Electronic
Research Archive

Research article

Existence, uniqueness, and blow-up analysis of a quasi-linear bi-hyperbolic equation with dynamic boundary conditions

Begüm Çalışkan Desova ${ }^{1, *}$ and Mustafa Polat ${ }^{2}$
${ }^{1}$ Department of Information Security Technology, Yeditepe University, Atasehir 34755, Turkey
${ }^{2}$ Department of Mathematics, Yeditepe University, Atasehir 34755, Turkey
* Correspondence: Email: begum.caliskan@yeditepe.edu.tr.

Abstract

For this study, we investigate the existence and uniqueness of local solutions and derive a blow-up solution for a quasi-linear bi-hyperbolic equation under dynamic boundary conditions. We utilize the contraction mapping concept to demonstrate the solution's local well-posedness and employ a concavity approach to establish the blow-up result.

Keywords: wave equation; local existence; blow-up; contraction mapping principle

1. Introduction

In this paper, we study the following quasi-linear bi-hyperbolic equation:

$$
\begin{equation*}
w_{t t}+\Delta^{2} w-\Delta w=b f(-\Delta w), \quad \text { in } \quad \Omega \times[0, T), \tag{1.1}
\end{equation*}
$$

under the following dynamic boundary conditions,

$$
\begin{equation*}
w=0, \quad \frac{\partial \Delta w}{\partial \eta}=-a \Delta w_{t}, \quad \text { in } \quad \Gamma \times[0, T) \tag{1.2}
\end{equation*}
$$

and initial conditions

$$
\begin{equation*}
w(x, 0)=w_{0}(x), \quad w_{t}(x, 0)=w_{1}(x), \quad x \in \Omega, \tag{1.3}
\end{equation*}
$$

where $a \geq 0, b \geq 0, t \geq 0, x \in \Omega, \Omega$ is an open bounded connected region in $\mathbb{R}^{n}(n \geq 1)$ with a smooth boundary $\Gamma:=\partial \Omega$, and $\eta(x)$ represents an outer unit normal vector to the boundary Γ.

The Eq (1.1) represents a mathematical model of a wave process in a physical domain Ω over a time interval $[0, T)$. This wave equation involves $w_{t t}$ as the second-time derivative representing acceleration over time, $\Delta^{2} w$ as the second-order spatial Laplacian indicating wave irregularities, Δw as the first-order Laplacian reflecting propagation speed within the wave, and $b f(-\Delta w)$ as a nonlinear
term depicting wave interaction with its negative Laplacian. Overall, these equations and conditions provide a framework for understanding wave behavior, interactions at boundaries, and the evolution of waves from specified initial conditions within a physical space. Applications of such equations extend to various areas, including acoustics, electromagnetics, and mechanics, where wave phenomena play a crucial role in modeling and analysis.

First, we mention some known results of higher-order differential equations under dynamic boundary conditions related to the problems (1.1)-(1.3). Dynamic boundary conditions introduce dependencies on both time and space variables, influencing the behavior and evolution of solutions within specific domains. Recent research has highlighted the significance of dynamic boundary conditions in various mathematical contexts, particularly in studying wave propagation, heat transfer, fluid dynamics, and other physical phenomena. Notably, works by Vasconcellos and Teixeira [1] have explored the implications of dynamic boundary conditions on well-posedness. They considered, for $n \leq 3$, the following problem:

$$
\begin{cases}u_{t t}+\Delta^{2} u-\phi\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u+g\left(u_{t}\right)=0, & \text { on } \quad \Omega \times(0, T), \\ u=\frac{\partial u}{\partial v}=0, & \text { on } \Gamma \times(0, T),\end{cases}
$$

where ϕ is a non-negative continuous real differentiable function, and g is a continuous non-decreasing real function. They proved the existence and uniqueness of global solutions. Guedda and Labani [2] studied the problem

$$
\begin{cases}u_{t t}+\Delta^{2} u+\delta u_{t}-\phi\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(u), & \text { on } \quad \Omega \times(0, T), \\ u=0, \quad \Delta u+p(x) \frac{\partial u_{t}}{\partial v}=0, & \text { on } \quad \Gamma \times(0, T),\end{cases}
$$

where $p \geq 0$ is a smooth function defined on the boundary of Ω. They studied the global nonexistence of solutions under certain conditions on f and ϕ. Later, Wu and Tsai [3] considered the initial boundary value problem for a Kirchhoff-type plate equation with a source term in a bounded domain. They established the existence of a global solution using an argument similar to that in [4]. Vitillaro conducted a study in 2017 focusing on dynamic boundary conditions. In this work [5], a wave equation with hyperbolic dynamic boundary conditions, interior and boundary damping effects, and supercritical sources was investigated.

Several authors have extensively studied blow-up phenomena and global nonexistence (see [4, 6-9]). Levine [8] introduced the concavity method and investigated the nonexistence of global solutions with negative initial energy. Subsequently, Georgiev and Todorova [4] expanded upon Levine's work. In 2002, Vitillaro [10] further refined the results of Georgiev and Todorova for systems with positive initial energy. Vitillaro also explored blow-up phenomena for wave equations with dynamic boundary conditions in [9]. Additionally, Can et al. [6, 7] investigated the blow-up properties of (1.1) under various boundary conditions, assuming non-positive initial energy. While their result is achieved by applying the Ladyzhenskaya and Kalantarov lemma [11], along with a generalized concavity method, our approach is based on the blow-up lemma by Korpusov [12], which is another application of the concavity method. In our study of problems (1.1)-(1.3), we obtained both a local existence result and a blow-up result under positive initial energy.

The paper is structured as follows. Section 2 provides essential definitions, theorems, and inequalities. In Section 3, we initially employ the Galerkin approximation method to investigate
the existence of the corresponding linear problems (3.1)-(3.3). Subsequently, utilizing the contraction mapping principle, we establish the local existence and uniqueness of regular solutions for problems (1.1)-(1.3). Finally, in the last section, we deduce the blow-up solutions for problems (1.1)-(1.3) under the condition of positive initial energy.

2. Preliminaries and notations

The Sobolev space is defined by $W^{k, p}(\Omega):=\left\{u \in L_{p}(\Omega): D^{\alpha} u \in L_{p}(\Omega), \forall 0 \leq|\alpha| \leq k\right\}$ for $1 \leq p<\infty$, equipped with the following norm:

$$
\|u\|_{W^{k, p}(\Omega)}:=\left(\sum_{0 \leq|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L_{p}(\Omega)}^{p}\right)^{1 / p} .
$$

We denote by $H^{k}(\Omega)=W^{k, 2}(\Omega)$ the Hilbert-Sobolev space. Throughout this paper, we denote $\|\cdot\|_{L^{2}(\Omega)}=\|\cdot\|_{2}$.

