Research article

Lignocelluloytic activities and composition of bacterial community in the camel rumen

  • Received: 12 July 2021 Accepted: 15 September 2021 Published: 24 September 2021
  • The camel is well-adapted to utilize the poor-quality forages in the harsh desert conditions as the camel rumen sustains fibrolytic microorganisms, mainly bacteria that are capable of breaking down the lignocellulosic biomass efficiently. Exploring the composition of the bacterial community in the rumen of the camel and quantifying their cellulolytic and xylanolytic activities could lead to understanding and improving fiber fermentation and discovering novel sources of cellulases and xylanases. In this study, Illumina MiSeq sequencing of the V4 region on 16S rRNA was applied to identify the bacterial and archaeal communities in the rumen of three camels fed wheat straw and broom corn. Furthermore, rumen samples were inoculated into bacterial media enriched with xylan and different cellulose sources, including filter paper (FP), wheat straw (WS), and alfalfa hay (AH) to assess the ability of rumen bacteria to produce endo-cellulase and endo-xylanase at different fermentation intervals. The results revealed that the phylum Bacteroidetes dominated the bacterial community and Candidatus Methanomethylophilus dominated the archaeal community. Also, most of the bacterial community has fibrolytic potential and the dominant bacterial genera were Prevotella, RC9_gut_group, Butyrivibrio, Ruminococcus, Fibrobacteres, and Treponema. The highest xylanase production (884.8 mU/mL) was observed at 7 days. The highest cellulase production (1049.5 mU/mL) was observed when rumen samples were incubated with Alfalfa hay for 7 days.

    Citation: Alaa Emara Rabee, Robert Forster, Ebrahim A Sabra. Lignocelluloytic activities and composition of bacterial community in the camel rumen[J]. AIMS Microbiology, 2021, 7(3): 354-367. doi: 10.3934/microbiol.2021022

    Related Papers:

  • The camel is well-adapted to utilize the poor-quality forages in the harsh desert conditions as the camel rumen sustains fibrolytic microorganisms, mainly bacteria that are capable of breaking down the lignocellulosic biomass efficiently. Exploring the composition of the bacterial community in the rumen of the camel and quantifying their cellulolytic and xylanolytic activities could lead to understanding and improving fiber fermentation and discovering novel sources of cellulases and xylanases. In this study, Illumina MiSeq sequencing of the V4 region on 16S rRNA was applied to identify the bacterial and archaeal communities in the rumen of three camels fed wheat straw and broom corn. Furthermore, rumen samples were inoculated into bacterial media enriched with xylan and different cellulose sources, including filter paper (FP), wheat straw (WS), and alfalfa hay (AH) to assess the ability of rumen bacteria to produce endo-cellulase and endo-xylanase at different fermentation intervals. The results revealed that the phylum Bacteroidetes dominated the bacterial community and Candidatus Methanomethylophilus dominated the archaeal community. Also, most of the bacterial community has fibrolytic potential and the dominant bacterial genera were Prevotella, RC9_gut_group, Butyrivibrio, Ruminococcus, Fibrobacteres, and Treponema. The highest xylanase production (884.8 mU/mL) was observed at 7 days. The highest cellulase production (1049.5 mU/mL) was observed when rumen samples were incubated with Alfalfa hay for 7 days.



    加载中

    Acknowledgments



    We would like to thank the administration of Desert Research Center and the staff of Lethbridge Research Center. This study received no specific funding.

    Conflict of interest



    The authors declare no conflict of interest.

    Author Contributions



    Alaa Emara Rabee conceived and designed the experiments, performed the experiments,analyzed the data, prepared figures and/or tables, authored or reviewed drafts of thepaper, and approved the final draft.
    Ebrahim Sabra conceived and designed the experiments, analyzed the data, authored orreviewed drafts of the paper, and approved the final draft.
    Robert Forster conceived and designed the experiments, analyzed the data, authored orreviewed drafts of the paper, and approved the final draft.

