For this study, we investigate the existence and uniqueness of local solutions and derive a blow-up solution for a quasi-linear bi-hyperbolic equation under dynamic boundary conditions. We utilize the contraction mapping concept to demonstrate the solution's local well-posedness and employ a concavity approach to establish the blow-up result.
Citation: Begüm Çalışkan Desova, Mustafa Polat. Existence, uniqueness, and blow-up analysis of a quasi-linear bi-hyperbolic equation with dynamic boundary conditions[J]. Electronic Research Archive, 2024, 32(5): 3363-3376. doi: 10.3934/era.2024155
For this study, we investigate the existence and uniqueness of local solutions and derive a blow-up solution for a quasi-linear bi-hyperbolic equation under dynamic boundary conditions. We utilize the contraction mapping concept to demonstrate the solution's local well-posedness and employ a concavity approach to establish the blow-up result.
[1] | C. F. Vasconcellos, L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping, Ann. Fac. Sci. Toulouse, 8 (1999), 173–193. https://doi.org/10.5802/afst.928 doi: 10.5802/afst.928 |
[2] | M. Guedda, H. Labani, Nonexistence of global solutions to a class of nonlinear wave equations with dynamic boundary conditions, Bull. Belg. Math. Soc. Simon Stevin, 9 (2002), 39–46. |
[3] | S. T. Wu, L. Y. Tsai, Existence and nonexistence of global solutions for a nonlinear wave equation, Taiwanese J. Math., 13 (2009), 2069–2091. https://doi.org/10.11650/twjm/1500405658 doi: 10.11650/twjm/1500405658 |
[4] | V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equations, 109 (1994), 295–308. https://doi.org/10.1006/jdeq.1994.1051 doi: 10.1006/jdeq.1994.1051 |
[5] | E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and supercritical sources, J. Differ. Equations, 265 (2017), 4873–4941. https://doi.org/10.1016/j.jde.2018.06.022 doi: 10.1016/j.jde.2018.06.022 |
[6] | V. Bayrak, M. Can, Nonexistence of global solutions of a quasi-linear bi-hyperbolic equation with dynamic boundary conditions, Electron. J. Qual. Theory Differ. Equations, 1999 (1999), 1–10. |
[7] | M. Can, S. R. Park, F. Aliyev, Nonexistence of global solutions of a quasi-linear hyperbolic equation, Math. Inequalities Appl., 1 (1998), 45–52. |
[8] | H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_tt = -Au_t+F(u)$, Trans. Am. Math. Soc., 192 (1974), 1–21. https://doi.org/10.2307/1996814 doi: 10.2307/1996814 |
[9] | E. Vitillaro, Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources, Discrete Contin. Dyn. Syst. S, 14 (2021), 4575–4608. https://doi.org/10.3934/dcdss.2021130 doi: 10.3934/dcdss.2021130 |
[10] | E. Vitillaro, Global existence of the wave equation with nonlinear boundary damping and source terms, J. Differ. Equations, 186 (2002), 259–298. https://doi.org/10.1016/s0022-0396(02)00023-2 doi: 10.1016/s0022-0396(02)00023-2 |
[11] | O. A. Ladyzhenskaya, V. K. Kalantarov, Blow-up theorems for quasilinear parabolic and hyperbolic equations, Zap. Nauchn. SLOMI. Steklov, 69 (1977), 77–102. |
[12] | M. O. Korpusov, Blow-up of the solution of strongly dissipative generalized Klein-Gordon equations, Izv. Math., 77 (2013), 325–353. https://doi.org/10.1070/IM2013v077n02ABEH002638 doi: 10.1070/IM2013v077n02ABEH002638 |
[13] | E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill press, 1955. |