Definition 2.1. Let $w(t)$ be a weak solution of the problem defined by Eqs (1.1)-(1.3). We define the maximal existence time T_{∞} as follows:
(i) If $w(t)$ exists for $0 \leq T<\infty$, then $T_{\infty}=+\infty$.
(ii) If there exists a $T_{0} \in(0, \infty)$ such that $w(t)$ exists for $0 \leq T<T_{0}$, but does not exist at $T=T_{0}$, then $T_{\infty}=T_{0}$.

In order to prove the blow-up result, we will utilize the following lemma due to Korpusov.
Lemma 2.2. [12] Let $\psi(t) \in C^{2}(0, T)$ and consider the differential inequality

$$
\psi \psi^{\prime \prime}-\alpha\left(\psi^{\prime}\right)^{2}+\gamma \psi^{\prime} \psi+\beta \psi \geq 0, \quad \alpha>1, \beta \geq 0, \gamma \geq 0
$$

Assume that the following conditions

$$
\psi^{\prime}(0)>\frac{\gamma}{\alpha-1} \psi(0), \quad \text { and } \quad\left(\psi^{\prime}(0)-\frac{\gamma}{\alpha-1} \psi(0)\right)^{2}>\frac{2 \beta}{2 \alpha-1} \psi(0),
$$

hold with $\psi(t) \geq 0$, and $\psi(0)>0$. Then the time $T>0$ can not be arbitrarily large. That is,

$$
T<T_{\infty}=\psi^{1-\alpha}(0) A^{-1},
$$

where T_{∞} is the maximal existence time interval for $\psi(t)$ and

$$
A^{2} \equiv(\alpha-1)^{2} \psi^{-2 \alpha}(0)\left[\left(\psi^{\prime}(0)-\frac{\gamma}{\alpha-1} \psi(0)\right)^{2}-\frac{2 \beta}{2 \alpha-1} \psi(0)\right],
$$

such that $\lim _{t \uparrow T_{\infty}} \psi(t)=+\infty$.
Now, we state the assumptions on the function f :
(A1) $f: H_{0}^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is locally Lipschitz with the Lipschitz constant L_{f}, that is, for every $x \in$ $H_{0}^{2}(\Omega)$, there exists a neighborhood V of x and a positive constant L_{f} depending on V such that

$$
\|f(y)-f(z)\|_{2} \leq L_{f}\|y-z\|_{2},
$$

for each $y, z \in V$.
(A2) The function f with its primitive $F(u)=\int_{0}^{u} f(s) d s$ has the property:

$$
\begin{equation*}
f(0)=0, \quad u f(u) \geq 2(2 \gamma+1) F(u) \tag{2.1}
\end{equation*}
$$

for all $u \in \mathbb{R}$ and for some positive real number γ.
Example 2.3. Consider the function $f(u)=u^{2}$. This function satisfies property (2.1) based on the conditions $f(0)=0$ and the behavior of its primitive, $F(u)=\int_{0}^{u} f(s) d s=\int_{0}^{u} s^{2} d s=\frac{u^{3}}{3}$. Specifically, we can establish the inequality $u f(u)=u^{3} \geq 2(2 \gamma+1) \frac{u^{3}}{3}$, which holds true for some $\gamma \leq \frac{1}{4}$.

3. Local existence

In this section, we delve into the local existence of solutions for the wave Eqs (1.1)-(1.3) employing the contraction mapping principle. Initially, we examine the following linear initial boundary value problem:

$$
\begin{gather*}
w_{t t}+\Delta^{2} w-\Delta w=h(x, t), \quad \text { in } \Omega \times[0, T), \tag{3.1}\\
w=0, \quad \frac{\partial \Delta w}{\partial \eta}=-a \Delta w_{t}, \quad \text { in } \Gamma \times[0, T), \tag{3.2}\\
w(x, 0)=w_{0}(x), \quad w_{t}(x, 0)=w_{1}(x), \quad x \in \Omega . \tag{3.3}
\end{gather*}
$$

Lemma 3.1. Suppose that $w_{0} \in U, w_{1} \in H$, and $h \in W^{1,2}\left(0, T ; L^{2}(\Omega)\right)$. Then, the problems (3.1)-(3.3) admit a unique solution w such that

$$
w \in L^{\infty}(0, T ; U), w_{t} \in L^{\infty}(0, T ; H)
$$

where $U=\left\{w \in H_{0}^{2}(\Omega):\left.\frac{\partial \Delta w}{\partial \eta}\right|_{\Gamma}=-a \Delta w_{t}\right\}$, and $H=H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$.
Proof. We initially employed the Galerkin approximation method to investigate the existence of solutions to this linear problem. Let $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ be a basis in U, and V_{n} denote the subspace generated by $\phi_{1}, \ldots, \phi_{n}(n=1,2, \ldots)$. Consider $w_{n}(t)=\sum_{i=1}^{n} r_{i n}(t) \phi_{i}$ as the solution of the approximation problem corresponding to (3.1)-(3.3) for $\phi \in V_{n}$. Then, we have:

$$
\begin{equation*}
\int_{\Omega} w_{n}^{\prime \prime} \phi d x+\int_{\Omega} \Delta \phi \Delta w_{n} d x+\int_{\Omega} \nabla w_{n} \nabla \phi d x=\int_{\Omega} h(x, t) \phi d x \tag{3.4}
\end{equation*}
$$

with initial conditions satisfying

$$
\begin{equation*}
w_{n}(0) \equiv \sum_{i=1}^{n}\left(\int_{\Omega} w_{0} \phi_{i} d x\right) \phi_{i} \rightarrow w_{0} \quad \text { in } \quad U \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
w_{n}^{\prime}(0) \equiv \sum_{i=1}^{n}\left(\int_{\Omega} w_{1} \phi_{i} d x\right) \phi_{i} \rightarrow w_{1} \quad \text { in } \quad H . \tag{3.6}
\end{equation*}
$$

First, we verify the existence of solutions to (3.4)-(3.6) on some interval $\left[0, t_{n}\right), 0<t_{n}<T$, and then use standard differential equations techniques [13] to extend the solution across the entire interval $[0, T]$. To achieve this, we need to establish the following a priori estimates.

Setting $\phi=2 w_{n}^{\prime}(t)$ in (3.4), integrating over $(0, t)$, and utilizing boundary conditions yield:

$$
\begin{aligned}
\left\|w_{n}^{\prime}(t)\right\|_{2}^{2}+\left\|\Delta w_{n}(t)\right\|_{2}^{2}+\left\|\nabla w_{n}(t)\right\|_{2}^{2} & \leq\left\|w_{n}^{\prime}(0)\right\|_{2}^{2}+\left\|\Delta w_{n}(0)\right\|_{2}^{2}+\left\|\nabla w_{n}(0)\right\|_{2}^{2} \\
& +2 \int_{0}^{t} \int_{\Omega} h(x, t) w_{n}^{\prime}(t) d x .
\end{aligned}
$$

From this, we obtain:

$$
\begin{equation*}
\left\|w_{n}^{\prime}(t)\right\|_{2}^{2}+\left\|\Delta w_{n}(t)\right\|_{2}^{2}+\left\|\nabla w_{n}(t)\right\|_{2}^{2} \leq C_{0}+\int_{0}^{t}\left(\left\|w_{n}^{\prime}(s)\right\|_{2}^{2}+\left\|\Delta w_{n}(s)\right\|_{2}^{2}\right) d t, \tag{3.7}
\end{equation*}
$$

where $C_{0}=\left\|w_{n}^{\prime}(0)\right\|_{2}^{2}+\left\|\Delta w_{n}(0)\right\|_{2}^{2}+\left\|\nabla w_{n}(0)\right\|_{2}^{2}+\int_{0}^{T}\|h\|_{2}^{2} d t$, and utilizing the estimate:

$$
\begin{equation*}
2\left|\int_{\Omega} h(x, t) w_{n}^{\prime}(t) d x\right| \leq\|h\|_{2}^{2}+\left\|w_{n}^{\prime}(t)\right\|_{2}^{2} . \tag{3.8}
\end{equation*}
$$

The conditions (3.5) and (3.6), and the property of h imply that C_{0} is bounded. Now, for all $0 \leq t \leq$ T, applying Gronwall's inequality in (3.7), we obtain

$$
\begin{equation*}
\left\|w_{n}^{\prime}(t)\right\|_{2}^{2}+\left\|\Delta w_{n}(t)\right\|_{2}^{2}+\left\|\nabla w_{n}(t)\right\|_{2}^{2} \leq M_{1}, \tag{3.9}
\end{equation*}
$$

where M_{1} is a positive constant.
To estimate $w_{n}^{\prime \prime}(0)$ in L^{2}-norm, we set $t=0$ in (3.4) and $\phi=2 w_{n}^{\prime \prime}(0)$:

$$
\begin{equation*}
\left\|w_{n}^{\prime \prime}(0)\right\|_{2}^{2} \leq\left\|w_{n}^{\prime \prime}(0)\right\|_{2}\left[\left\|\Delta^{2} w_{n}(0)\right\|_{2}+\left\|\Delta w_{n}(0)\right\|_{2}+\|h\|_{2}\right] . \tag{3.10}
\end{equation*}
$$

By employing (3.5) and (3.6), we find a positive constant M_{2} such that:

$$
\begin{equation*}
\left\|w_{n}^{\prime \prime}(0)\right\|_{2} \leq M_{2} . \tag{3.11}
\end{equation*}
$$

Next, we aim to establish an upper bound for $\left\|w_{n}^{\prime \prime}(t)\right\|_{2}$. Replacing $\phi=2 w_{n}^{\prime \prime}(t)$ in (3.4) after differentiating it with respect to t gives

$$
\begin{equation*}
\frac{d}{d t}\left[\left\|w_{n}^{\prime \prime}(t)\right\|_{2}^{2}+\left\|\Delta w_{n}^{\prime}(t)\right\|_{2}^{2}+\left\|\nabla w_{n}^{\prime}(t)\right\|_{2}^{2}\right] \leq 2 \int_{\Omega} h^{\prime}(x, t) w_{n}^{\prime \prime}(t) d x . \tag{3.12}
\end{equation*}
$$

Hence, by integrating (3.12) over ($0, t$) and using the inequalities (3.8), (3.9) and (3.11), we obtain

$$
\begin{equation*}
\underbrace{\left\|w_{n}^{\prime \prime}(t)\right\|_{2}^{2}+\left\|\Delta w_{n}^{\prime}(t)\right\|_{2}^{2}+\left\|\nabla w_{n}^{\prime}(t)\right\|_{2}^{2}}_{=: Y(t)} \leq \underbrace{Y(0)+\int_{0}^{T}\left\|h^{\prime}\right\|_{2}^{2}}_{=: C_{1}}+\int_{0}^{t}\left(\left\|w_{n}^{\prime \prime}(s)\right\|_{2}^{2}+\left\|\Delta w_{n}^{\prime}(s)\right\|_{2}^{2}\right) d t \tag{3.13}
\end{equation*}
$$

Using Gronwall's inequality for the inequality

$$
Y(t) \leq C_{1}+\int_{0}^{t}\left(\left\|w_{n}^{\prime \prime}(s)\right\|_{2}^{2}+\left\|\Delta w_{n}^{\prime}(s)\right\|_{2}^{2}\right) d t
$$

and (3.5) and (3.6), we can derive

$$
\begin{equation*}
\left\|w_{n}^{\prime \prime}(t)\right\|_{2}^{2}+\left\|\Delta w_{n}^{\prime}(t)\right\|_{2}^{2}+\left\|\nabla w_{n}^{\prime}(t)\right\|_{2}^{2} \leq M_{3}, \tag{3.14}
\end{equation*}
$$

for any $t \in[0, T]$ with a positive M_{3}, which is independent of $n \in \mathbb{N}$. Using (3.9) and (3.14), we may conclude that

$$
\begin{gather*}
w_{i} \rightarrow w \quad \text { weak }^{*} \quad \text { in } \quad L^{\infty}\left(0, T ; H_{0}^{2}(\Omega)\right), \tag{3.15}\\
w_{i}^{\prime} \rightarrow w^{\prime} \text { weak }^{*} \quad \text { in } L^{\infty}(0, T ; H), \tag{3.16}\\
w_{i}^{\prime} \rightarrow w^{\prime} \quad \text { and } \quad w_{i}^{\prime \prime} \rightarrow w^{\prime \prime} \quad \text { weak } \tag{3.17}
\end{gather*} \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) .
$$

Thus, by taking the limit in (3.4) and utilizing the above convergences, we obtain:

$$
\int_{0}^{T} \int_{\Omega}\left(w_{t t}+\Delta^{2} w-\Delta w\right) u \sigma d x d t=\int_{0}^{T} \int_{\Omega} h(x, t) u \sigma d x d t
$$

for all $\sigma \in D(0, T)$ and for all $u \in U$. From the above identity, we have

$$
\begin{equation*}
w_{t t}+\Delta^{2} w-\Delta w=h(x, t) \quad \text { in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \tag{3.18}
\end{equation*}
$$

since $w^{\prime \prime}, \Delta w$ and $h \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ and we deduce $\Delta^{2} w \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, so $w \in L^{\infty}(0, T ; U)$.
To prove the uniqueness of the solution, let w_{1} and w_{2} be two solutions of (3.1)-(3.3). Then $v=$ $w_{1}-w_{2}$ satisfies

$$
\begin{equation*}
\int_{\Omega} v^{\prime \prime}(t) \phi d x+\int_{\Omega} \Delta v \Delta \phi d x+\int_{\Omega} \nabla v \nabla \phi d x=0, \tag{3.19}
\end{equation*}
$$

for $\phi \in U$. Also, we have

$$
v(x, 0)=0, v^{\prime}(x, 0)=0 \quad \text { in } \quad \Omega, \text { and } v(x, t)=0, \frac{\partial \Delta v}{\partial \eta}=-a \Delta v_{t} \quad \text { on } \quad \Gamma .
$$

Now, if we set $\phi=2 v^{\prime}(t)$ in (3.19), then we have

$$
\left\|v^{\prime}(t)\right\|_{2}^{2}+\|\nabla v(t)\|_{2}^{2}+\|\Delta v(t)\|_{2}^{2} \leq \int_{0}^{t}\left\|v^{\prime}(s)\right\|_{2}^{2}+\|\nabla v(s)\|_{2}^{2}
$$

By Gronwall's inequality, we conclude that

$$
\left\|v^{\prime}(t)\right\|_{2}=\|\Delta v(t)\|_{2}=\|\nabla v(t)\|_{2}=0, \quad \forall t \in[0, T] .
$$

Therefore, we have uniqueness. Now, we establish the local existence of the problems (1.1)-(1.3).
Theorem 3.2. Suppose that $f: H_{0}^{2}(\Omega) \rightarrow L^{2}(\Omega)$, and that $w_{0} \in U$, and $w_{1} \in H$, then there exists a unique solution w with $w \in L^{\infty}(0, T ; U)$ and $w_{t} \in L^{\infty}(0, T ; H)$.

Proof. Define the following space for $T>0$ and $R_{0}>0$:

$$
X_{T, R_{0}}=\left\{v \in L^{\infty}(0, T ; U), v_{t} \in L^{\infty}(0, T ; H): e(v(t)) \equiv\left\|v_{t}(t)\right\|_{2}^{2}+\|\Delta v(t)\|_{2}^{2} \leq R_{0}^{2}, t \in[0, T]\right\} .
$$

Then $X_{T, R_{0}}$ is a complete metric space with the distance

$$
\begin{equation*}
d(x, y)=\sup _{0 \leq t \leq T}\left[\|\Delta(x-y)\|^{2}+\left\|(x-y)_{t}\right\|^{2}\right]^{\frac{1}{2}}, \tag{3.20}
\end{equation*}
$$

where $x, y \in X_{T, R_{0}}$.
By Lemma 3.1, for any $u \in X_{T, R_{0}}$, the problem

$$
\begin{equation*}
w_{t t}+\Delta^{2} w-\Delta w=b f(-\Delta u) \tag{3.21}
\end{equation*}
$$

has a unique solution w of (3.21). We define the nonlinear mapping $B u=w$, and then, we shall show that there exists $T>0$ and $R_{0}>0$ such that
(i) $B: X_{T, R_{0}} \rightarrow X_{T, R_{0}}$,
(ii) In the space $X_{T, R_{0}}$, the mapping B is a contraction according to the metric given in (3.20).

After multiplication by $2 w_{t}$ in Eq (3.21), and integration over Ω, we find

$$
\begin{equation*}
e_{1}(w(t)):=\int_{0}^{t}\left[\left\|w_{t}\right\|_{2}^{2}+\|\Delta w\|_{2}^{2}+\|\nabla w\|_{2}^{2}\right]=\underbrace{2 b \int_{0}^{t} \int_{\Omega} f(-\Delta u) w_{t} d x}_{I_{1}} . \tag{3.22}
\end{equation*}
$$

Taking into account the assumption (A1) on f, we obtain

$$
\begin{aligned}
\left|I_{1}\right| & =2 b \int_{0}^{t} \int_{\Omega} b f(-\Delta u) w_{t}(t) d \Omega d t \leq b \int_{0}^{t}\|f(-\Delta u)\|_{2} \cdot\left\|w_{t}(t)\right\|_{2} d t \\
& \leq 2 b L_{f} \int_{0}^{T}\|-\Delta u(t)\|_{2} \cdot\left\|w_{t}(t)\right\|_{2}+2 b \int_{0}^{t} \underbrace{\|f(0)\|_{2}}_{=0}\left\|w_{t}(t)\right\|_{2} d t \\
& \leq\left(4 b^{2} L_{f}^{2}+1\right) \int_{0}^{t} \underbrace{\left(\|\Delta u(t)\|_{2}^{2}+\left\|w_{t}(t)\right\|_{2}^{2}\right) d t}_{\leq e_{1}(w(s))} .
\end{aligned}
$$

Then, by integrating (3.22) over $(0, t)$ and using the above inequality, we deduce

$$
e_{1}(w(t)) \leq e_{1}\left(w_{0}\right)+\left(4 b^{2} L_{f}^{2}+1\right) \int_{0}^{t} e_{1}(w(s)) d s
$$

Thus, by Gronwall's inequality, we have

$$
\begin{equation*}
e_{1}(w(t)) \leq e_{1}\left(w_{0}\right) e^{\int_{0}^{t} 4 b^{2} L_{f}^{2}+1} . \tag{3.23}
\end{equation*}
$$

Therefore, if the parameters T and R_{0} satisfy $e_{1}\left(w_{0}\right) e^{\int_{0}^{t} 4 b^{2} L_{f}^{2}+1} \leq R_{0}^{2}$, we obtain

$$
\begin{equation*}
e(w(t)) \leq\left(e_{1}\left(w_{0}\right)\right) e^{\int_{0}^{t} 4 b^{2} L_{f}^{2}+1} \leq R_{0}^{2} . \tag{3.24}
\end{equation*}
$$

Hence, it implies that B maps $X_{T, R_{0}}$ into itself.
Let us now prove (ii). To demonstrate that B is a contraction mapping with respect to the metric $d(.,$.$) given above, we consider u_{i} \in X_{T, R_{0}}$ and $w_{i} \in X_{T, R_{0}}$, where $i=1,2$ are the corresponding solutions to (3.21). Let $v(t)=\left(w_{1}-w_{2}\right)(t)$, then v satisfies the following system:

$$
\begin{equation*}
v_{t t}+\Delta^{2} v-\Delta v=f\left(-\Delta u_{1}\right)-f\left(-\Delta u_{2}\right) \tag{3.25}
\end{equation*}
$$

with initial conditions

$$
v(0)=0, v_{t}(0)=0,
$$

and boundary conditions

$$
v=0, \quad \frac{\partial \Delta v}{\partial \eta}=-a \Delta v_{t} .
$$

Multiplying (3.25) by $2 v_{t}$, and integrating it over Ω, we find

$$
\begin{equation*}
\frac{d}{d t}\left[\left\|v_{t}\right\|_{2}^{2}+\|\nabla v\|_{2}^{2}+\|\Delta v\|_{2}^{2}\right] \leq I_{2}+I_{3} \tag{3.26}
\end{equation*}
$$

where

$$
I_{2}=2 b \int_{\Omega}\left(f\left(-\Delta u_{1}\right)-f\left(-\Delta u_{2}\right)\right) v_{t} d x
$$

and

$$
I_{3}=2 \int_{\Omega} \Delta w_{2} v_{t} d x
$$

To proceed the estimates of $I_{i}, i=2,3$, we observe that

$$
\begin{align*}
\left|I_{2}\right| \leq 2 b\left\|f\left(-\Delta u_{1}\right)-f\left(-\Delta u_{2}\right)\right\|_{2} \cdot\left\|v_{t}\right\|_{2} & \leq 2 b L_{f}\left\|\Delta u_{1}-\Delta u_{2}\right\|_{2} \cdot\left\|v_{t}\right\|_{2} \tag{3.27}\\
& \leq 2 b L_{f} e\left(u_{1}-u_{2}\right)^{1 / 2} e(v(t))^{1 / 2}
\end{align*}
$$

and

$$
\begin{equation*}
\left|I_{3}\right| \leq\left\|\Delta w_{2}\right\|_{2} \cdot\left\|v_{t}\right\|_{2} \leq R_{0}^{2} e(v(t))^{1 / 2} . \tag{3.28}
\end{equation*}
$$

Thus, by using (3.27) and (3.28) in (3.26), we get

$$
e(v(t)) \leq \int_{0}^{t}\left[2 b L_{f} e\left(u_{1}-u_{2}\right)^{1 / 2} e(v(s))^{1 / 2}+R_{0}^{2} e(v(s))^{1 / 2}\right] d s
$$

So, from Gronwall's inequality, it follows that

$$
e(v(t)) \leq 4 b^{2} L_{f}^{2} T^{2} e^{R_{0}^{2} T} \sup _{0 \leq t \leq T} e\left(u_{1}-u_{2}\right) .
$$

By (3.20), we have

$$
\begin{equation*}
d\left(w_{1}, w_{2}\right) \leq C\left(T, R_{0}\right)^{1 / 2} d\left(u_{1}, u_{2}\right) \tag{3.29}
\end{equation*}
$$

where $C\left(T, R_{0}\right)=4 b^{2} L_{f}^{2} T^{2} e^{R_{0}^{2} T}$. Hence, under inequality (3.24), B is a contraction mapping if $C\left(T, R_{0}\right)<1$. Indeed, we choose R_{0} to be sufficiently large and T to be sufficiently small so that (3.24) and (3.29) are simultaneously satisfied. By applying the contraction mapping theorem, we obtain the local existence result.

Remark 3.3. The application of the contraction mapping theorem in Theorem 3.2 guarantees the existence of a unique local solution $w(t)$ defined in the ball $B\left(0, R_{0}\right) \subset H_{0}^{2}(\Omega)$. Since $U \times\left(H_{0}^{1}(\Omega) \cap\right.$ $\left.H^{2}(\Omega)\right)$ is dense in $H_{0}^{2}(\Omega) \times L^{2}(\Omega)$, we can obtain the similar priori estimates in Theorem 3.2 for $\|w(t)\|_{H_{0}^{2}(\Omega)}$ and this norm remains bounded as $t \rightarrow T_{\infty}$. So, we can conclude that the solution can be extended to the whole space $H_{0}^{2}(\Omega)$.

Next, we define a weak solution for the initial and boundary value problem, as follows:
Definition 3.4. A weak solution to the problems (1.1)-(1.3) on $(0, T)$ is any function $w \in C\left(0, T ; H_{0}^{2}(\Omega)\right) \cap C\left(0, T ; L^{2}(\Omega)\right)$, with $w_{0} \in H_{0}^{2}(\Omega)$ and $w_{1} \in L^{2}(\Omega)$ verifying

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left(-w_{t} \phi_{t}+\Delta w \Delta \phi+\nabla w \nabla \phi\right) d \Omega d t+\int_{0}^{T} \int_{\Gamma}\left(a \Delta w_{t} \phi\right) d \Gamma d t \\
= & -\left.\int_{\Omega}\left(w_{t} \phi\right)\right|_{0} ^{T}+b \int_{0}^{T} \int_{\Omega} f(-\Delta w) \phi d \Omega d t,
\end{aligned}
$$

for all test functions ϕ in $C(0, T ; U) \cap C\left(0, T ; L^{2}(\Omega)\right)$.

4. Blow-up

In this section, we study the existence of blow-up solutions for the initial and boundary value problems (1.1)-(1.3). We recall the definition for blow-up of the solutions to the problems (1.1)-(1.3).
Definition 4.1. Suppose w is a solution to (1.1)-(1.3) in the maximal existence time interval $\left[0, T_{\infty}\right)$, $0<T_{\infty} \leq \infty$. Then w blows up at T_{∞} if $\lim \sup _{t \rightarrow T_{\infty}, t<T_{\infty}}\|w\|_{2}=+\infty$.

We introduce the energy functional $E(t)$ as:

$$
\begin{equation*}
E(t):=\left\|\nabla w_{t}\right\|_{2}^{2}+\|\Delta w\|_{2}^{2}+\|\nabla \Delta w\|_{2}^{2}-2 b\langle F(-\Delta w), 1\rangle \tag{4.1}
\end{equation*}
$$

Furthermore, we define the function $\psi(t)$ as follows:

$$
\begin{equation*}
\psi(t)=\|\nabla w\|_{2}^{2}+\int_{0}^{t} \int_{\Gamma} a(\Delta w)^{2} d \sigma d s+\int_{\Gamma} a\left(\Delta w_{0}\right)^{2} d \sigma \tag{4.2}
\end{equation*}
$$

The subsequent lemma demonstrates that our energy functional $E(t)$ defined in (4.1) is a non-increasing function.

Lemma 4.2. Under the assumption (2.1) for the energy function $E(t), t>0$, the inequality $E(t) \leq E(0)$ holds.

Proof. Multiplying Eq (1.1) by $-2 \Delta w_{t}$ in $L^{2}(\Omega)$ yields the equality:

$$
\begin{equation*}
-2 \int_{\Omega} w_{t t} \Delta w_{t} d x+2 \int_{\Omega} \Delta w \Delta w_{t} d x-2 \int_{\Omega} \Delta^{2} w \Delta w_{t} d x=-2 b \int_{\Omega} f(-\Delta w) \Delta w_{t} d x \tag{4.3}
\end{equation*}
$$

By using Green's Formula and the boundary conditions (1.2), we obtain

$$
\frac{d}{d t}\left[\left\|\nabla w_{t}\right\|_{2}^{2}+\|\Delta w\|_{2}^{2}+\|\nabla \Delta w\|_{2}^{2}-2 b\langle F(-\Delta w), 1\rangle\right]=-2 \int_{\Gamma} a\left(\Delta w_{t}\right)^{2} d \sigma
$$

Then, we have,

$$
\begin{equation*}
\frac{d}{d t} E(t)=-2 \int_{\Gamma} a\left(\Delta w_{t}\right)^{2} d \sigma \tag{4.4}
\end{equation*}
$$

It is obvious from (4.4) that $E(t) \leq E(0)$ for all $t \geq 0$.
Theorem 4.3. Under the assumptions on the parameter of our problem, the functional $\psi(t)$ given by (4.2) satisfies the following inequality:

$$
\psi^{\prime \prime}(t) \psi(t)-(\gamma+1)\left[\psi^{\prime}(t)\right]^{2}+d_{0} \psi(t) \geq 0
$$

where

$$
d_{0}:=2(2 \gamma+1) E(0)+2(\gamma+1) \int_{\Gamma} a\left(\Delta w_{0}\right)^{2} d \sigma
$$

Proof. Differentiating the function ψ defined in Eq (4.2) for t, we obtain

$$
\begin{equation*}
\psi^{\prime}(t)=2\left\langle\nabla w, \nabla w_{t}\right\rangle+2 \int_{0}^{t} \int_{\Gamma} a \Delta w \Delta w_{t} d \sigma d s+\int_{\Gamma} a\left(\Delta w_{0}\right)^{2} d \sigma \tag{4.5}
\end{equation*}
$$

Taking one more derivative with respect to t and utilizing Green's formula gives:

$$
\begin{aligned}
\psi^{\prime \prime}(t) & =2\left\|\nabla w_{t}\right\|_{2}^{2}+2\left\langle\nabla w, \nabla w_{t t}\right\rangle+2 a \int_{\Gamma} \Delta w \Delta w_{t} d \sigma \\
& =2\left\|\nabla w_{t}\right\|_{2}^{2}-2 \int_{\Omega} w_{t t} \Delta w+2 \int_{\Gamma} \frac{\partial w}{\partial \eta} w_{t t} d \sigma+2 a \int_{\Gamma} \Delta w \Delta w_{t} d \sigma \\
& =2\left\|\nabla w_{t}\right\|_{2}^{2}-2 \int_{\Omega}\left(\Delta w-\Delta^{2} w+b f(-\Delta w)\right) \Delta w d x+2 a \int_{\Gamma} \Delta w \Delta w_{t} d \sigma
\end{aligned}
$$

Since

$$
2 \int_{\Omega} \Delta w \Delta^{2} w d x=2 \int_{\Gamma} \frac{\partial \Delta w}{\partial \eta} \Delta w d \sigma-2 \int_{\Omega} \nabla(\Delta w) \nabla(\Delta w) d x
$$

we obtain,

$$
\begin{aligned}
\psi^{\prime \prime}(t) & =2\left\|\nabla w_{t}\right\|_{2}^{2}-2\|\Delta w\|_{2}^{2}-2\|\nabla \Delta w\|_{2}^{2}+2 b\langle f(-\Delta w),-\Delta w\rangle \\
& +\underbrace{2 \int_{\Gamma} \frac{\partial \Delta w}{\partial \eta} \Delta w d \sigma+2 a \Delta w \Delta w_{t} d \sigma}_{=0} .
\end{aligned}
$$

By using the inequality (2.1) we have,

$$
\begin{align*}
\psi^{\prime \prime}(t) & \geq 2\left\|\nabla w_{t}\right\|_{2}^{2}-2\|\Delta w\|_{2}^{2}-2\|\nabla \Delta w\|_{2}^{2}+4 b(2 \gamma+1)\langle F(-\Delta w), 1\rangle \tag{4.6}\\
& =-2(2 \gamma+1) E(t)+4(\gamma+1)\left\|\nabla w_{t}\right\|_{2}^{2}+4 \gamma\|\Delta w\|_{2}^{2}+4 \gamma\|\nabla \Delta w\|_{2}^{2} .
\end{align*}
$$

Thus, we obtain from the inequalities (4.6) and (4.4) that

$$
\begin{aligned}
\psi^{\prime \prime}(t) & \geq-2(2 \gamma+1) E(0)+4(2 \gamma+1) \int_{0}^{t} \int_{\Gamma} a\left(\Delta w_{t}\right)^{2} d \sigma d s \\
& +4(\gamma+1)\left\|\nabla w_{t}\right\|_{2}^{2}+4 \gamma\|\Delta w\|_{2}^{2}+4 \gamma\|\nabla \Delta w\|_{2}^{2} \\
& \geq 4(\gamma+1)\left[\left\|\nabla w_{t}\right\|_{2}^{2}+\int_{0}^{t} \int_{\Gamma} a\left(\Delta w_{t}\right)^{2} d \sigma d s+\frac{1}{2} \int_{\Gamma} a\left(\Delta w_{0}\right)^{2} d \sigma\right]-d_{0}
\end{aligned}
$$

Multiplying both sides of the following inequality by $\psi(t)$:

$$
\psi^{\prime \prime}(t) \geq 4(\gamma+1) \underbrace{\left[\left\|\nabla w_{t}\right\|_{2}^{2}+\int_{0}^{t} \int_{\Gamma} a\left(\Delta w_{t}\right)^{2} d \sigma d s+\frac{1}{2} \int_{\Gamma} a\left(\Delta w_{0}\right)^{2} d \sigma\right]}_{A}-d_{0}
$$

we get

$$
\begin{equation*}
\psi^{\prime \prime}(t) \psi(t) \geq 4(\gamma+1) A \psi(t)-d_{0} \psi(t) \tag{4.7}
\end{equation*}
$$

From (4.5), we obtain:

$$
\begin{equation*}
(1+\gamma)\left[\psi^{\prime}(t)\right]^{2}=4(1+\gamma)\left[\left\langle\nabla w, \nabla w_{t}\right\rangle+\int_{0}^{t} \int_{\Gamma} a \Delta w \Delta w_{t} d \sigma d s+\frac{1}{2} \int_{\Gamma} a\left(\Delta w_{0}\right)^{2} d \sigma\right]^{2} . \tag{4.8}
\end{equation*}
$$

Applying Schwartz's and Hölder's inequalities, we obtain:

$$
\begin{align*}
(1+\gamma)\left[\psi^{\prime}(t)\right]^{2} \leq & 4(1+\gamma)\left[\|\nabla w\|_{2} \cdot\left\|\nabla w_{t}\right\|_{2}+\left\{\int_{0}^{t}\left[\int_{\Gamma} a(\Delta w)^{2} d \sigma\right] d s\right\}^{\frac{1}{2}}\right. \\
& \left.\left\{\int_{0}^{t}\left[\int_{\Gamma} a\left(\Delta w_{t}\right)^{2} d \sigma\right] d s\right\}^{\frac{1}{2}}+\frac{1}{2} \int_{\Gamma} a\left(\Delta w_{0}\right)^{2} d \sigma\right]^{2} \tag{4.9}
\end{align*}
$$

Now, we introduce the following notations:

$$
\begin{gathered}
X:=\|\nabla w\|_{2}, \quad X^{\prime}:=\left\{\int_{0}^{t}\left[\int_{\Gamma} a(\Delta w)^{2} d \sigma\right] d s\right\}^{\frac{1}{2}}, \\
Y:=\left\|\nabla w_{t}\right\|_{2}, \quad Y^{\prime}:=\left\{\int_{0}^{t}\left[\int_{\Gamma} a\left(\Delta w_{t}\right)^{2} d \sigma\right] d s\right\}^{\frac{1}{2}}, \quad Z:=\int_{\Gamma} a\left(\Delta w_{0}\right)^{2} d \sigma .
\end{gathered}
$$

Hence, from (4.9), we have

$$
\begin{aligned}
& 4(1+\gamma)\left[X Y+X^{\prime} Y^{\prime}+\frac{Z}{2}\right]^{2} \\
= & 4(1+\gamma)\left[\left(X^{2} Y^{2}+\left(X^{\prime}\right)^{2}\left(Y^{\prime}\right)^{2}+\frac{Z^{2}}{4}\right)+2\left(X Y X^{\prime} Y^{\prime}+X Y \frac{Z}{2}+X^{\prime} Y^{\prime} \frac{Z}{2}\right)\right] .
\end{aligned}
$$

By Cauchy's inequality, we obtain

$$
X Y Z \leq\left(\frac{X^{2}}{2}+\frac{Y^{2}}{2}\right) Z \quad \text { and } \quad X^{\prime} Y^{\prime} Z \leq\left(\frac{\left(X^{\prime}\right)^{2}}{2}+\frac{\left(Y^{\prime}\right)^{2}}{2}\right) Z
$$

On the other hand,

$$
\begin{aligned}
& 4(1+\gamma) A \psi(t)=4(1+\gamma)\left[Y^{2}+\left(Y^{\prime}\right)^{2}+\frac{Z}{2}\right]\left[X^{2}+\left(X^{\prime}\right)^{2}+\frac{Z}{2}\right] \\
= & 4(1+\gamma)\left[X^{2} Y^{2}+\left(X^{\prime}\right)^{2} Y^{2}+X^{2}\left(Y^{\prime}\right)^{2}+Y^{2} C+\left(X^{\prime}\right)^{2} Y^{2}+\left(Y^{\prime}\right)^{2} C+X^{2} \frac{Z}{2}+\left(X^{\prime}\right)^{2} \frac{Z}{2}+\frac{Z^{2}}{2}\right],
\end{aligned}
$$

and we also have

$$
X^{2}\left(Y^{\prime}\right)^{2}+\left(X^{\prime}\right)^{2} Y^{2}=\left(X Y^{\prime}-X^{\prime} Y\right)^{2}+2 X X^{\prime} Y Y^{\prime}
$$

so, we get

$$
\begin{equation*}
(\gamma+1)\left[\psi^{\prime}(t)\right]^{2} \leq 4(\gamma+1) A \psi(t) . \tag{4.10}
\end{equation*}
$$

Consequently, by subtracting (4.10) from (4.7), we obtain,

$$
\psi^{\prime \prime}(t) \psi(t)-(\gamma+1)\left[\psi^{\prime}(t)\right]^{2}+d_{0} \psi(t) \geq 0
$$

as desired.
Theorem 4.4. For each fixed $w_{0} \in W_{0}^{1, p}(\Omega)$, there exists $w_{1} \in L^{2}(\Omega)$ satisfying the conditions

$$
\begin{equation*}
\left(\psi^{\prime}(0)\right)^{2}>\frac{2 \beta}{2 \alpha-1} \psi(0), \quad E(0)>0 . \tag{4.11}
\end{equation*}
$$

Hence, by Lemma 2.2 we have the following upper bound for the existence time $T_{0}=T_{0}\left(u_{0}, u_{1}\right)>0$ of the solution:

$$
T_{0} \leq \psi^{1-\alpha}(0) A^{-1}, \quad \lim _{t \uparrow T_{\infty}} \psi(t)=+\infty \text { for } T_{\infty} \geq T_{0}
$$

where

$$
\alpha=1+\gamma, \quad \beta=2(2 \gamma+1) E(0)+2(\gamma+1) \int_{\Gamma} a\left(\Delta w_{0}\right)^{2} d \sigma
$$

and

$$
\begin{equation*}
E(0)=\left\|\nabla w_{1}\right\|_{2}^{2}+\left\|\Delta w_{0}\right\|_{2}^{2}+\left\|\nabla \Delta w_{0}\right\|_{2}^{2}-2 b \int_{\Gamma} F\left(\Delta w_{0}\right) d x \tag{4.12}
\end{equation*}
$$

with

$$
\psi(0)=\left\|\nabla w_{0}\right\|_{2}^{2}+\int_{\Gamma} a\left(\Delta w_{0}\right)^{2} d \sigma, \quad \psi^{\prime}(0)=2\left\langle\nabla w_{0}, \nabla w_{1}\right\rangle+\int_{\Gamma} a\left(\Delta w_{0}\right)^{2} d \sigma
$$

Proof. It is sufficient to prove the resulting conditions in (4.11) are compatible. Firstly, we choose a non-trivial initial function $w_{0}(x) \in W_{0}^{1, p}(\Omega)$ in such a way that

$$
\begin{align*}
\int_{\Gamma} F\left(\Delta w_{0}\right) d x & +\frac{4 a^{1 / 2}\left\|\nabla w_{0}\right\|_{2}^{2} \int_{\Gamma}\left(\Delta w_{0}\right)^{2} d \sigma+a^{2} \int_{\Gamma}\left(\Delta w_{0}\right)^{4}}{8 b\left\|\nabla w_{0}\right\|_{2}^{2}+8 b a \int_{\Gamma}\left(\Delta w_{0}\right)^{2} d \sigma}>\frac{\left\|\nabla w_{0}\right\|_{2}^{2} \int_{\Gamma}\left(\Delta w_{0}\right)^{2} d \sigma}{2 b\left(\left\|\nabla w_{0}\right\|_{2}^{2}+\int_{\Gamma} a\left(\Delta w_{0}\right)^{2}\right.} \\
& +\frac{a(1+\gamma)}{2 b(1+2 \gamma)} \int_{\Gamma} \Delta w_{0}^{2} d \sigma+\frac{\left\|\Delta w_{0}\right\|_{2}^{2}}{2 b}+\frac{\left\|\nabla \Delta w_{0}\right\|_{2}^{2}}{2 b} \tag{4.13}
\end{align*}
$$

Fix $w_{0}(x)$ and put $w_{1}(x)=\lambda w_{0}(x)$ with $\lambda>0$ so large that the initial energy is guaranteed to be positive:

$$
E(0)=\lambda^{2}\left\|\nabla w_{0}\right\|_{2}^{2}+\left\|\Delta w_{0}\right\|_{2}^{2}+\left\|\nabla \Delta w_{0}\right\|_{2}^{2}-2 b \int_{\Gamma} F\left(\Delta w_{0}\right) d x>0
$$

Note that $\psi^{\prime}(0)=2 \lambda\left\|\nabla w_{0}\right\|_{2}^{2}+\int_{\Gamma} a\left(\Delta w_{0}\right)^{2}>0$. Then the condition (4.11) takes the form,

$$
\begin{align*}
& 4 \lambda^{2}\left\|\nabla w_{0}\right\|_{2}^{4}+4 \lambda\left\|\nabla w_{0}\right\|_{2}^{2} \int_{\Gamma} a \Delta w_{0}^{2} d \sigma+\left(\int_{\Gamma} a \Delta w_{0}^{2}\right)^{2} \\
> & \frac{1}{1+2 \gamma}\left(4(1+2 \gamma) E(0)+4(1+\gamma) \int_{\Gamma} a \Delta w_{0}^{2} d \sigma\right) \cdot\left(\left\|\nabla w_{0}\right\|_{2}^{2}+\int_{\Gamma} a \Delta w_{0}^{2} d \sigma\right) \\
= & \left.\left(4 E(0)+4\left(\frac{1+\gamma}{1+2 \gamma}\right) \int_{\Gamma} a \Delta w_{0}^{2} d \sigma\right)\right) \cdot\left(\left\|\nabla w_{0}\right\|_{2}^{2}+\int_{\Gamma} a \Delta w_{0}^{2} d \sigma\right) \\
= & \left(4 \lambda^{2}\left\|\nabla w_{0}\right\|_{2}^{2}+4\left\|\Delta w_{0}\right\|_{2}^{2}+4\left\|\nabla \Delta w_{0}\right\|_{2}^{2}-8 b \int_{\Gamma} F\left(-\Delta w_{0}\right) d x+4\left(\frac{1+\gamma}{1+2 \gamma}\right) \int_{\Gamma} a \Delta w_{0}^{2} d \sigma\right) \\
\cdot & \left(\left\|\nabla w_{0}\right\|_{2}^{2}+\int_{\Gamma} a \Delta w_{0}^{2} d \sigma\right) \\
= & 4 \lambda^{2}\left\|\nabla w_{0}\right\|_{2}^{4}+4 \lambda\left\|\nabla w_{0}\right\|_{2}^{2} \int_{\Gamma} a \Delta w_{0}^{2} d \sigma+\left(4\left(\frac{1+\gamma}{1+2 \gamma}\right) \int_{\Gamma} a \Delta w_{0}^{2} d \sigma+4\left\|\Delta w_{0}\right\|_{2}^{2}\right. \\
+ & \left.4\left\|\nabla \Delta w_{0}\right\|_{2}^{2}-8 b \int_{\Gamma} F\left(-\Delta w_{0}\right) d x\right) \cdot\left(\left\|\nabla w_{0}\right\|_{2}^{2}+\int_{\Gamma} a \Delta w_{0}^{2} d \sigma\right) . \tag{4.14}
\end{align*}
$$

Write $\lambda=1 / a^{1 / 2}$, where $a>0$. Then a series of the transformations in (4.14) yields the inequality that coincides with (4.13). This proves that the conditions (4.11) are compatible for sufficiently small $a>0$.

Remark 4.5. Consider the function f from Assumption (A2) and the functions w_{0} and w_{1} that satisfy the following conditions:
(i) By Theorem 4.4, the bounded function ψ defined in Eq (4.2) and its derivative ψ^{\prime} satisfy Lemma 2.2.
(ii) Additionally, the initial energy functional $E(0)$ defined in $E q(4.12)$ is positive.

Therefore, a positive number exists $T>0$ such as $T<T_{\infty}$, where $\psi(t) \rightarrow+\infty$ as $t \rightarrow T_{\infty}$.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors are grateful to the reviewers for their valuable comments and suggestions.

Conflict of interest

The authors declare there are no conflicts of interest.

References

1. C. F. Vasconcellos, L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping, Ann. Fac. Sci. Toulouse, 8 (1999), 173-193. https://doi.org/10.5802/afst. 928
2. M. Guedda, H. Labani, Nonexistence of global solutions to a class of nonlinear wave equations with dynamic boundary conditions, Bull. Belg. Math. Soc. Simon Stevin, 9 (2002), 39-46.
3. S. T. Wu, L. Y. Tsai, Existence and nonexistence of global solutions for a nonlinear wave equation, Taiwanese J. Math., 13 (2009), 2069-2091. https://doi.org/10.11650/twjm/1500405658
4. V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equations, 109 (1994), 295-308. https://doi.org/10.1006/jdeq.1994.1051
5. E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and supercritical sources, J. Differ. Equations, 265 (2017), 4873-4941. https://doi.org/10.1016/j.jde.2018.06.022
6. V. Bayrak, M. Can, Nonexistence of global solutions of a quasi-linear bi-hyperbolic equation with dynamic boundary conditions, Electron. J. Qual. Theory Differ. Equations, 1999 (1999), 1-10.
7. M. Can, S. R. Park, F. Aliyev, Nonexistence of global solutions of a quasi-linear hyperbolic equation, Math. Inequalities Appl., 1 (1998), 45-52.
8. H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t}=-A u_{t}+F(u)$, Trans. Am. Math. Soc., 192 (1974), 1-21. https://doi.org/10.2307/1996814
9. E. Vitillaro, Blow-up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources, Discrete Contin. Dyn. Syst. S, 14 (2021), 4575-4608. https://doi.org/10.3934/dcdss. 2021130
10. E. Vitillaro, Global existence of the wave equation with nonlinear boundary damping and source terms, J. Differ. Equations, 186 (2002), 259-298. https://doi.org/10.1016/s0022-0396(02)00023-2
11. O. A. Ladyzhenskaya, V. K. Kalantarov, Blow-up theorems for quasilinear parabolic and hyperbolic equations, Zap. Nauchn. SLOMI. Steklov, 69 (1977), 77-102.
12. M. O. Korpusov, Blow-up of the solution of strongly dissipative generalized Klein-Gordon equations, Izv. Math., 77 (2013), 325-353. https://doi.org/10.1070/IM2013v077n02ABEH002638
13. E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill press, 1955.
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