    [1] Samsudin AA, Evans PN, Wright AD, et al. (2011) Molecular diversity of the foregut bacteria community in the dromedary camel (Camelus dromedarius). Environ Microbiol 13: 3024-3035. doi: 10.1111/j.1462-2920.2011.02579.x
    [2] Kay RNB, Maloiy GMO (1989) Digestive secretions in camels. Options Méditerranéennes–Série Séminaires-n.°2 83-87.
    [3] Gharechahi J, Zahiri HS, Noghabi KA, et al. (2015) In-depth diversity analysis of the bacterial community resident in the camel rumen. Syst Appl Microbiol 38: 67-76. doi: 10.1016/j.syapm.2014.09.004
    [4] Lechner-Doll M, Engelhardt WV (1989) Particle size and passage from the forestomach in camels compared to cattle and sheep fed a similar diet. J Anim Physiol Anim Nutr 61: 120-128. doi: 10.1111/j.1439-0396.1989.tb00091.x
    [5] Iqbal A, Khan BB (2001) Feeding behaviour of camel. Pak J Agric Sci 38: 58-63.
    [6] Samsudin AA, Wright ADG, Al Jassim R (2012) Cellulolytic bacteria in the foregut of the dromedary camel (Camelus dromedarius). Appl Environ Microbiol 78: 8836-8839. doi: 10.1128/AEM.02420-12
    [7] Rabee AE, Forster RJ, Elekwachi CO, et al. (2020) Comparative analysis of the metabolically active microbial communities in the rumen of dromedary camels under different feeding systems using total rRNA sequencing. Peer J 8: e10184. doi: 10.7717/peerj.10184
    [8] Bhatt VD, Dande SS, Patil NV, et al. (2013) Molecular analysis of the bacterial microbiome in the forestomach fluid from the dromedary camel (Camelus dromedarius). Mol Biol Rep 40: 3363-3371. doi: 10.1007/s11033-012-2411-4
    [9] Gharechahi J, Salekdeh GH (2018) A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol Biofuels 11: 216. doi: 10.1186/s13068-018-1214-9
    [10] Ameri R, Laville E, Potocki-VeÂronèse G, et al. (2018) Two new gene clusters involved in the degradation of plant cell wall from the fecal microbiota of Tunisian dromedary. PLoS One 13: e0194621. doi: 10.1371/journal.pone.0194621
    [11] Jami E, White BA, Mizrahi I (2014) Potential role of the bovine rumen microbiome in modulating milk composition and feed ffficiency. PLoS One 9: e85423. doi: 10.1371/journal.pone.0085423
    [12] Moss AR, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49: 231-253. doi: 10.1051/animres:2000119
    [13] Van Nevel CJ, Demeyer DI (1996) Control of rumen methanogenesis. Environ Monit Assess 42: 73-97. doi: 10.1007/BF00394043
    [14] Lee K, Webb RI, Janssen PH, et al. (2009) Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiol 9: 5. doi: 10.1186/1471-2180-9-5
    [15] Ekinci MS, Özcan N, ÖzkÖse E, et al. (2001) A Study on cellulolytic and hemicellulolytic enzymes of anaerobic rumen bacterium Ruminococcus flavefaciens Strain 17. Turk J Vet Anim Sci 25: 703-709.
    [16] Seo JK, Park TS, Kwon IH, et al. (2013) Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian-Aust J Anim Sci 26: 50-58. doi: 10.5713/ajas.2012.12506
    [17] Sadhu S, Ghosh PK, Aditya G, et al. (2014) Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp. (MTCC10046) isolated from cow dung. J King Saud UnivSci 26: 323-332. doi: 10.1016/j.jksus.2014.06.001
    [18] Khatab MSA, Abd El Tawab AM, Fouad MT (2017) Isolation and characterization of anaerobic bacteria from frozen rumen liquid and its potential characterization. Int J Dairy Sci 12: 47-51. doi: 10.3923/ijds.2017.47.51
    [19] Selinger LB, Fosberg CW, Cheng KJ (1996) The rumen: A unique source of enzymes for enhancing livestock production. Anaerobe 2: 263-284. doi: 10.1006/anae.1996.0036
    [20] Hess M, Sczyrba A, Egan R, et al. (2011) Metagenomic discovery of biomass degrading genes and genomes from cow rumen. Science 331: 463-467. doi: 10.1126/science.1200387
    [21] Rabee AE, Al Ahl AAS, Sabra EA, et al. (2019a) Assessment of xylanolytic and cellulolytic activities of anaerobic bacterial community in the rumen of camel using different substrates. Menoufia J Animal Poultry Fish Prod 3: 69-82. doi: 10.21608/mjapfp.2019.174814
