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Abstract: For this study, we investigate the existence and uniqueness of local solutions and derive
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1. Introduction

In this paper, we study the following quasi-linear bi-hyperbolic equation:

wtt + ∆
2w − ∆w = b f (−∆w), in Ω × [0,T ), (1.1)

under the following dynamic boundary conditions,

w = 0,
∂∆w
∂η
= −a∆wt, in Γ × [0,T ), (1.2)

and initial conditions
w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω, (1.3)

where a ≥ 0, b ≥ 0, t ≥ 0, x ∈ Ω, Ω is an open bounded connected region in Rn (n ≥ 1) with a smooth
boundary Γ := ∂Ω, and η(x) represents an outer unit normal vector to the boundary Γ.

The Eq (1.1) represents a mathematical model of a wave process in a physical domain Ω over
a time interval [0,T ). This wave equation involves wtt as the second-time derivative representing
acceleration over time, ∆2w as the second-order spatial Laplacian indicating wave irregularities, ∆w
as the first-order Laplacian reflecting propagation speed within the wave, and b f (−∆w) as a nonlinear

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2024155


3364

term depicting wave interaction with its negative Laplacian. Overall, these equations and conditions
provide a framework for understanding wave behavior, interactions at boundaries, and the evolution of
waves from specified initial conditions within a physical space. Applications of such equations extend
to various areas, including acoustics, electromagnetics, and mechanics, where wave phenomena play a
crucial role in modeling and analysis.

First, we mention some known results of higher-order differential equations under dynamic
boundary conditions related to the problems (1.1)–(1.3). Dynamic boundary conditions introduce
dependencies on both time and space variables, influencing the behavior and evolution of solutions
within specific domains. Recent research has highlighted the significance of dynamic boundary
conditions in various mathematical contexts, particularly in studying wave propagation, heat transfer,
fluid dynamics, and other physical phenomena. Notably, works by Vasconcellos and Teixeira [1]
have explored the implications of dynamic boundary conditions on well-posedness. They considered,
for n ≤ 3, the following problem: utt + ∆

2u − ϕ
( ∫
Ω
|∇u|2dx

)
∆u + g(ut) = 0, on Ω × (0,T ),

u =
∂u
∂ν
= 0, on Γ × (0,T ),

where ϕ is a non-negative continuous real differentiable function, and g is a continuous non-decreasing
real function. They proved the existence and uniqueness of global solutions. Guedda and Labani [2]
studied the problem utt + ∆

2u + δut − ϕ(
∫
Ω
|∇u|2dx)∆u = f (u), on Ω × (0,T ),

u = 0, ∆u + p(x)
∂ut

∂ν
= 0, on Γ × (0,T ),

where p ≥ 0 is a smooth function defined on the boundary of Ω. They studied the global nonexistence
of solutions under certain conditions on f and ϕ. Later, Wu and Tsai [3] considered the initial
boundary value problem for a Kirchhoff-type plate equation with a source term in a bounded domain.
They established the existence of a global solution using an argument similar to that in [4]. Vitillaro
conducted a study in 2017 focusing on dynamic boundary conditions. In this work [5], a wave
equation with hyperbolic dynamic boundary conditions, interior and boundary damping effects, and
supercritical sources was investigated.

Several authors have extensively studied blow-up phenomena and global nonexistence
(see [4, 6–9]). Levine [8] introduced the concavity method and investigated the nonexistence of global
solutions with negative initial energy. Subsequently, Georgiev and Todorova [4] expanded upon
Levine’s work. In 2002, Vitillaro [10] further refined the results of Georgiev and Todorova for
systems with positive initial energy. Vitillaro also explored blow-up phenomena for wave equations
with dynamic boundary conditions in [9]. Additionally, Can et al. [6, 7] investigated the blow-up
properties of (1.1) under various boundary conditions, assuming non-positive initial energy. While
their result is achieved by applying the Ladyzhenskaya and Kalantarov lemma [11], along with a
generalized concavity method, our approach is based on the blow-up lemma by Korpusov [12], which
is another application of the concavity method. In our study of problems (1.1)–(1.3), we obtained
both a local existence result and a blow-up result under positive initial energy.

The paper is structured as follows. Section 2 provides essential definitions, theorems, and
inequalities. In Section 3, we initially employ the Galerkin approximation method to investigate
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the existence of the corresponding linear problems (3.1)–(3.3). Subsequently, utilizing the
contraction mapping principle, we establish the local existence and uniqueness of regular solutions
for problems (1.1)–(1.3). Finally, in the last section, we deduce the blow-up solutions for
problems (1.1)–(1.3) under the condition of positive initial energy.

2. Preliminaries and notations

The Sobolev space is defined by Wk,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω),∀ 0 ≤ |α| ≤ k} for
1 ≤ p < ∞, equipped with the following norm:

∥u∥Wk,p(Ω) :=
( ∑

0≤|α|≤k

∥Dαu∥pLp(Ω)

)1/p
.

We denote by Hk(Ω) = Wk,2(Ω) the Hilbert-Sobolev space. Throughout this paper, we denote
∥.∥L2(Ω) = ∥.∥2.

Definition 2.1. Let w(t) be a weak solution of the problem defined by Eqs (1.1)–(1.3). We define the
maximal existence time T∞ as follows:

(i) If w(t) exists for 0 ≤ T < ∞, then T∞ = +∞.
(ii) If there exists a T0 ∈ (0,∞) such that w(t) exists for 0 ≤ T < T0 ,but does not exist at T = T0,

then T∞ = T0.

In order to prove the blow-up result, we will utilize the following lemma due to Korpusov.

Lemma 2.2. [12] Let ψ(t) ∈ C2(0,T ) and consider the differential inequality

ψψ′′ − α(ψ′)2 + γψ′ψ + βψ ≥ 0, α > 1, β ≥ 0, γ ≥ 0.

Assume that the following conditions

ψ′(0) >
γ

α − 1
ψ(0), and

(
ψ′(0) −

γ

α − 1
ψ(0)
)2
>

2β
2α − 1

ψ(0),

hold with ψ(t) ≥ 0, and ψ(0) > 0. Then the time T > 0 can not be arbitrarily large. That is,

T < T∞ = ψ1−α(0)A−1,

where T∞ is the maximal existence time interval for ψ(t) and

A2 ≡ (α − 1)2ψ−2α(0)
[(
ψ′(0) −

γ

α − 1
ψ(0)
)2
−

2β
2α − 1

ψ(0)
]
,

such that limt↑T∞ ψ(t) = +∞.

Now, we state the assumptions on the function f :
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(A1) f : H2
0(Ω) → L2(Ω) is locally Lipschitz with the Lipschitz constant L f , that is, for every x ∈

H2
0(Ω), there exists a neighborhood V of x and a positive constant L f depending on V such that

∥ f (y) − f (z)∥2 ≤ L f ∥y − z∥2,

for each y, z ∈ V .

(A2) The function f with its primitive F(u) =
∫ u

0
f (s)ds has the property:

f (0) = 0, u f (u) ≥ 2(2γ + 1)F(u), (2.1)

for all u ∈ R and for some positive real number γ.

Example 2.3. Consider the function f (u) = u2. This function satisfies property (2.1) based on the
conditions f (0) = 0 and the behavior of its primitive, F(u) =

∫ u

0
f (s)ds =

∫ u

0
s2ds = u3

3 . Specifically,
we can establish the inequality u f (u) = u3 ≥ 2(2γ + 1)u3

3 , which holds true for some γ ≤ 1
4 .

3. Local existence

In this section, we delve into the local existence of solutions for the wave Eqs (1.1)–(1.3)
employing the contraction mapping principle. Initially, we examine the following linear initial
boundary value problem:

wtt + ∆
2w − ∆w = h(x, t), in Ω × [0,T ), (3.1)

w = 0,
∂∆w
∂η
= −a∆wt, in Γ × [0,T ), (3.2)

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω. (3.3)

Lemma 3.1. Suppose that w0 ∈ U, w1 ∈ H, and h ∈ W1,2(0,T ; L2(Ω)). Then, the problems (3.1)–(3.3)
admit a unique solution w such that

w ∈ L∞(0,T ; U), wt ∈ L∞(0,T ; H),

where U = {w ∈ H2
0(Ω) : ∂∆w

∂η
|Γ = −a∆wt}, and H = H1

0(Ω) ∩ H2(Ω).

Proof. We initially employed the Galerkin approximation method to investigate the existence of
solutions to this linear problem. Let (ϕn)n∈N be a basis in U, and Vn denote the subspace generated by
ϕ1, ..., ϕn (n = 1, 2, ...). Consider wn(t) =

∑n
i=1 rin(t)ϕi as the solution of the approximation problem

corresponding to (3.1)–(3.3) for ϕ ∈ Vn. Then, we have:∫
Ω

w′′n ϕdx +
∫
Ω

∆ϕ∆wndx +
∫
Ω

∇wn∇ϕdx =
∫
Ω

h(x, t)ϕdx, (3.4)

with initial conditions satisfying

wn(0) ≡
n∑

i=1

( ∫
Ω

w0ϕidx
)
ϕi → w0 in U, (3.5)
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w′n(0) ≡
n∑

i=1

( ∫
Ω

w1ϕidx
)
ϕi → w1 in H. (3.6)

First, we verify the existence of solutions to (3.4)–(3.6) on some interval [0, tn), 0 < tn < T ,
and then use standard differential equations techniques [13] to extend the solution across the entire
interval [0,T ]. To achieve this, we need to establish the following a priori estimates.

Setting ϕ = 2w′n(t) in (3.4), integrating over (0, t), and utilizing boundary conditions yield:

∥w′n(t)∥22 + ∥∆wn(t)∥22 + ∥∇wn(t)∥22 ≤ ∥w
′
n(0)∥22 + ∥∆wn(0)∥22 + ∥∇wn(0)∥22

+ 2
∫ t

0

∫
Ω

h(x, t)w′n(t)dx.

From this, we obtain:

∥w′n(t)∥22 + ∥∆wn(t)∥22 + ∥∇wn(t)∥22 ≤ C0 +

∫ t

0

(
∥w′n(s)∥22 + ∥∆wn(s)∥22

)
dt, (3.7)

where C0 = ∥w′n(0)∥22 + ∥∆wn(0)∥22 + ∥∇wn(0)∥22 +
∫ T

0
∥h∥22dt, and utilizing the estimate:

2|
∫
Ω

h(x, t)w′n(t)dx| ≤ ∥h∥22 + ∥w
′
n(t)∥22. (3.8)

The conditions (3.5) and (3.6), and the property of h imply that C0 is bounded. Now, for all 0 ≤ t ≤
T , applying Gronwall’s inequality in (3.7), we obtain

∥w′n(t)∥22 + ∥∆wn(t)∥22 + ∥∇wn(t)∥22 ≤ M1, (3.9)

where M1 is a positive constant.

To estimate w′′n (0) in L2-norm, we set t = 0 in (3.4) and ϕ = 2w′′n (0):

∥w′′n (0)∥22 ≤ ∥w
′′
n (0)∥2

[
∥∆2wn(0)∥2 + ∥∆wn(0)∥2 + ∥h∥2

]
. (3.10)

By employing (3.5) and (3.6), we find a positive constant M2 such that:

∥w′′n (0)∥2 ≤ M2. (3.11)

Next, we aim to establish an upper bound for ∥w′′n (t)∥2. Replacing ϕ = 2w′′n (t) in (3.4) after
differentiating it with respect to t gives

d
dt

[
∥w′′n (t)∥22 + ∥∆w′n(t)∥22 + ∥∇w′n(t)∥22

]
≤ 2
∫
Ω

h′(x, t)w′′n (t)dx. (3.12)

Hence, by integrating (3.12) over (0, t) and using the inequalities (3.8), (3.9) and (3.11), we obtain

∥w′′n (t)∥22 + ∥∆w′n(t)∥22 + ∥∇w′n(t)∥22︸                                     ︷︷                                     ︸
=:Y(t)

≤ Y(0) +
∫ T

0
∥h′∥22︸              ︷︷              ︸

=:C1

+

∫ t

0

(
∥w′′n (s)∥22 + ∥∆w′n(s)∥22

)
dt. (3.13)
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Using Gronwall’s inequality for the inequality

Y(t) ≤ C1 +

∫ t

0

(
∥w′′n (s)∥22 + ∥∆w′n(s)∥22

)
dt,

and (3.5) and (3.6), we can derive

∥w′′n (t)∥22 + ∥∆w′n(t)∥22 + ∥∇w′n(t)∥22 ≤ M3, (3.14)

for any t ∈ [0,T ] with a positive M3, which is independent of n ∈ N. Using (3.9) and (3.14), we may
conclude that

wi → w weak∗ in L∞(0,T ; H2
0(Ω)), (3.15)

w′i → w′ weak∗ in L∞(0,T ; H), (3.16)

w′i → w′ and w′′i → w′′ weak∗ in L∞(0,T ; L2(Ω)). (3.17)

Thus, by taking the limit in (3.4) and utilizing the above convergences, we obtain:∫ T

0

∫
Ω

(wtt + ∆
2w − ∆w)uσdxdt =

∫ T

0

∫
Ω

h(x, t)uσdxdt,

for all σ ∈ D(0,T ) and for all u ∈ U. From the above identity, we have

wtt + ∆
2w − ∆w = h(x, t) in L∞(0,T ; L2(Ω)), (3.18)

since w′′,∆w and h ∈ L∞(0,T ; L2(Ω)) and we deduce ∆2w ∈ L∞(0,T ; L2(Ω)), so w ∈ L∞(0,T ; U).
To prove the uniqueness of the solution, let w1 and w2 be two solutions of (3.1)–(3.3). Then v =

w1 − w2 satisfies ∫
Ω

v′′(t)ϕdx +
∫
Ω

∆v∆ϕdx +
∫
Ω

∇v∇ϕdx = 0, (3.19)

for ϕ ∈ U. Also, we have

v(x, 0) = 0, v′(x, 0) = 0 in Ω, and v(x, t) = 0,
∂∆v
∂η
= −a∆vt on Γ.

Now, if we set ϕ = 2v′(t) in (3.19), then we have

∥v′(t)∥22 + ∥∇v(t)∥22 + ∥∆v(t)∥22 ≤
∫ t

0
∥v′(s)∥22 + ∥∇v(s)∥22.

By Gronwall’s inequality, we conclude that

∥v′(t)∥2 = ∥∆v(t)∥2 = ∥∇v(t)∥2 = 0, ∀t ∈ [0,T ].

Therefore, we have uniqueness. Now, we establish the local existence of the problems (1.1)–(1.3).

Theorem 3.2. Suppose that f : H2
0(Ω) → L2(Ω), and that w0 ∈ U, and w1 ∈ H, then there exists a

unique solution w with w ∈ L∞(0,T ; U) and wt ∈ L∞(0,T ; H).
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Proof. Define the following space for T > 0 and R0 > 0:

XT,R0 =
{
v ∈ L∞(0,T ; U), vt ∈ L∞(0,T ; H) : e(v(t)) ≡ ∥vt(t)∥22 + ∥∆v(t)∥22 ≤ R2

0, t ∈ [0,T ]
}
.

Then XT,R0 is a complete metric space with the distance

d(x, y) = sup
0≤t≤T

[
∥∆(x − y)∥2 + ∥(x − y)t∥

2
] 1

2
, (3.20)

where x, y ∈ XT,R0 .

By Lemma 3.1, for any u ∈ XT,R0 , the problem

wtt + ∆
2w − ∆w = b f (−∆u) (3.21)

has a unique solution w of (3.21). We define the nonlinear mapping Bu = w, and then, we shall show
that there exists T > 0 and R0 > 0 such that

(i) B : XT,R0 → XT,R0 ,

(ii) In the space XT,R0 , the mapping B is a contraction according to the metric given in (3.20).

After multiplication by 2wt in Eq (3.21), and integration over Ω, we find

e1(w(t)) :=
∫ t

0
[∥wt∥

2
2 + ∥∆w∥22 + ∥∇w∥22] = 2b

∫ t

0

∫
Ω

f (−∆u)wtdx︸                       ︷︷                       ︸
I1

. (3.22)

Taking into account the assumption (A1) on f , we obtain

|I1| = 2b
∫ t

0

∫
Ω

b f (−∆u)wt(t)dΩdt ≤ b
∫ t

0
∥ f (−∆u)∥2.∥wt(t)∥2dt

≤ 2bL f

∫ T

0
∥ − ∆u(t)∥2.∥wt(t)∥2 + 2b

∫ t

0
∥ f (0)∥2︸  ︷︷  ︸
=0

∥wt(t)∥2dt

≤ (4b2L2
f + 1)

∫ t

0

(
∥∆u(t)∥22 + ∥wt(t)∥22

)
dt︸                       ︷︷                       ︸

≤e1(w(s))

.

Then, by integrating (3.22) over (0, t) and using the above inequality, we deduce

e1(w(t)) ≤ e1(w0) + (4b2L2
f + 1)

∫ t

0
e1(w(s))ds.

Thus, by Gronwall’s inequality, we have

e1(w(t)) ≤ e1(w0)e
∫ t

0 4b2L2
f+1. (3.23)

Therefore, if the parameters T and R0 satisfy e1(w0)e
∫ t

0 4b2L2
f+1
≤ R2

0, we obtain

e(w(t)) ≤ (e1(w0))e
∫ t

0 4b2L2
f+1
≤ R2

0. (3.24)
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Hence, it implies that B maps XT,R0 into itself.
Let us now prove (ii). To demonstrate that B is a contraction mapping with respect to the metric

d(., .) given above, we consider ui ∈ XT,R0 and wi ∈ XT,R0 , where i = 1, 2 are the corresponding solutions
to (3.21). Let v(t) = (w1 − w2)(t), then v satisfies the following system:

vtt + ∆
2v − ∆v = f (−∆u1) − f (−∆u2), (3.25)

with initial conditions
v(0) = 0, vt(0) = 0,

and boundary conditions

v = 0,
∂∆v
∂η
= −a∆vt.

Multiplying (3.25) by 2vt, and integrating it over Ω, we find

d
dt

[
∥vt∥

2
2 + ∥∇v∥22 + ∥∆v∥22

]
≤ I2 + I3, (3.26)

where
I2 = 2b

∫
Ω

( f (−∆u1) − f (−∆u2))vtdx,

and
I3 = 2

∫
Ω

∆w2vtdx.

To proceed the estimates of Ii, i = 2, 3, we observe that

|I2| ≤ 2b∥ f (−∆u1) − f (−∆u2)∥2.∥vt∥2 ≤ 2bL f ∥∆u1 − ∆u2∥2.∥vt∥2 (3.27)
≤ 2bL f e(u1 − u2)1/2e(v(t))1/2,

and

|I3| ≤ ∥∆w2∥2.∥vt∥2 ≤ R2
0e(v(t))1/2. (3.28)

Thus, by using (3.27) and (3.28) in (3.26), we get

e(v(t)) ≤
∫ t

0
[2bL f e(u1 − u2)1/2e(v(s))1/2 + R2

0e(v(s))1/2]ds.

So, from Gronwall’s inequality, it follows that

e(v(t)) ≤ 4b2L2
f T

2eR2
0T sup

0≤t≤T
e(u1 − u2).

By (3.20), we have
d(w1,w2) ≤ C(T,R0)1/2d(u1, u2), (3.29)

where C(T,R0) = 4b2L2
f T

2eR2
0T . Hence, under inequality (3.24), B is a contraction mapping if

C(T,R0) < 1. Indeed, we choose R0 to be sufficiently large and T to be sufficiently small so that (3.24)
and (3.29) are simultaneously satisfied. By applying the contraction mapping theorem, we obtain the
local existence result.
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Remark 3.3. The application of the contraction mapping theorem in Theorem 3.2 guarantees the
existence of a unique local solution w(t) defined in the ball B(0,R0) ⊂ H2

0(Ω). Since U × (H1
0(Ω) ∩

H2(Ω)) is dense in H2
0(Ω) × L2(Ω), we can obtain the similar priori estimates in Theorem 3.2 for

∥w(t)∥H2
0 (Ω) and this norm remains bounded as t → T∞. So, we can conclude that the solution can be

extended to the whole space H2
0(Ω).

Next, we define a weak solution for the initial and boundary value problem, as follows:

Definition 3.4. A weak solution to the problems (1.1)–(1.3) on (0,T ) is any function
w ∈ C(0,T ; H2

0(Ω)) ∩C(0,T ; L2(Ω)), with w0 ∈ H2
0(Ω) and w1 ∈ L2(Ω) verifying∫ T

0

∫
Ω

(−wtϕt + ∆w∆ϕ + ∇w∇ϕ)dΩdt +
∫ T

0

∫
Γ

(a∆wtϕ)dΓdt

= −

∫
Ω

(wtϕ)|T0 + b
∫ T

0

∫
Ω

f (−∆w)ϕdΩdt,

for all test functions ϕ in C(0,T ; U) ∩C(0,T ; L2(Ω)).

4. Blow-up

In this section, we study the existence of blow-up solutions for the initial and boundary value
problems (1.1)–(1.3). We recall the definition for blow-up of the solutions to the problems (1.1)–(1.3).

Definition 4.1. Suppose w is a solution to (1.1)–(1.3) in the maximal existence time interval [0,T∞),
0 < T∞ ≤ ∞. Then w blows up at T∞ if lim supt→T∞,t<T∞∥w∥2 = +∞.

We introduce the energy functional E(t) as:

E(t) := ∥∇wt∥
2
2 + ∥∆w∥22 + ∥∇∆w∥22 − 2b⟨F(−∆w), 1⟩. (4.1)

Furthermore, we define the function ψ(t) as follows:

ψ(t) = ∥∇w∥22 +
∫ t

0

∫
Γ

a(∆w)2dσds +
∫
Γ

a(∆w0)2dσ. (4.2)

The subsequent lemma demonstrates that our energy functional E(t) defined in (4.1) is a
non-increasing function.

Lemma 4.2. Under the assumption (2.1) for the energy function E(t), t > 0, the inequality
E(t) ≤ E(0) holds.

Proof. Multiplying Eq (1.1) by −2∆wt in L2(Ω) yields the equality:

−2
∫
Ω

wtt∆wtdx + 2
∫
Ω

∆w∆wtdx − 2
∫
Ω

∆2w∆wtdx = −2b
∫
Ω

f (−∆w)∆wtdx. (4.3)

By using Green’s Formula and the boundary conditions (1.2), we obtain

d
dt

[∥∇wt∥
2
2 + ∥∆w∥22 + ∥∇∆w∥22 − 2b⟨F(−∆w), 1⟩] = −2

∫
Γ

a(∆wt)2dσ.
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Then, we have,

d
dt

E(t) = −2
∫
Γ

a(∆wt)2dσ. (4.4)

It is obvious from (4.4) that E(t) ≤ E(0) for all t ≥ 0.

Theorem 4.3. Under the assumptions on the parameter of our problem, the functional ψ(t) given
by (4.2) satisfies the following inequality:

ψ′′(t)ψ(t) − (γ + 1)[ψ′(t)]2 + d0ψ(t) ≥ 0,

where
d0 := 2(2γ + 1)E(0) + 2(γ + 1)

∫
Γ

a(∆w0)2dσ.

Proof. Differentiating the function ψ defined in Eq (4.2) for t, we obtain

ψ′(t) = 2⟨∇w,∇wt⟩ + 2
∫ t

0

∫
Γ

a∆w∆wtdσds +
∫
Γ

a(∆w0)2dσ. (4.5)

Taking one more derivative with respect to t and utilizing Green’s formula gives:

ψ′′(t) = 2∥∇wt∥
2
2 + 2⟨∇w,∇wtt⟩ + 2a

∫
Γ

∆w∆wtdσ

= 2∥∇wt∥
2
2 − 2

∫
Ω

wtt∆w + 2
∫
Γ

∂w
∂η

wttdσ + 2a
∫
Γ

∆w∆wtdσ

= 2∥∇wt∥
2
2 − 2

∫
Ω

(∆w − ∆2w + b f (−∆w))∆wdx + 2a
∫
Γ

∆w∆wtdσ.

Since
2
∫
Ω

∆w∆2wdx = 2
∫
Γ

∂∆w
∂η
∆wdσ − 2

∫
Ω

∇(∆w)∇(∆w)dx,

we obtain,

ψ′′(t) = 2∥∇wt∥
2
2 − 2∥∆w∥22 − 2∥∇∆w∥22 + 2b⟨ f (−∆w),−∆w⟩

+ 2
∫
Γ

∂∆w
∂η
∆wdσ + 2a∆w∆wtdσ︸                                   ︷︷                                   ︸

=0

.

By using the inequality (2.1) we have,

ψ′′(t) ≥ 2∥∇wt∥
2
2 − 2∥∆w∥22 − 2∥∇∆w∥22 + 4b(2γ + 1)⟨F(−∆w), 1⟩ (4.6)

= −2(2γ + 1)E(t) + 4(γ + 1)∥∇wt∥
2
2 + 4γ∥∆w∥22 + 4γ∥∇∆w∥22.

Thus, we obtain from the inequalities (4.6) and (4.4) that
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ψ′′(t) ≥ −2(2γ + 1)E(0) + 4(2γ + 1)
∫ t

0

∫
Γ

a(∆wt)2dσds

+ 4(γ + 1)∥∇wt∥
2
2 + 4γ∥∆w∥22 + 4γ∥∇∆w∥22

≥ 4(γ + 1)
[
∥∇wt∥

2
2 +

∫ t

0

∫
Γ

a(∆wt)2dσds +
1
2

∫
Γ

a(∆w0)2dσ
]
− d0.

Multiplying both sides of the following inequality by ψ(t):

ψ′′(t) ≥ 4(γ + 1)
[
∥∇wt∥

2
2 +

∫ t

0

∫
Γ

a(∆wt)2dσds +
1
2

∫
Γ

a(∆w0)2dσ
]

︸                                                             ︷︷                                                             ︸
A

−d0,

we get
ψ′′(t)ψ(t) ≥ 4(γ + 1)Aψ(t) − d0ψ(t). (4.7)

From (4.5), we obtain:

(1 + γ)[ψ′(t)]2 = 4(1 + γ)
[
⟨∇w,∇wt⟩ +

∫ t

0

∫
Γ

a∆w∆wtdσds +
1
2

∫
Γ

a(∆w0)2dσ
]2
. (4.8)

Applying Schwartz’s and Hölder’s inequalities, we obtain:

(1 + γ)[ψ′(t)]2 ≤ 4(1 + γ)
[
∥∇w∥2.∥∇wt∥2 +

{ ∫ t

0

[ ∫
Γ

a(∆w)2dσ
]
ds
} 1

2
.{ ∫ t

0

[ ∫
Γ

a(∆wt)2dσ
]
ds
} 1

2
+

1
2

∫
Γ

a(∆w0)2dσ
]2
. (4.9)

Now, we introduce the following notations:

X := ∥∇w∥2, X′ :=
{ ∫ t

0

[ ∫
Γ

a(∆w)2dσ
]
ds
} 1

2
,

Y := ∥∇wt∥2, Y ′ :=
{ ∫ t

0

[ ∫
Γ

a(∆wt)2dσ
]
ds
} 1

2
, Z :=

∫
Γ

a(∆w0)2dσ.

Hence, from (4.9), we have

4(1 + γ)
[
XY + X′Y ′ +

Z
2

]2
= 4(1 + γ)

[(
X2Y2 + (X′)2(Y ′)2 +

Z2

4

)
+ 2
(
XYX′Y ′ + XY

Z
2
+ X′Y ′

Z
2

)]
.

By Cauchy’s inequality, we obtain

XYZ ≤
(X2

2
+

Y2

2

)
Z and X′Y ′Z ≤

( (X′)2

2
+

(Y ′)2

2

)
Z.
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On the other hand,

4(1 + γ)Aψ(t) = 4(1 + γ)
[
Y2 + (Y ′)2 +

Z
2
][

X2 + (X′)2 +
Z
2
]

= 4(1 + γ)
[
X2Y2 + (X′)2Y2 + X2(Y ′)2 + Y2C + (X′)2Y2 + (Y ′)2C + X2 Z

2
+ (X′)2 Z

2
+

Z2

2
]
,

and we also have
X2(Y ′)2 + (X′)2Y2 = (XY ′ − X′Y)2 + 2XX′YY ′,

so, we get
(γ + 1)[ψ′(t)]2 ≤ 4(γ + 1)Aψ(t). (4.10)

Consequently, by subtracting (4.10) from (4.7), we obtain,

ψ′′(t)ψ(t) − (γ + 1)[ψ′(t)]2 + d0ψ(t) ≥ 0,

as desired.

Theorem 4.4. For each fixed w0 ∈ W1,p
0 (Ω), there exists w1 ∈ L2(Ω) satisfying the conditions

(ψ′(0))2 >
2β

2α − 1
ψ(0), E(0) > 0. (4.11)

Hence, by Lemma 2.2 we have the following upper bound for the existence time T0 = T0(u0, u1) > 0 of
the solution:

T0 ≤ ψ
1−α(0)A−1, lim

t↑T∞
ψ(t) = +∞ for T∞ ≥ T0,

where

α = 1 + γ, β = 2(2γ + 1)E(0) + 2(γ + 1)
∫
Γ

a(∆w0)2dσ,

and

E(0) = ∥∇w1∥
2
2 + ∥∆w0∥

2
2 + ∥∇∆w0∥

2
2 − 2b

∫
Γ

F(∆w0)dx, (4.12)

with

ψ(0) = ∥∇w0∥
2
2 +

∫
Γ

a(∆w0)2dσ, ψ′(0) = 2⟨∇w0,∇w1⟩ +

∫
Γ

a(∆w0)2dσ.

Proof. It is sufficient to prove the resulting conditions in (4.11) are compatible. Firstly, we choose a
non-trivial initial function w0(x) ∈ W1,p

0 (Ω) in such a way that

∫
Γ

F(∆w0)dx +
4a1/2∥∇w0∥

2
2

∫
Γ

(∆w0)2dσ + a2
∫
Γ

(∆w0)4

8b∥∇w0∥
2
2 + 8ba

∫
Γ

(∆w0)2dσ
>

∥∇w0∥
2
2

∫
Γ

(∆w0)2dσ

2b(∥∇w0∥
2
2 +

∫
Γ

a(∆w0)2

+
a(1 + γ)

2b(1 + 2γ)

∫
Γ

∆w2
0dσ +

∥∆w0∥
2
2

2b
+
∥∇∆w0∥

2
2

2b
. (4.13)
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Fix w0(x) and put w1(x) = λw0(x) with λ > 0 so large that the initial energy is guaranteed to
be positive:

E(0) = λ2∥∇w0∥
2
2 + ∥∆w0∥

2
2 + ∥∇∆w0∥

2
2 − 2b

∫
Γ

F(∆w0)dx > 0.

Note that ψ′(0) = 2λ∥∇w0∥
2
2 +
∫
Γ

a(∆w0)2 > 0. Then the condition (4.11) takes the form,

4λ2∥∇w0∥
4
2 + 4λ∥∇w0∥

2
2

∫
Γ

a∆w2
0dσ +

( ∫
Γ

a∆w2
0

)2
>

1
1 + 2γ

(
4(1 + 2γ)E(0) + 4(1 + γ)

∫
Γ

a∆w2
0dσ
)
.
(
∥∇w0∥

2
2 +

∫
Γ

a∆w2
0dσ
)

=
(
4E(0) + 4

( 1 + γ
1 + 2γ

) ∫
Γ

a∆w2
0dσ)
)
.
(
∥∇w0∥

2
2 +

∫
Γ

a∆w2
0dσ
)

=
(
4λ2∥∇w0∥

2
2 + 4∥∆w0∥

2
2 + 4∥∇∆w0∥

2
2 − 8b

∫
Γ

F(−∆w0)dx + 4
( 1 + γ
1 + 2γ

) ∫
Γ

a∆w2
0dσ
)

.
(
∥∇w0∥

2
2 +

∫
Γ

a∆w2
0dσ
)

= 4λ2∥∇w0∥
4
2 + 4λ∥∇w0∥

2
2

∫
Γ

a∆w2
0dσ +

(
4
( 1 + γ
1 + 2γ

) ∫
Γ

a∆w2
0dσ + 4∥∆w0∥

2
2

+ 4∥∇∆w0∥
2
2 − 8b

∫
Γ

F(−∆w0)dx
)
.
(
∥∇w0∥

2
2 +

∫
Γ

a∆w2
0dσ
)
. (4.14)

Write λ = 1/a1/2, where a > 0. Then a series of the transformations in (4.14) yields the inequality
that coincides with (4.13). This proves that the conditions (4.11) are compatible for sufficiently
small a > 0.

Remark 4.5. Consider the function f from Assumption (A2) and the functions w0 and w1 that satisfy
the following conditions:
(i) By Theorem 4.4, the bounded function ψ defined in Eq (4.2) and its derivative ψ′ satisfy Lemma 2.2.
(ii) Additionally, the initial energy functional E(0) defined in Eq (4.12) is positive.
Therefore, a positive number exists T > 0 such as T < T∞, where ψ(t)→ +∞ as t → T∞.
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