In this manuscript, the following chemotaxis system has been considered:
$ \begin{equation*} \left\{ \begin{array}{ll} v_{t} = \nabla\cdot(\phi(v)\nabla v-\varphi(v)\nabla w_{1}+\psi(v)\nabla w_{2})+av-bv^{\kappa},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w_{1}+\alpha v^{\gamma_{1}}-\beta w_{1}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w_{2}+\gamma v^{\gamma_{2}}-\delta w_{2}, \ &\ \ x\in \Omega, \ t>0 , \end{array} \right. \end{equation*} $
where $ \Omega $ is a bounded smooth domain of $ \mathbb{R}^{n}(n\geq 1), $ the parameters $ a, b, \alpha, \beta, \gamma, \delta, \gamma_{1}, \gamma_{2} > 0, \kappa > 1, $ and nonnegative functions $ \phi(\varrho) = (\varrho+1)^{m}, $ $ \varphi(\varrho) = \chi \varrho(\varrho+1)^{\theta-1} $ and $ \psi(\varrho) = \xi \varrho(\varrho+1)^{l-1} $ for $ \varrho\geq 0 $ with $ m, \theta, l \in \mathbb{R} $ and $ \chi, \xi > 0. $ In the present work, we improve the boundedness criteria established in previous work and further show that under the corresponding critical cases, namely, assume that $ \theta+\gamma_{1} = \max\{l+\gamma_{2}, \kappa\}\geq m+\frac{2}{n}+1 $ with $ m > -\frac{2}{n}, n\geq 3, $ if one of the following conditions holds:
(a) when $ \theta+\gamma_{1} = l+\gamma_{2} = \kappa, $ if $ \theta\geq l\geq 1 $ and $ \frac{[(\kappa-1-m)n-2](2\alpha \chi-\gamma\xi)}{2(l-1)+(\kappa-1-m)n} = b, $ or $ l\geq \theta\geq 1 $ and $ \frac{2\alpha\chi[(\kappa-1-m)n-2]} {2(\theta-1)+(\kappa-1-m)n} = b; $
(b) when $ \theta+\gamma_{1} = \kappa > l+\gamma_{2}, $ if $ \theta\geq 1 $ and $ \frac{2\alpha \chi[(\kappa-1-m)n-2]}{2(\theta-1)+(\kappa-1-m)n} = b, $
then the system still possesses at least a global classical solution, which is bounded in $ \Omega \times (0, \infty) $. Additionally, we have also explored the long time behavior of the classical solution mentioned above.
Citation: Changjian Wang, Jiayue Zhu. Global dynamics to a quasilinear chemotaxis system under some critical parameter conditions[J]. Electronic Research Archive, 2024, 32(3): 2180-2202. doi: 10.3934/era.2024099
In this manuscript, the following chemotaxis system has been considered:
$ \begin{equation*} \left\{ \begin{array}{ll} v_{t} = \nabla\cdot(\phi(v)\nabla v-\varphi(v)\nabla w_{1}+\psi(v)\nabla w_{2})+av-bv^{\kappa},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w_{1}+\alpha v^{\gamma_{1}}-\beta w_{1}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w_{2}+\gamma v^{\gamma_{2}}-\delta w_{2}, \ &\ \ x\in \Omega, \ t>0 , \end{array} \right. \end{equation*} $
where $ \Omega $ is a bounded smooth domain of $ \mathbb{R}^{n}(n\geq 1), $ the parameters $ a, b, \alpha, \beta, \gamma, \delta, \gamma_{1}, \gamma_{2} > 0, \kappa > 1, $ and nonnegative functions $ \phi(\varrho) = (\varrho+1)^{m}, $ $ \varphi(\varrho) = \chi \varrho(\varrho+1)^{\theta-1} $ and $ \psi(\varrho) = \xi \varrho(\varrho+1)^{l-1} $ for $ \varrho\geq 0 $ with $ m, \theta, l \in \mathbb{R} $ and $ \chi, \xi > 0. $ In the present work, we improve the boundedness criteria established in previous work and further show that under the corresponding critical cases, namely, assume that $ \theta+\gamma_{1} = \max\{l+\gamma_{2}, \kappa\}\geq m+\frac{2}{n}+1 $ with $ m > -\frac{2}{n}, n\geq 3, $ if one of the following conditions holds:
(a) when $ \theta+\gamma_{1} = l+\gamma_{2} = \kappa, $ if $ \theta\geq l\geq 1 $ and $ \frac{[(\kappa-1-m)n-2](2\alpha \chi-\gamma\xi)}{2(l-1)+(\kappa-1-m)n} = b, $ or $ l\geq \theta\geq 1 $ and $ \frac{2\alpha\chi[(\kappa-1-m)n-2]} {2(\theta-1)+(\kappa-1-m)n} = b; $
(b) when $ \theta+\gamma_{1} = \kappa > l+\gamma_{2}, $ if $ \theta\geq 1 $ and $ \frac{2\alpha \chi[(\kappa-1-m)n-2]}{2(\theta-1)+(\kappa-1-m)n} = b, $
then the system still possesses at least a global classical solution, which is bounded in $ \Omega \times (0, \infty) $. Additionally, we have also explored the long time behavior of the classical solution mentioned above.