    [22] Molina-Guerrero CE, de la Rosa G, Gonzalez Castañeda J, et al. (2018) Optimization of culture conditions for production of cellulase by Stenotrophomonas maltophiliaBio Res 13: 8358-8372.
    [23] Sethi S, Datta A, Gupta BL, et al. (2013) Optimization of Cellulase Production from Bacteria Isolated from Soil. Inter Scholarly Res Not 2013.
    [24] Rabee AE, Forster RJ, Elekwachi CO, et al. (2019b) Community structure and fibrolytic activities of anaerobic rumen fungi in dromedary camels. J Basic Microbiol 49: 1-10.
    [25] Phillips MW, Gordon GLR (1988) Sugar and polysaccharide fermentation by rumen anaerobic fungi from Australia, Britain and New Zealand. BioSystems 21: 377-383. doi: 10.1016/0303-2647(88)90036-6
    [26] Wang Z, Elekwachi C, Jiao J, et al. (2017) Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing. Front Microbiol 8: 159.
    [27] Liu K, Xu Q, Wang L, et al. (2016) Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microb Biotechnol 9: 257-268. doi: 10.1111/1751-7915.12345
    [28] Caporaso JG, Kuczynski J, Stombaugh J, et al. (2010) QIIMEE allows analysis of high-throughput community sequencing data. Nat Methods 7: 335-336. doi: 10.1038/nmeth.f.303
    [29] Andrews S Fast QC: a quality control tool for high throughput sequence data (2010) .Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
    [30] Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 30: 2114-2120. doi: 10.1093/bioinformatics/btu170
    [31] Zhang J, Kobert K, Flouri T, et al. (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30: 614-620. doi: 10.1093/bioinformatics/btt593
    [32] Caldwell DR, Bryant MP (1966) Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol 14: 794-801. doi: 10.1128/am.14.5.794-801.1966
    [33] McSweeney CS, Denman SE, Mackie RI (2005) Rumen bacteria. Methods in Gut Microbial Ecology for Ruminants Dordrecht: Springer.
    [34] IBM Corp. Released (2011)  IBM SPSS Statistics for Windows, Version 20.0 Armonk, NY: IBM Corp.
    [35] Petri RM, Schwaiger T, Penner GB, et al. (2013) Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS One 8: e83424. doi: 10.1371/journal.pone.0083424
    [36] Pandya PR, Singh KM, Parnerkar S, et al. (2010) Bacterial diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis. J Appl Genet 51: 395-402. doi: 10.1007/BF03208869
    [37] Pitta DW, Kumar S, Veiccharelli B, et al. (2014) Bacterial diversity associated with feeding dry forage at different dietary concentrations in the rumen contents of Mehshana buffalo (Bubalus bubalis) using 16S pyrotags. Anaerobe 25: 31-41. doi: 10.1016/j.anaerobe.2013.11.008
    [38] Naas AE, Mackenzie AK, Mravec J, et al. (2014) Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation? mBio 5: e01401-e01414.
    [39] Fouts DE, Szpakowski S, Purushe J, et al. (2012) Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS One 7: e48289. doi: 10.1371/journal.pone.0048289
    [40] Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Science 292: 1119-1122. doi: 10.1126/science.1058830
    [41] Nathani NM, Patel AK, Mootapally CS, et al. (2015) Effect of roughage on rumen microbiota composition in the efficient feed converter and sturdy Indian Jaffrabadi buffalo (Bubalus bubalis). BMC Genomics 16: 1116. doi: 10.1186/s12864-015-2340-4
    [42] Koike S, Yoshitani S, Kobayashi Y, et al. (2003) Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol Lett 229: 23-30. doi: 10.1016/S0378-1097(03)00760-2
    [43] Liu K, Xu Q, Wang L, et al. (2017) The impact of diet on the composition and relative abundance of rumen microbes in goat. Asian-Australas J Anim Sci 30: 531-537. doi: 10.5713/ajas.16.0353
    [44] Gruninger RJ, McAllister TA, Forster RJ (2016) Bacterial and archaeal diversity in the gastrointestinal tract of the orth American beaver (Castor canadensis). PLoS One 11: e0156457. doi: 10.1371/journal.pone.0156457
    [45] Ransom-Jones E, Jones DL, McCarthy AJ, et al. (2012) The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63: 267-281. doi: 10.1007/s00248-011-9998-1
