Research article

Distributed consensus of discrete time-varying linear multi-agent systems with event-triggered intermittent control


  • Received: 19 October 2023 Revised: 30 November 2023 Accepted: 05 December 2023 Published: 13 December 2023
  • The consensus problem of discrete time-varying linear multi-agent systems (MASs) is studied in this paper. First, an event-triggered intermittent control (ETIC) protocol is designed, aided by a class of auxiliary functions. Under this protocol, some sufficient conditions for all agents to achieve consensus are established by constructing an error dynamical system and applying the Lyapunov function. Second, in order to further reduce the communication burden, an improved event triggered intermittent control (I-ETIC) strategy is presented, along with corresponding convergence analysis. Notably, the difference between the two control protocols lies in the fact that the former protocol only determines when to control or not based on the trigger conditions, while the latter, building upon this, designs new event trigger conditions for the update of the controller during the control stage. Finally, two numerical simulation examples are provided to demonstrate the effectiveness of the theoretical results.

    Citation: Mingxia Gu, Zhiyong Yu, Haijun Jiang, Da Huang. Distributed consensus of discrete time-varying linear multi-agent systems with event-triggered intermittent control[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 415-443. doi: 10.3934/mbe.2024019

    Related Papers:

  • The consensus problem of discrete time-varying linear multi-agent systems (MASs) is studied in this paper. First, an event-triggered intermittent control (ETIC) protocol is designed, aided by a class of auxiliary functions. Under this protocol, some sufficient conditions for all agents to achieve consensus are established by constructing an error dynamical system and applying the Lyapunov function. Second, in order to further reduce the communication burden, an improved event triggered intermittent control (I-ETIC) strategy is presented, along with corresponding convergence analysis. Notably, the difference between the two control protocols lies in the fact that the former protocol only determines when to control or not based on the trigger conditions, while the latter, building upon this, designs new event trigger conditions for the update of the controller during the control stage. Finally, two numerical simulation examples are provided to demonstrate the effectiveness of the theoretical results.



    加载中


    [1] S. Hu, X. Chen, J. Qiu, F. Zhao, X. Jiang, Y. Du, Dynamic event-triggered bipartite consensus of multiagent systems with estimator and cooperative-competitive interactions, IEEE Trans. Circuits Syst. Express Briefs, 69 (2022), 3309–3313. https://doi.org/10.1109/TCSII.2022.3164782 doi: 10.1109/TCSII.2022.3164782
    [2] C. Chen, W. Zou, Z. Xiang, Event-triggered consensus of multiple uncertain Euler CLagrange systems with limited communication range, IEEE Trans. Syst. Man Cybern. Syst., 53 (2023), 5945–5954. https://doi.org/10.1109/TSMC.2023.3277703 doi: 10.1109/TSMC.2023.3277703
    [3] X. Li, H. Wu, J. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simul., 203 (2023), 647–668. https://doi.org/10.1016/j.matcom.2022.07.010 doi: 10.1016/j.matcom.2022.07.010
    [4] Y. Xu, Z. Wu, Y. Pan, Observer-based dynamic event-triggered adaptive control of distributed networked systems with application to ground vehicles, IEEE Trans. Ind. Electron., 70 (2023), 4148–4157. https://doi.org/10.1109/TIE.2022.3176242 doi: 10.1109/TIE.2022.3176242
    [5] Y. Xu, J. Sun, G. Wang, Z. Wu, Dynamic triggering mechanisms for distributed adaptive synchronization control and its application to circuit systems, IEEE Trans. Circuits Syst. Regul. Pap., 68 (2021), 2246–2256. https://doi.org/10.1109/TCSI.2021.3060789 doi: 10.1109/TCSI.2021.3060789
    [6] R. Yu, P. He, H. Li, J. Cao, F. Deng, Consensus of multiagent systems with intermittent communication via extended state observer, IEEE Trans. Circuits Syst. Express Briefs, 70 (2023), 231–235. https://doi.org/10.1109/TCSII.2022.3197328 doi: 10.1109/TCSII.2022.3197328
    [7] F. Wang, Z. Liu, Z. Chen, Sampled-hold-based consensus control for second-order multiagent systems under aperiodically intermittent communication, IEEE Trans. Circuits Syst. Regul. Pap., 69 (2022), 3794–3803. https://doi.org/10.1109/TCSI.2022.3176667 doi: 10.1109/TCSI.2022.3176667
    [8] X. Jiang, G. Xia, Consensus of nonlinear multiagent systems with aperiodic intermittent communications via nonfragile tracking protocol, IEEE Syst. J., 16 (2022), 2717–2728. https://doi.org/10.1109/JSYST.2021.3079181 doi: 10.1109/JSYST.2021.3079181
    [9] X. Li, S. Song, Stabilization of delay systems: delay-dependent impulsive control, IEEE Trans. Autom. Control, 62 (2017), 406–411. https://doi.org/10.1109/TAC.2016.2530041 doi: 10.1109/TAC.2016.2530041
    [10] Z. Guan, B. Hu, M. Chi, D. He, X. Cheng, Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control, Automatica, 50 (2014), 2415–2418. https://doi.org/10.1016/j.automatica.2014.07.008 doi: 10.1016/j.automatica.2014.07.008
    [11] X. Li, H. Wu, J. Cao, A new prescribed-time stability theorem for impulsive piecewise-smooth systems and its application to synchronization in networks, Appl. Math. Model., 115 (2023), 385–397. https://doi.org/10.1109/TNNLS.2023.3240427 doi: 10.1109/TNNLS.2023.3240427
    [12] Y. Wang, I. Hussein, Awareness coverage control over large-scale domains with intermittent communications, IEEE Trans. Autom. Control, 55 (2010), 1850–1859. https://doi.org/10.1109/TAC.2010.2042346 doi: 10.1109/TAC.2010.2042346
    [13] J. Wang, J. Guo, Y. Luo, K. Li, H. Zheng, Design of switching controller for connected vehicles platooning with intermittent communication via mode-dependent average dwell-time approach, IEEE Internet Things J., 10 (2023), 2708–2719. https://doi.org/10.1109/JIOT.2022.3213853 doi: 10.1109/JIOT.2022.3213853
    [14] Z. Guan, D. Yue, B. Hu, T. Li, F. Liu, Cluster synchronization of coupled genetic regulatory networks with delays via aperiodically adaptive intermittent control, IEEE Trans. Nanobiosci., 16 (2017), 585–595. https://doi.org/10.1109/TNB.2017.2738324 doi: 10.1109/TNB.2017.2738324
    [15] Z. Guan, Z. Liu, F. Guan, Y. Wang, Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE Trans. Circuits Syst. Regul. Pap., 57 (2010), 2182–2195. https://doi.org/10.1109/TCSI.2009.2037848 doi: 10.1109/TCSI.2009.2037848
    [16] H. Du, S. Li, P. Shi, Robust consensus algorithm for second-order multi-agent systems with external disturbances, Int. J. Control, 85 (2012), 1913–1928. https://doi.org/10.1080/00207179.2012.713515 doi: 10.1080/00207179.2012.713515
    [17] S. Luo, J. Xu, X. Liang, Mean-square consensus of heterogeneous multi-Agent systems with time-varying communication delays and intermittent observations, IEEE Trans. Circuits Syst. Express Briefs, 69 (2022), 184–188. https://doi.org/10.1109/TCSII.2021.3079297 doi: 10.1109/TCSII.2021.3079297
    [18] F. Cheng, W. Yu, Y. Wan, J. Cao, Distributed robust control for linear multiagent systems with intermittent communications, IEEE Trans. Circuits Syst. Express Briefs, 63 (2016), 838–842. https://doi.org/10.1109/TCSII.2016.2534839 doi: 10.1109/TCSII.2016.2534839
    [19] S. Xiao, J. Dong, Distributed fault-tolerant tracking control for heterogeneous nonlinear multi-agent systems under sampled intermittent communications, J. Franklin Inst., 358 (2021), 9221–9242. https://doi.org/10.1016/j.jfranklin.2021.08.019 doi: 10.1016/j.jfranklin.2021.08.019
    [20] W. Chen, J. Zhong, W. Zheng, Delay-independent stabilization of a class of time-delay systems via periodically intermittent control, Automatica, 71 (2016), 89–97. https://doi.org/10.1016/j.automatica.2016.04.031 doi: 10.1016/j.automatica.2016.04.031
    [21] T. Chen, F. