused by environmental uncertainties, a system should be produced
with random perturbations rather than deterministic forms. The finite-time stochastic synchronization
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problem for complex networks with stochastic noise perturbations was studied in Reference [28]. The
finite-time stochastic outer synchronization between two complex dynamical networks with different
topologies was studied in Reference [29]. In recent years, there have been many novel results in the
study of stochastic synchronization of complex networks [16, 24, 30–33].

From the above discussions, finite-time and fixed-time stochastic synchronization with pinning con-
trol are investigated in this paper. It is proved by theoretical analysis and numerical simulation that the
network can achieve stochastic synchronization in a finite time only by controlling a small fraction of
agents. The main contributions of this paper can be summarized as follows: 1) The finite/fixed-time
pinning controller is proposed to ensure the convergence rate and effectively reduce the control cost.
2) The influence of noise on synchronization is considered, and sufficient conditions for the network to
achieve stochastic synchronization are given. 3) The effects of control parameters, noise intensity, and
the number of control agents on the network synchronization rate are investigated.

The remainder of this paper is organized as follows. In Section 2, the problem statement and some
useful preliminaries are introduced. In Sections 3 and 4, based on the stability theory of stochastic dif-
ferential equations, the finite-time and fixed-time stochastic synchronization problems are considered.
In Section 5, numerical simulations are given to demonstrate the effectiveness of the proposed control
protocols. Finally, the conclusion is given in Section 6.

Notation. Throughout this paper unless specified we have the following definitions. Let ‖ · ‖ be
Euclidean norm. AT denotes the transpose of A, if A is a vector or matrix. Moreover, a symmetric
matrix A is called a negative definite matrix if all eigenvalues of the matrix A are less than zero. In is
the n-dimension unit matrix. Symbol ⊗ is the Kronecker product and E(·) represents the expectation
operator.

2. Preliminaries and problem formulation

In this section, preliminaries about graph theory and problem formulation are briefly introduced.
Let G(A) = (V,E, A) be a weighted digraph of order N. V = {v1, v2, · · · , vN} is the set of nodes,
E ⊆ V × V is the set of edges and matrix A = [ai j]N×N is a weighted adjacency with nonnegative
adjacency elements ai j. An edge (vi, v j) in G(A) denotes that node vi can obtain information from node
v j and (vi, v j) ∈ E if and only if ai j > 0. Moreover, assume that aii = 0 for all i ∈ {1, 2, · · · ,N}. The set
of neighbors of node vi is Ni = {v j ∈ V : (vi, v j) ∈ E}. Let a diagonal matrix D =diag(d1, · · · , dN) be
the degree matrix of G(A), where di =

∑N
j=1 ai j. Then, the Laplacian matrix of G(A) can be denoted by

L = D − A.
Consider a complex network consisting of N agents :

ẋi(t) = f (xi(t)) + ui(t), i = 1, 2, · · · ,N, (1)

where xi = (xi1, xi2, · · · , xin)T ∈ Rn is the state vector of the ith agent, f : Rn → Rn is a continuous
and differentiable nonlinear vector function, ui(t) is the controller to be designed. In real environments,
complex networks are inevitably affected by random perturbations, that is, each agent cannot accurately
measure the states of its neighbors. In order to solve this problem, this paper considers the influence
of noise and nonlinear dynamics. The network (1) can be written as

ẋi(t) = f (xi(t)) + ui(t) + γ
∑
j∈Ni

σi j(x j(t) − xi(t))ξi(t). (2)
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Here, parameters γ > 0, σi j is an element of noise intensity matrix and ξi(t) is independent white
noise. The noise terms in system (2) are often used to describe the coupling process of coupling factors,
such as inaccurate design of coupling strength and environmental fluctuation. Notice that the aim of
synchronization is all agents reach a synchronise state s(t), and assume that ṡ(t) = f (s(t)). Moreover,
let ei(t) = xi(t) − s(t) be the synchronization error, e = (eT

1 , e
T
2 , · · · , e

T
N)T .

Before moving on, the definition of complex network stochastic synchronization and several useful
lemmas are given.

Definition 2.1. System (2) is said to achieve stochastic synchronization, if there exists a time function
T0 depending on (or independent of) the initial values, such that

P{‖xi(t) − s(t)‖ = 0, ∀t > T0} = 1, i = 1, 2, · · · ,N.

Assumption 1. Assume the function f (·) satisfies the Lipchitz condition, i.e., ∀x, y ∈ RN , there exists a
positive constant l such that

(x − y)T [ f (x) − f (y)] ≤ l(x − y)T (x − y).

Lemma 2.1. [23] Assume that there’s a function ψ, which satisfies ψ(xi, x j) = −ψ(x j, xi),∀i, j ∈
{1, 2, · · · ,N}, i , j. Thus, for any undirected graph and set of numbers y1, y2, · · · , yN ,

N∑
i, j=1

ai jyiψ(x j, xi) = −
1
2

N∑
i, j=1

ai j(y j − yi)ψ(x j, xi).

Lemma 2.2. [34] If the graph G(A) is strongly connected, then the eigenvalue 0 of the graph Lapla-
cian LA is algebraically simple and all other eigenvalues are with positive real parts. If G(A) is also
undirected, then

xT LAx =
1
2

N∑
i, j=1

ai j(x j − xi)2,

where x = (x1, · · · , xN)T ∈ RN .

Lemma 2.3. [35] Let z ∈ Rn and 0 < a < b. Then the following norm equivalence property holds n∑
i=1

|zi|
b


1
b

≤

 n∑
i=1

|zi|
a


1
a

and 1
n

n∑
i=1

|zi|
b


1
b

≥

1
n

n∑
i=1

|zi|
a


1
a

.

Consider a stochastic differential equation dx = f (x)dt + g(x)dW(t). Here, f : Rn → Rn, g : Rn →

Rn×m are continuous functions, satisfying initial conditions f (0) = 0, g(0) = 0. The variable x ∈ Rn

represents the state of system and x(0) is the initial state. W represents a standard Brownian motion.
Assume that formula has a unique and global solution, which is represented by x(t, x(0)), 0 ≤ t < +∞.
Then, the following conclusion can be obtained:

LV =
∂V
∂x
· f +

1
2

trace
[
gT ·

∂2V
∂x2 · g

]
,
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where
∂V
∂x

=

(
∂V
∂x1

, . . . ,
∂V
∂xn

)
,
∂2V
∂x2 =

[
∂2V
∂xi∂x j

]
n×n

.

Definition 2.2. [36] A function v : R+ → R+ is said to be a classK function if it is continuous, strictly
increasing, and v(0) = 0. A class K function is said to belong to class K∞ if v(r)→ ∞ as r → ∞.

Lemma 2.4. [36] Assume the above n-dimensional equation has a unique solution. If the function
V : Rn → R+ is quadratic continuously differentiable, and there are K∞ class functions v1 and v2,
positive constants η > 0 and 0 < ρ < 1, for all x ∈ Rn and t ≥ 0 such that

v1(x) < V(x) < v2(x),

LV(x) ≤ −ηVρ(x).

Then the system is finite-time stable in probability one. The stochastic convergence time is estimated
as

E[T (x0)] ≤
V1−ρ(x0)
η(1 − ρ)

,

where x0 is the initial state of system.

Lemma 2.5. [37] Consider the above n-dimensional equation and assume that function V : Rn → R+

is a regular, positive definite and radially unbounded function. There are positive constants 0 < p <

1 < q, ϕ > 0, % > 0, such that

LV(x) ≤ −ϕV p(x) − %Vq(x), ∀x ∈ Rn.

Then the system is fixed-time stable in probability one. The stochastic convergence time is estimated as

E[T ] ≤
1

ϕ(1 − p)
+

1
%(q − 1)

.

3. Finite-time stochastic synchronization with pinning control

Most of the existing research controls all agents of the network, which will increase the energy
cost. Therefore, the pinning control technique is considered, that is, only controlling a small number
of agents to make the network achieve stochastic synchronization. Combining finite-time control tech-
nology and pinning control technology, the stochastic synchronization problem of complex networks
under noise disturbance is studied in this section.

Generally, suppose the first m nodes {i1, i2, · · · , im} in the system are selected. Define the proportion
of controlled agents as nD, nD = m/N ∈ [0, 1]. Notice that σi j is an element of the noise intensity
matrix, let σi =

∑
j∈Ni

σi j and matrix Π = [σi j] ∈ RN×N , then matrix Lσ = diag(σ1, · · · , σN) − Π

is the Laplacian matrix of matrix Π. Let matrix Dα = diag(α, · · · , α), Dl = diag(l, · · · , l), Dε1 =

diag((2ε1)
2

1+p , · · · , (2ε1)
2

1+p︸                    ︷︷                    ︸
m

, 0, · · · , 0︸   ︷︷   ︸
N−m

). Matrix LB denotes the Laplacian matrix of the graph G(B). For

the purpose of achieving synchronization in a finite time, the following pinning controller is proposed:

ui =

 − (LAx)i − (4p+1x)i − ε1φp+1(xi − s) − α(xi − s), i ∈ Ic,

− (LAx)i − (4p+1x)i − α(xi − s), i ∈ Īc,
(3)
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where (LAx)i =
∑

j∈Ni
ai j(xi − x j), 0 < p < 1, (4p+1x)i =

∑
j∈Ni

ai jφp+1(xi − x j). Define φp+1(z) =

sign(z)|z|p, sign(·) is a sign function. Parameters α > 0, ε1 > 0 are control intensity. ai j is an element of
the adjacency matrix, representing the agent j has an impact on the agent i. A = [ai j] is the adjacency
matrix of the graph G(A). Ic = {1, 2, · · · ,m} is the set of controlled nodes, and the set of remaining
nodes is Īc = {m + 1,m + 2, · · · ,N}.

Theorem 3.1. Consider a complex network (2) with topology G(A). Assume G(A) is undirected and
connected. Using the proposed pinning controller (3) and supposing that [Dl ⊗ In +

γ2

2 (Lσ ⊗ In)T (Lσ ⊗
In) − (Dα ⊗ In)] is negatively definite, system (2) can achieve the finite-time stochastic synchronization.
Furthermore, the settling time can be estimated as

E(T1) ≤
2V

1−p
2 (0)

λ
p+1

2 2
p−1

2 (1 − p)
,

where λ = λmin(2LB ⊗ In + Dε1 ⊗ In).

Proof. From the definition of error, the error system corresponding to the complex network (2) under
the proposed pinning controller (3) is

ėi =


[ f (xi) − f (s)] − (LAe)i − (4p+1e)i − ε1φp+1(ei) − αei + γ

∑
j∈Ni

σi j(e j − ei)ξi, i ∈ Ic,

[ f (xi) − f (s)] − (LAe)i − (4p+1e)i − αei + γ
∑
j∈Ni

σi j(e j − ei)ξi, i ∈ Īc.
(4)

Take the Lyapunov function

V(t) =
1
2

eT e =
1
2

N∑
i=1

eT
i ei. (5)

Let (Lσ)i denote the ith row of matrix Lσ. Thus,
∑

j∈Ni
σi j(e j − ei) = −((Lσ)i ⊗ In)e. Then,∑

j∈Ni

σi j(e j − ei)ξi = −((Lσ)i ⊗ In)eξi.

From the Itô’s formula, one has

LV(t) =

N∑
i=1

eT
i [ f (xi) − f (s)] −

N∑
i=1

eT
i (LAe)i +

N∑
i=1

eT
i

N∑
j=1

ai jφp+1(e j − ei)

− ε1

m∑
i=1

eT
i φp+1(ei) − α

N∑
i=1

eT
i ei +

γ2

2
eT (Lσ ⊗ In)T (Lσ ⊗ In)e

,V1 + V2 + V3 + V4 + V5 + V6.

(6)

By Assumption 1 and the definition of matrix Dl, one can obtain

V1 ≤ l
N∑

i=1

eT
i ei = 2l · V(t) = eT (Dl ⊗ In)e. (7)
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According to Lemmas 2.1 and 2.2, we have

V2 = −
1
2

N∑
i, j=1

ai j(e j − ei)T (e j − ei) = −eT (L ⊗ In)e. (8)

Here, matrix L is the Laplacian matrix of G(A) and the smallest eigenvalue of matrix (L ⊗ In) is 0,
which means V2 ≤ 0.

Let parameter ε1
i = ε1 when i ∈ Ic, otherwise let ε1

i = 0. Thus, using Lemmas 2.1 and 2.3, one has

V3 + V4 = −
1
2

 N∑
i, j=1

n∑
k=1

(a
1

p+1

i j |e jk − eik|)p+1 +

N∑
i=1

n∑
k=1

((2ε1
i)

1
p+1 |eik|)p+1


≤ −

1
2

 N∑
i, j=1

n∑
k=1

a
2

p+1

i j |e jk − eik|
2 +

N∑
i=1

n∑
k=1

(2ε1
i)

2
p+1 |eik|

2


p+1

2

= −
1
2

[
eT (2LB ⊗ In + Dε1 ⊗ In)e

] p+1
2
.

(9)

Here, matrix B = [bi j], where bi j = a
2

p+1

i j . LB denotes the Laplacian matrix of the graph G(B). Notice
that the undirected graph G(A) is connected, then G(B) is also undirected and connected. Matrix
Dε1 = diag((2ε1)

2
1+p , · · · , (2ε1)

2
1+p︸                    ︷︷                    ︸

m

, 0, · · · , 0︸   ︷︷   ︸
N−m

). Notice that Dα = diag(α, · · · , α), we have

V5 = −α

N∑
i=1

eT
i ei = −eT (Dα ⊗ In)e. (10)

Combing (6)–(10), we get that

LV(t) ≤eT [Dl ⊗ In +
γ2

2
(Lσ ⊗ In)T (Lσ ⊗ In) − (Dα ⊗ In)]e

−
1
2

[
eT (2LB ⊗ In + Dε1 ⊗ In)e

] p+1
2
.

(11)

Since G(B) is connected and undirected, matrix (2LB ⊗ In + Dε1 ⊗ In) is irreducibly diagonally
dominant if m ≥ 1. And matrix (2LB ⊗ In + Dε1 ⊗ In) is symmetric and all its diagonal elements are
strictly positive. That is, matrix (2LB ⊗ In + Dε1 ⊗ In) only has positive eigenvalues.

If matrix [Dl⊗In+
γ2

2 (Lσ⊗In)T (Lσ⊗In)−(Dα⊗In)] is negatively definite, we can reach the conclusion

LV(t) ≤ −
1
2

[λ · 2V(t)]
p+1

2 , (12)

where λ = λmin(2LB ⊗ In + Dε1 ⊗ In). Now, from Lemma 2.4, we know V(t) → 0 in a finite time with
probability one and the setting time can be estimated by

E(T1) ≤
2V

1−p
2 (0)

λ
p+1

2 2
p−1

2 (1 − p)
, (13)

where V(0) = 1
2

∑N
i=1 ei

2(0), ei(0) = xi(0) − s(0).
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Remark 1. Based on the pinning control technique, the proposed protocol (3) can make the system
achieve the stochastic synchronization by controlling a small fraction of agents, even with the influence
of nonlinear dynamics and the perturbation of noise. Note that α is the strength of linear feedback term,
γ represents the strength of noise and l is the Lipchitz constant of the node dynamics. Moreover, the
upper bound of the settling time depends on λ and control parameter p. Large values of λ and p yield
fast convergence rate.

Remark 2. Different from the protocols in [16] and [18], the proposed pinning protocol makes the
system reach the stochastic synchronization in finite time by controlling a small fraction of agents, and
the effect of noise is considered. Compared with the protocol in [17], the pinning protocol (3) contains
both finite-time control terms and linear control terms, and uses the graph Laplacian operator. By
comparison, it can be found that the proposed pinning protocol can realize stochastic synchronization
of the system only by controlling part of agents, which ensures the convergence speed and reduces the
energy cost.

In the following, we present several special cases of Theorem 3.1.

Corollary 3.1. Suppose all agents in Theorem 3.1 are controlled, i.e. nD = 1. Using the designed
protocol (3), if [Dl ⊗ In +

γ2

2 (Lσ ⊗ In)T (Lσ ⊗ In)− (Dα ⊗ In)] is negatively definite, system (2) can achieve
the finite-time stochastic synchronization.

Corollary 3.2. Without taking into account the effect of noise in Theorem 3.1, i.e., γ = 0. Using the
designed protocol (3), if matrix [Dl ⊗ In − (Dα ⊗ In)] is negatively definite, then system (2) can achieve
the finite-time synchronization.

Remark 3. Corollaries 3.1 and 3.2 are special cases of Theorem 3.1. Compared to [25], Corollary
3.1 differs in that it takes into account the effect of noise. Corollary 3.2 shows that, regardless of
the influence of noise, even if the states of some agents are unknown, the network can also achieve
finite-time synchronization by the pinning protocol.

4. Fixed-time stochastic synchronization with pinning control

Although the finite-time controller can synchronize the network in a finite time, the settling time
depends on the initial state of the network. This means that the initial state of the network is essential
to estimate the settling time. To solve this problem, the fixed-time pinning technology is considered.
The stochastic synchronization problem of networks with fixed-time pinning control is investigated in
this section and estimate of the upper bound on the settling time independent of the initial state of the
network is given.

In this section, definitions of matrix Dl, Lσ, Dα, Dε1 and LB are the same as those in Section 3.

Let C = [ci j]N×N and ci j = a
2

q+1

i j . Matrix LC denotes the Laplacian matrix of G(C). Take Dε2 =

diag((2ε2)
2

q+1 , · · · , (2ε2)
2

q+1︸                    ︷︷                    ︸
m

, 0, · · · , 0︸   ︷︷   ︸
N−m

). Then, the following pinning controller is proposed

ui =

 − (LAx)i − (4p+1x)i − α(xi − s) − (4q+1x)i − ε1φp+1(xi − s) − ε2φq+1(xi − s), i ∈ Ic,

− (LAx)i − (4p+1x)i − α(xi − s) − (4q+1x)i, i ∈ Īc,
(14)

where 0 < p < 1, q > 1, α > 0, ε1 > 0, ε2 > 0.
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Theorem 4.1. Consider a complex network (2) with undirected topology G(A). Assume G(A) is con-
nected. Using the protocol (14), if [Dl ⊗ In +

γ2

2 (Lσ ⊗ In)T (Lσ ⊗ In) − (Dα ⊗ In)] is negatively definite,
system (2) can reach the fixed-time stochastic synchronization and the settling time can be estimated
as

E(T2) ≤ 2

 1

2
p−1

2 λ
p+1

2 (1 − p)
+

1

2
q−1

2 N
1−q

2 µ
q+1

2 (q − 1)

 ,
where λ = λmin(2LB ⊗ In + Dε1 ⊗ In), µ = λmin(2LC ⊗ In + Dε2 ⊗ In).

Proof. From the definition of error, the error system corresponding to the complex network (2) under
the proposed pinning controller (14) is

ėi(t) =



[ f (xi) − f (s)] − (LAe)i − (4p+1e)i − αei − ε1φp+1(ei) − ε2φq+1(ei) − (4q+1e)i

+ γ
∑
j∈Ni

σi j(e j − ei)ξi, i ∈ Ic,

[ f (xi) − f (s)] − (LAe)i − (4p+1e)i − αei − (4q+1e)i + γ
∑
j∈Ni

σi j(e j − ei)ξi, i ∈ Īc.

(15)

Taking the Lyapunov function (5), from the Itô’s formula and the definition of operator L, one has

LV(t) =

N∑
i=1

eT
i [ f (xi) − f (s)] −

N∑
i=1

eT
i (LAe)i +

N∑
i=1

eT
i

N∑
j=1

ai jφp+1(e j − ei)

− α

N∑
i=1

eT
i ei − ε1

m∑
i=1

eT
i φp+1(ei) +

γ2

2
eT (Lσ ⊗ In)T (Lσ ⊗ In)e

− ε2

m∑
i=1

eT
i φq+1(ei) +

N∑
i=1

eT
i

N∑
j=1

ai jφq+1(e j − ei)

, V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8.

(16)

From (6) and (11), we have

6∑
i=1

Vi ≤eT [Dl ⊗ In +
γ2

2
(Lσ ⊗ In)T (Lσ ⊗ In) − (Dα ⊗ In)]e

−
1
2

[
eT (2LB ⊗ In + Dε1 ⊗ In)e

] p+1
2
.

(17)

When i ∈ Ic, let ε2
i = ε2, otherwise ε2

i = 0. According to Lemmas 2.1 and 2.3, one has

V7 + V8 = −
1
2

N∑
i, j=1

n∑
k=1

[
(a

1
q+1

i j |e jk − eik|)q+1 + ((2ε2
i)

1
q+1 |eik|)q+1

]

≤ −
1
2

N
1−q

2

 N∑
i, j=1

(a
2

q+1

i j |e j − ei|
2 + (2ε2

i)
2

q+1 |ei|
2)


q+1

2

= −
1
2

N
1−q

2
[
eT (2LC ⊗ In + Dε2 ⊗ In)e

] q+1
2
.

(18)
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Here, matrix C = [ci j], where ci j = a
2

q+1

i j , LC denotes the Laplacian matrix of the graph G(C). If
the undirected graph G(A) is connected, then G(C) is also undirected and connected. Matrix Dε2 =

diag((2ε2)
2

q+1 , · · · , (2ε2)
2

q+1︸                    ︷︷                    ︸
m

, 0, . . . , 0︸  ︷︷  ︸
N−m

). Combining (16)–(18), we have

LV(t) ≤ eT

[
Dl ⊗ In +

γ2

2
(Lσ ⊗ In)T (Lσ ⊗ In) − (Dα ⊗ In)

]
e

−
1
2

[
eT (2LB ⊗ In + Dε1 ⊗ In)e

] p+1
2

−
1
2

N
1−q

2
[
eT (2LC ⊗ In + Dε2 ⊗ In)e

] q+1
2
.

(19)

Since G(C) is connected and undirected, matrix (2LC ⊗ In + Dε2 ⊗ In) is irreducibly diagonally
dominant if m ≥ 1. And matrix (2LC ⊗ In + Dε2 ⊗ In) is symmetric and all its diagonal elements are
strictly positive. That is, matrix (2LC ⊗ In + Dε2 ⊗ In) only has positive eigenvalues.

If matrix [Dl⊗In+
γ2

2 (Lσ⊗In)T (Lσ⊗In)−(Dα⊗In)] is negatively definite, we can reach the conclusion

LV(t) ≤ −
1
2

[λ · 2V(t)]
p+1

2 −
1
2

N
1−q

2
[
µ · 2V(t)

] q+1
2 , (20)

where λ = λmin(2LB ⊗ In + Dε1 ⊗ In), µ = λmin(2LC ⊗ In + Dε2 ⊗ In). Now, from Lemma 2.5, we know
V(t)→ 0 in a finite time with probability one and the setting time can be estimated by

E(T2) ≤ 2

 1

2
p−1

2 λ
p+1

2 (1 − p)
+

1

2
q−1

2 N
1−q

2 µ
q+1

2 (q − 1)

 . (21)

Remark 4. Theorem 4.1 shows that system (2) with protocol (14) can achieve the fixed-time stochastic
synchronization only by controlling a small fraction of agents. Compared with Theorem 3.1, the esti-
mation of convergence time in (21) is independent of the initial states of agents and only depends on
N, λ, µ and p. Here, the eigenvalue µ depends on the proportion of controlled agents and the value of
parameter ε2.

In the following, we present several special cases of Theorem 4.1.

Corollary 4.1. Suppose all agents are controlled, i.e., nD = 1. Using the protocol (14), if [Dl ⊗ In +
γ2

2 (Lσ ⊗ In)T (Lσ ⊗ In) − (Dα ⊗ In)] is negatively definite, system (2) achieves the fixed-time stochastic
synchronization.

Corollary 4.2. Without taking into account the effect of noise in Theorem 4.1, i.e., γ = 0. Using the
designed protocol (14), if matrix [Dl ⊗ In − (Dα ⊗ In)] is negatively definite, then system (2) can achieve
the fixed-time synchronization.

Remark 5. Corollaries 4.1 and 4.2 are special cases of Theorem 4.1. Corollary 4.1 shows that, con-
sidering the effect of noise, the protocol (14) is able to achieve fixed-time stochastic synchronization of
the network. Corollary 4.2 shows that, regardless of the influence of noise, even if the states of some
agents are unknown, the network can also achieve fixed-time synchronization by the pinning protocol.
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5. Simulation results

In order to verify the theoretical results obtained in previous sections, numerical simulations will be
given in this section. The effects of noise intensity, control parameters and the number of control agents
on the synchronization rate of the system are studied. In the simulations, use the scale-free networks
with γd = 2.5 as the networks structure and all stochastic differential equations are numerically solved
with the Euler-Maruyama scheme [38]. Considering the influence of inherent dynamics on system
synchronization, the Rössler-like system is taken to characterize the nonlinear dynamics of complex
networks, which can be described as

ẋ = f (x) = a


−Γ −b −λ

1 c 0
0 0 −µ




x1

x2

x3

 +


0
0

aµψ(x1)

 ,
where x = (x1, x2, x3)T ∈ R3 is the state vector,

ψ(s) =

{
0, s < 2.56,
ρ(s − 2.56), s ≥ 2.56.

Taking a = 0.03, b = 1.5, c = 0.2, ρ = 21.43, µ = 1.5,Γ = 0.075, λ = 0.75, we obtain the
chaotic inherent dynamics of complex network. From the definition of synchronization error ei, let
E(t) =

∑N
i=1 eT

i ei. The complex system (2) is said to achieve stochastic synchronization after time T if,
for t ≥ T , E(t) < 10−3. Taking parameters N = 50, nD = 0.4, ε1 = 2, α = 2, σ = 1.5, p = 0.2, the finite-
time pinning protocol (3) is used to control the complex network (2). Furthermore, let ε2 = 10, q = 1.8,
using the fixed-time protocol (14), the evolution process of error E(t) is given in Figure 1. Figure 1
shows that when t > 0.598 and t > 0.475, the finite-time protocol and the fixed-time protocol can drive
the system to achieve stochastic synchronization, respectively. That means the pinning controllers
proposed in this paper are effective and correct.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
 t

0

5

10

15

 E
(t

)

Finite-Time
Fixed-Time

Figure 1. The trajectories of the synchronization error E(t) with finite-time protocol (3) and
fixed-time protocol (14).
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Figure 2. The trajectories of the synchronization error E(t) under the fixed-time pinning
protocol (14) with ε1 = 0.5, 1.0, 2.0.

To investigate the influence of control parameters on the system convergence rate, taking N =

100, nD = 0.4, σ = 1.5, Figures 2–5 give the evolutions of error E(t) under different control parameters
of the fixed-time pinning protocol (14). Let ε2 = 1, α = 2, p = 0.2, q = 1.8, taking ε1 = 0.5, 1, 2, the
evolutions of E(t) are given in Figure 2. It can be seen from the Figure 2 that the value of the parameter
ε1 is proportional to the speed of system convergence. That means the pinning control ε1φp+1(xi − s)
has an important influence on synchronization. Let ε1 = 2, ε2 = 1, p = 0.2, q = 1.8, Figure 3 displays
the evolutions of E(t) with α = 0.5, 1, 2. Figure 3 shows that the larger the parameter α, the faster the
system achieves stochastic synchronization, which is consistent with the theoretical results.
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15
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 E
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)

=0.5
=1.0
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Figure 3. The trajectories of the synchronization error E(t) under the fixed-time pinning
protocol (14) with α = 0.5, 1.0, 2.0.
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Figure 4. The trajectories of the synchronization error E(t) under the fixed-time pinning
protocol (14) with p = 0.2, 0.5, 0.8.