    [46] Ishaq SL, Wright AG (2012) Insight into the bacterial gut microbiome of the North American moose (Alces alces). BMC Microbiol 12: 212. doi: 10.1186/1471-2180-12-212
    [47] Leahy S, Kelly W, Ronimus R, et al. (2013) Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Animal 7: 235-243. doi: 10.1017/S1751731113000700
    [48] Herlemann DPR, Geissinger O, Ikeda-Ohtsubo W, et al. (2009) Genomic analysis of “Elusimicrobium minutum,” the first cultivated representative of the phylum “Elusimicrobia” (formerly termite group 1). Appl Environ Microbiol 70: 2841-2849. doi: 10.1128/AEM.02698-08
    [49] Ishaq S, Sundset M, Crouse J, et al. (2015) High-throughput DNA sequencing of the moose rumen from different geographical locations reveals a core ruminal methanogenic archaeal diversity and a differential ciliate protozoal diversity. Microb Genom 1: e000034.
    [50] Zoetendal E, Plugge CM, Akkermans ADL, et al. (2003) Victivallisvadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol 53: 211-215. doi: 10.1099/ijs.0.02362-0
    [51] Jewell KA, McComirck C, Odt CL, et al. (2015) Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency. Appl Environ Microbiol 18: 4697-4710. doi: 10.1128/AEM.00720-15
    [52] Noel SJ, Højberg O, Urich T, et al. (2016) Draft genome sequence of “Candidatus Methanomethylophilus” sp. 1R26, enriched from bovine rumen, a methanogenic archaeon belonging to the Methanomassiliicoccales order. Genome Announc 4: e01734-e01715.
    [53] Zorec M, Vodovnik M, MarinŠek-Logar R, et al. (2014) Potential of selected rumen bacteria for cellulose and hemicellulose degradation. Food Technol Biotechnol 52: 210-221.
    [54] Henderson G, Cox F, Ganesh S, et al. (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5: 14567. doi: 10.1038/srep14567
    [55] Carberry CA, Kenny DA, Han S, et al. (2012) Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Appl Environ Microbiol 78: 4949-4958. doi: 10.1128/AEM.07759-11
    [56] Shrivastava B, Jain KK, Kalra A, et al. (2014) Bioprocessing of wheat straw into nutritionally rich and digested cattle feed. Sci Rep 4: 6360. doi: 10.1038/srep06360
    [57] Asem D, Leo VV, Passari AK, et al. (2017) Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction. PLoS One 12: e0186355. doi: 10.1371/journal.pone.0186355
    [58] Salmon DNX, Spier MR, Soccol CR, et al. (2014) Analysis of inducers of xylanase and cellulase activities production by Ganoderma applanatum LPB MR-56. Fungal Biol 118: 655-662. doi: 10.1016/j.funbio.2014.04.003
    [59] Williams AG, Withers SE (1982) The production of plant cell wall polysaccharide-degrading enzymes by hemicellulolytic rumen bacterial isolates grown on a range of carbohydrate substrates. J Appl Bacteriol 52: 377-387. doi: 10.1111/j.1365-2672.1982.tb05068.x
    [60] Yang W, Meng F, Peng J, et al. (2014) Isolation and identification of a cellulolytic bacterium from the Tibetan pig's intestine and investigation of its cellulase production. Electron J Biotechnol 17: 262-267. doi: 10.1016/j.ejbt.2014.08.002
    [61] Hook SE, Wright ADG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010: 945785.
    [62] St-Pierre B, Wright AG (2012) Molecular analysis of methanogenic archaea in the forestomach of the alpaca (Vicugna pacos). BMC Microbiol 12: 1. doi: 10.1186/1471-2180-12-1
    [63] Salgado-Flores A, Bockwoldt M, Hagen L, et al. (2016) First insight into the faecal microbiota of the high Arctic muskoxen (Ovibos moschatus). Microb Genom 2.
    [64] Franzolin R, Wright AG (2016) Microorganisms in the rumen and reticulum of buffalo (Bubalus bubalis) fed two different feeding systems. BMC Research Notes 9: 243. doi: 10.1186/s13104-016-2046-y
  • microbiol-07-03-022-s001.pdf
    microbiol-07-03-022-s001.pdf
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2435) PDF downloads(117) Cited by(6)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog