We study the global dynamics of large amplitude classical solutions to a system of balance laws, derived from a chemotaxis model with logarithmic sensitivity, subject to time-dependent boundary conditions. The model is supplemented with $ H^2 $ initial data and unmatched boundary conditions at the endpoints of a one-dimensional interval. Under suitable assumptions on the boundary data, it is shown that classical solutions exist globally in time. Time asymptotically, the differences between the solutions and their corresponding boundary data converge to zero, as time goes to infinity. No smallness restrictions on the magnitude of the initial perturbations is imposed. Numerical simulations are carried out to explore some topics that are not covered by the analytical results.
Citation: Ling Xue, Min Zhang, Kun Zhao, Xiaoming Zheng. Controlled dynamics of a chemotaxis model with logarithmic sensitivity by physical boundary conditions[J]. Electronic Research Archive, 2022, 30(12): 4530-4552. doi: 10.3934/era.2022230
We study the global dynamics of large amplitude classical solutions to a system of balance laws, derived from a chemotaxis model with logarithmic sensitivity, subject to time-dependent boundary conditions. The model is supplemented with $ H^2 $ initial data and unmatched boundary conditions at the endpoints of a one-dimensional interval. Under suitable assumptions on the boundary data, it is shown that classical solutions exist globally in time. Time asymptotically, the differences between the solutions and their corresponding boundary data converge to zero, as time goes to infinity. No smallness restrictions on the magnitude of the initial perturbations is imposed. Numerical simulations are carried out to explore some topics that are not covered by the analytical results.
[1] | J. D. Murray, Mathematical Biology I: An Introduction, 3rd edition, Springer-Verlag, New York, 2002. https://doi.org/10.1023/A:1022616217603 |
[2] | R. Tyson, S. R. Lubkin, J. D. Murray, Model and analysis of chemotactic bacterial patterns in a liquid medium, J. Math. Biol., 38 (1999), 359–375. https://doi.org/10.1007/s002850050153 doi: 10.1007/s002850050153 |
[3] | A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, et al., Percolation, morphogenesis, and Burgers dynamics in blood vessels formation, Phys. Rev. Lett., 90 (2003), 118101. https://doi.org/10.1103/PhysRevLett.90.118101 doi: 10.1103/PhysRevLett.90.118101 |
[4] | K. J. Painter, P. K. Maini, H. G. Othmer, Stripe formation in juvenile pomacanthus explained by a generalized Turing mechanism, Proc. Nat. Acad. Sci., 96 (1999), 5549–5554. https://doi.org/10.1073/pnas.96.10.5549 doi: 10.1073/pnas.96.10.5549 |
[5] | M. A. J. Chaplain, A. M. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor, IMA J. Math. Appl. Med., 10 (1993), 149–168. https://doi.org/10.1093/imammb/10.3.149 doi: 10.1093/imammb/10.3.149 |
[6] | K. J. Painter, P. K. Maini, H. G. Othmer, A chemotactic model for the advance and retreat of the primitive streak in avian development, Bull. Math. Biol., 62 (2000), 501–525. https://doi.org/10.1006/bulm.1999.0166 doi: 10.1006/bulm.1999.0166 |
[7] | H. Höfer, J. A. Sherratt, P. K. Maini, Cellular pattern formation during Dictyostelium aggregation, Phys. D, 85 (1995), 425–444. https://doi.org/10.1016/0167-2789(95)00075-F doi: 10.1016/0167-2789(95)00075-F |
[8] | G. J. Petter, H. M. Byrne, D. L. S. McElwain, J. Norbury, A model of wound healing and angiogenesis in soft tissue, Math. Biosci., 136 (2003), 35–63. https://doi.org/10.1016/0025-5564(96)00044-2 doi: 10.1016/0025-5564(96)00044-2 |
[9] | C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311–338. https://doi.org/10.1007/BF02476407 doi: 10.1007/BF02476407 |
[10] | E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5 |
[11] | E. F. Keller, L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6 doi: 10.1016/0022-5193(71)90050-6 |
[12] | E. F. Keller, L. A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 26 (1971), 235–248. https://doi.org/10.1016/0022-5193(71)90051-8 doi: 10.1016/0022-5193(71)90051-8 |
[13] | N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X |
[14] | T. Hillen, K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3 |
[15] | D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Dtsch. Math. Ver., 105 (2003), 103–165. |
[16] | J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708–716. https://doi.org/10.1126/science.153.3737.708 doi: 10.1126/science.153.3737.708 |
[17] | W. Alt, D. A. Lauffenburger, Transient behavior of a chemotaxis system modeling certain types of tissue inflammation, J. Math. Biol., 24 (1987), 691–722. https://doi.org/10.1007/BF00275511 doi: 10.1007/BF00275511 |
[18] | D. Balding, D. L. S. McElwain, A mathematical model of tumour-induced capillary growth, J. Theor. Biol., 114 (1985), 53–73. https://doi.org/10.1016/S0022-5193(85)80255-1 doi: 10.1016/S0022-5193(85)80255-1 |
[19] | F. W. Dahlquist, P. Lovely, D. E. Jr Koshland, Quantitative analysis of bacterial migration in chemotaxis, Nat. New Biol., 236 (1972), 120–123. https://doi.org/10.1038/newbio236120a0 doi: 10.1038/newbio236120a0 |
[20] | Y. V. Kalinin, L. Jiang, Y. Tu, M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Bio. J., 96 (2009), 2439–2448. https://doi.org/10.1016/j.bpj.2008.10.027 doi: 10.1016/j.bpj.2008.10.027 |
[21] | H. A. Levine, B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683–730. https://doi.org/10.1137/S0036139995291106 doi: 10.1137/S0036139995291106 |
[22] | H. Othmer, A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044–1081. https://doi.org/10.1137/S0036139995288976 doi: 10.1137/S0036139995288976 |
[23] | H. A. Levine, B. D. Sleeman, M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. i. the role of protease inhibitors, Math. Biosci., 168 (2000), 77–115. https://doi.org/10.1016/S0025-5564(00)00034-1 doi: 10.1016/S0025-5564(00)00034-1 |
[24] | M. A. Fontelos, A. Friedman, B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330–1355. https://doi.org/10.1137/S0036141001385046 doi: 10.1137/S0036141001385046 |
[25] | J. Guo, J. Xiao, H. Zhao, C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B (Engl. Ed.), 29 (2009), 629–641. https://doi.org/10.1016/S0252-9602(09)60059-X doi: 10.1016/S0252-9602(09)60059-X |
[26] | Q. Hou, C. Liu, Y. Wang, Z. A. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case, SIAM J. Math. Anal., 50 (2018), 3058–3091. https://doi.org/10.1137/17M112748X doi: 10.1137/17M112748X |
[27] | Q. Hou, Z. A. Wang, Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, J. Math. Pures. Appl., 130 (2019), 251–287. https://doi.org/10.1016/j.matpur.2019.01.008 doi: 10.1016/j.matpur.2019.01.008 |
[28] | Q. Hou, Z. A. Wang, K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differ. Equations, 261 (2016), 5035–5070. https://doi.org/10.1016/j.jde.2016.07.018 doi: 10.1016/j.jde.2016.07.018 |
[29] | D. Li, R. Pan, K. Zhao, Quantitative decay of a one-dimensional hybrid chemotaxis model with large data, Nonlinearity, 28 (2015), 2181–2210. https://doi.org/10.1088/0951-7715/28/7/2181 doi: 10.1088/0951-7715/28/7/2181 |
[30] | H. Li, K. Zhao, Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis, J. Differ. Equations, 258 (2015), 302–338. https://doi.org/10.1016/j.jde.2014.09.014 doi: 10.1016/j.jde.2014.09.014 |
[31] | T. Li, R. Pan, K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417–443. https://doi.org/10.1137/110829453 doi: 10.1137/110829453 |
[32] | V. R. Martinez, Z. A. Wang, K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383–1424. https://www.jstor.org/stable/45010333 |
[33] | H. Peng, Z. A. Wang, K. Zhao, C. Zhu, Boundary layers and stabilization of the singular Keller-Segel model, Kinet. Relat. Models, 11 (2018), 1085–1123. https://doi.org/10.3934/krm.2018042 doi: 10.3934/krm.2018042 |
[34] | Y. Tao, L. Wang, Z. A. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Disc. Cont. Dyn. Syst., Ser. B, 18 (2013), 821–845. https://doi.org/10.3934/dcdsb.2013.18.821 doi: 10.3934/dcdsb.2013.18.821 |
[35] | Z. A. Wang, K. Zhao, Global dynamics and diffusion limit of a parabolic system arising from repulsive chemotaxis, Commun. Pure Appl. Anal., 12 (2013), 3027–3046. https://doi.org/10.3934/cpaa.2013.12.3027 doi: 10.3934/cpaa.2013.12.3027 |
[36] | K. Choi, M. Kang, Y. Kwon, A. Vasseur, Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model, Math. Models Methods Appl. Sci., 30 (2020), 387–437. https://doi.org/10.1142/S0218202520500104 doi: 10.1142/S0218202520500104 |
[37] | H. Jin, J. Li, Z. A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differ. Equations, 255 (2013), 193–219. https://doi.org/10.1016/j.jde.2013.04.002 doi: 10.1016/j.jde.2013.04.002 |
[38] | J. Li. T. Li, Z. A. Wang, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (2014), 2819–2849. https://doi.org/10.1142/S0218202514500389 doi: 10.1142/S0218202514500389 |
[39] | T. Li, Z. A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 7 (2009), 1522–1541. https://doi.org/10.1137/09075161X doi: 10.1137/09075161X |
[40] | T. Li, Z. A. Wang, Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967–1998. https://doi.org/10.1142/S0218202510004830 doi: 10.1142/S0218202510004830 |
[41] | T. Li, Z. A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differ. Equations, 250 (2011), 1310–1333. https://doi.org/10.1016/j.jde.2010.09.020 doi: 10.1016/j.jde.2010.09.020 |
[42] | T. Li, Z. A. Wang, Steadily propagating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161–168. https://doi.org/10.1016/j.mbs.2012.07.003 doi: 10.1016/j.mbs.2012.07.003 |
[43] | H. Peng, Z. A. Wang, Nonlinear stability of strong traveling waves for the singular Keller-Segel system with large perturbations, J. Differ. Equations, 265 (2018), 2577–2613. https://doi.org/10.1016/j.jde.2018.04.041 doi: 10.1016/j.jde.2018.04.041 |
[44] | Z. A. Wang, Mathematics of traveling waves in chemotaxis, Disc. Cont. Dyn. Syst. Ser. B, 18 (2013), 601–641. https://doi.org/10.3934/dcdsb.2013.18.601 doi: 10.3934/dcdsb.2013.18.601 |
[45] | J. A. Carrillo, J. Li, Z. A. Wang, Boundary spike‐layer solutions of the singular Keller–Segel system: existence and stability, Proc. London Math. Soc., 122 (2021), 42–68. https://doi.org/10.1112/plms.12319 doi: 10.1112/plms.12319 |
[46] | R. M. Fuster-Aguilera, V. R. Martinez, K. Zhao, A PDE model for chemotaxis with logarithmic sensitivity and logistic growth, preprint, arXiv: 2012.10521. |
[47] | Y. Zeng, Nonlinear stability of diffusive contact wave for a chemotaxis model, J. Differ. Equations, 308 (2022), 286–326. https://doi.org/10.1016/j.jde.2021.11.008 doi: 10.1016/j.jde.2021.11.008 |
[48] | Y. Zeng, K. Zhao, On the Logarithmic Keller-Segel-Fisher/KPP System, Disc. Cont. Dyn. Syst., 39 (2019), 5365–5402. https://doi.org/10.3934/dcds.2019220 doi: 10.3934/dcds.2019220 |
[49] | Y. Zeng, K. Zhao, Optimal decay rates for a chemotaxis model with logistic growth, logarithmic sensitivity and density-dependent production/consumption rate, J. Differ. Equations, 268 (2020), 1379–1411. https://doi.org/10.1016/j.jde.2019.08.050 doi: 10.1016/j.jde.2019.08.050 |
[50] | Y. Zeng, K. Zhao, Optimal decay rates for a chemotaxis model with logistic growth, logarithmic sensitivity and density-dependent production/consumption rate, J. Differ. Equations, 29 (2020), 6359–6363. https://doi.org/10.1016/j.jde.2019.08.050 doi: 10.1016/j.jde.2019.08.050 |
[51] | Y. Zeng, K. Zhao, Asymptotic behavior of solutions to a chemotaxis-logistic model with transitional end-states, J. Differ. Equations, 336 (2022), 1–43. https://doi.org/10.1016/j.jde.2022.07.013 doi: 10.1016/j.jde.2022.07.013 |
[52] | Z. Feng, J. Xu, L. Xue, K. Zhao, Initial and boundary value problem for a system of balance laws from chemotaxis: Global dynamics and diffusivity limit, Ann. Appl. Math., 37 (2021), 61–110. https://doi.org/10.4208/aam.OA-2020-0004 doi: 10.4208/aam.OA-2020-0004 |
[53] | N. Zhu, Z. Liu, V. R. Martinez, K. Zhao, Global Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model, SIAM J. Math. Anal., 50 (2018), 5380–5425. https://doi.org/10.1137/17M1135645 doi: 10.1137/17M1135645 |
[54] | N. Zhu, Z. Liu, F. Wang, K. Zhao, Asymptotic dynamics of a system of conservation laws from chemotaxis, Disc. Cont. Dyn. Syst., 41 (2021), 813–847. https://doi.org/10.3934/dcds.2020301 doi: 10.3934/dcds.2020301 |
[55] | F. Wang, L. Xue, K. Zhao, X. Zheng, Global stabilization and boundary control of generalized Fisher/KPP equation and application to diffusive SIS model, J. Differ. Equations, 275 (2021), 391–417. https://doi.org/10.1016/j.jde.2020.11.031 doi: 10.1016/j.jde.2020.11.031 |