[1] | C. Wang, Y. Yang, Boundedness criteria for the quasilinear attraction-repulsion chemotaxis system with nonlinear signal production and logistic source, Electron. Res. Arch., 31 (2023), 299–318. https://doi.org/10.3934/era.2023015 doi: 10.3934/era.2023015 |
[2] | E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5 |
[3] | K. Osaki, A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441–470. |
[4] | T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411–433. |
[5] | D. Horstmann, G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12 (2001), 159–177. https://doi.org/10.1017/s0956792501004363 doi: 10.1017/s0956792501004363 |
[6] | M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020 |
[7] | D. Liu, Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chin. Univ., 31 (2016), 379–388. https://doi.org/10.1007/s11766-016-3386-z doi: 10.1007/s11766-016-3386-z |
[8] | M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31 (2018), 2031–2056. https://doi.org/10.1088/1361-6544/aaaa0e doi: 10.1088/1361-6544/aaaa0e |
[9] | M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equations, 35 (2010), 1516–1537. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426 |
[10] | X. Cao, Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. - Ser. B, 22 (2017), 3369–3378. https://doi.org/10.3934/dcdsb.2017141 doi: 10.3934/dcdsb.2017141 |
[11] | J. I. Tello, M. Winkler, Chemotaxis system with logistic source, Comm. Partial Differ. Equations, 32 (2007), 849–877. https://doi.org/10.1080/03605300701319003 doi: 10.1080/03605300701319003 |
[12] | M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse, Math. Methods Appl. Sci., 33 (2010), 12–24. https://doi.org/10.1002/mma.1146 doi: 10.1002/mma.1146 |
[13] | Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equations, 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019 |
[14] | Y. Tian, Z. Xiang, Global boundedness to a 3D chemotaxis-Stokes system with porous medium cell diffusion and general sensitivity, Adv. Nonlinear Anal., 12 (2023), 23–53. https://doi.org/10.1515/anona-2022-0228 doi: 10.1515/anona-2022-0228 |
[15] | W. Lyu, Z. Wang, Logistic damping effect in chemotaxis models with density-suppressed motility, Adv. Nonlinear Anal., 12 (2023), 336–355. https://doi.org/10.1515/anona-2022-0263 doi: 10.1515/anona-2022-0263 |
[16] | A. Alshehri, N. Aljaber, H. Altamimi, R. Alessa, M. Majdoub, Nonexistence of global solutions for a nonlinear parabolic equation with a forcing term, Opuscula Math., 43 (2023), 741–758. https://doi.org/10.7494/OpMath.2023.43.6.741 doi: 10.7494/OpMath.2023.43.6.741 |
[17] | M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogliner, Chemotactic signalling, microglia, and Alzheimer's disease senile plague: is there a connection, Bull. Math. Biol., 65 (2003), 673–730. https://doi.org/10.1016/S0092-8240(03)00030-2 doi: 10.1016/S0092-8240(03)00030-2 |
[18] | Q. Zhang, Y. Li, An attraction-repulsion chemotaxis system with logistic source, Z. Angew. Math. Mech., 96 (2016), 570–584. https://doi.org/10.1002/zamm.201400311 doi: 10.1002/zamm.201400311 |
[19] | L. Hong, M. Tian, S. Zheng, An attraction-repulsion chemotaxis system with nonlinear productions, J. Math. Anal. Appl., 484 (2020), 123703. https://doi.org/10.1016/j.jmaa.2019.123703 doi: 10.1016/j.jmaa.2019.123703 |
[20] | X. Zhou, Z. Li, J. Zhao, Asymptotic behavior in an attraction-repulsion chemotaxis system with nonlinear productions, J. Math. Anal. Appl., 507 (2022), 125763. https://doi.org/10.1016/j.jmaa.2021.125763 doi: 10.1016/j.jmaa.2021.125763 |
[21] | C. Wang, J. Zhu, Global existence and uniform boundedness to a bi-attraction chemotaxis system with nonlinear indirect signal mechanisms, Commun. Anal. Mech., 15 (2023), 743–762. https://doi.org/10.3934/cam.2023036 doi: 10.3934/cam.2023036 |
[22] | C. Wang, J. Zhu, Global boundedness in an attraction-repulsion chemotaxis system involving nonlinear indirect signal mechanism, J. Math. Anal. Appl., 531 (2024), 127876. https://doi.org/10.1016/j.jmaa.2023.127876 doi: 10.1016/j.jmaa.2023.127876 |
[23] | B. Hu, Y. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., 64 (2017), 1–7. https://doi.org/10.1016/j.aml.2016.08.003 doi: 10.1016/j.aml.2016.08.003 |
[24] | X. Bai, M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553–583. https://doi.org/10.1512/iumj.2016.65.5776 doi: 10.1512/iumj.2016.65.5776 |
[25] | X. He, M. Tian, S. Zheng, Large time behavior of solutions to a quasilinear attraction-repulsion chemotaxis system with logistic source, Nonlinear Anal. Real World Appl., 54 (2020), 103095. https://doi.org/10.1016/j.nonrwa.2020.103095 doi: 10.1016/j.nonrwa.2020.103095 |
[26] | G. Ren, B. Liu, Global dynamics for an attraction-repulsion chemotaxis model with logistic source, J. Differ. Equations, 268 (2020), 4320–4373. https://doi.org/10.1016/j.jde.2019.10.027 doi: 10.1016/j.jde.2019.10.027 |
[27] | M. Winkler, K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044–1064. https://doi.org/10.1016/j.na.2009.07.045 doi: 10.1016/j.na.2009.07.045 |
[28] | D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001. |
[29] | O. Ladyzhenskaya, V. Solonnikov, N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, RI, 1968. |