Taking ε1 = 2, ε2 = 1, α = 2, q = 1.8, Figure 4 displays the trajectories of E(t) with p = 0.2, 0.5, 0.8.
It is shown that the proposed controller with smaller parameter p can make the system reach stochastic
synchronization faster. Let ε1 = 1, ε2 = 10, α = 1, p = 0.2, Figure 5 displays the synchronization error
E(t) with q = 1.5, 2, 3. The simulation results in Figure 5 imply that, for given parameter p, the settling
times with different parameter q are similar. Therefore, it can be obtained that parameter p plays an
important role in the protocol, in contrast parameter q has less effect.
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q=2.0
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Figure 5. The trajectories of the synchronization error E(t) under the fixed-time pinning
protocol (14) with q = 1.5, 2.0, 3.0.
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Figure 6. The trajectories of the synchronization error E(t) under the fixed-time pinning
protocol (14) with σ = 1, 2, 4.

To verify the influence of noise intensity σ on the synchronization speed of the system, we simulate
the systems with fixed-time pinning protocol (14) by taking different values of σ in Figure 6. Taking
N = 50, nD = 0.4, ε1 = 1, ε2 = 2, α = 2, p = 0.2, q = 1.8, Figure 6 gives the evolutions of E(t)
with σ = 1, 2, 4. The results show that the greater the noise intensity, the faster the system achieves
stochastic synchronization. This means that noise can promote network synchronization, contrary to
the common perception that noise has a negative effect on synchronization.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 n

D

1

1.5

2

2.5

 T

Finite-Time
Fixed-Time

Figure 7. The influence of the density of controlled agents nD on the time costs for the
synchronization of complex network (2) with the finite-time protocol (3) and the fixed-time
protocol (14).

From theoretical results (13) and (21), we find the upper bound of settling time for the finite-time
and fixed-time synchronization is affected by the parameter nD. In Figure 7, taking N = 20, ε1 = 2, ε2 =
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5, α = 1, σ = 1, p = 0.8, q = 1.2, the settling times for different parameters nD are given. It can be
seen from Figure 7 that the settling time decreases by increasing nD, which means the more agents
are controlled, the faster synchronization is reached. What’s more, for any given density of controlled
agents, the fixed-time pinning controller has a lower time cost to achieve stochastic synchronization
than the finite-time pinning controller. Figure 7 shows that the fixed-time pinning controller proposed
in this paper can effectively reduce the energy cost while ensuring the convergence rate.

0.2 0.4 0.6 0.8
 n
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0.6

0.8

1

1.2

1.4

1.6

 T

 max
 min

Figure 8. The influence of pinning control agents types on the time costs for the synchro-
nization of complex network (2) with the fixed-time protocol (14).

To further study the effect of pinning control on the synchronization of complex networks, we select
different types of agents for control. A network consisting of 100 agents is selected, and the agents are
sorted according to their degree. The agents with large degrees and the agents with small degrees are
respectively selected for pinning control. The results show that when the proportion of control agents
is lower than 0.4, the agents with a large degree of control are better than agents with a small degree of
control, and the network convergence speed is faster. When the proportion of control agents is higher
than 0.5, the agents with small control degree can make the network reach stochastic synchronization
faster. It can be seen from Figure 8 that no matter which control strategy is used, the more agents are
controlled, the faster the convergence speed of the network is.

6. Conclusions

In this paper, we have investigated the finite-time and fixed-time stochastic synchronization of com-
plex networks with pinning control and noise perturbation. Most of the existing research controls all
individuals in the network to achieve asymptotic synchronization and does not consider the influence
of noise on synchronization. Using the finite/fixed-time control technology and the pinning control
technology, we propose new effective controllers, which can make the network achieve stochastic
synchronization by only controlling part of individuals. Different from the previous controllers, the
finite/fixed-time pinning controller can realize stochastic synchronization of complex networks in a
finite time, which ensures the convergence rate and reduces the energy cost of control. The effects of
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controller parameters, noise intensity, and the number of control agents on the network synchronization
rate are investigated. Numerical simulations verify the effectiveness and correctness of the proposed
controllers. The work in this paper is the first step toward the time cost for stochastic synchronization
of complex networks. In this paper, the stochastic synchronization problem of a single network is
studied. It would be interesting to study the stochastic synchronization problem of multiple networks.
This problem is our future research direction.
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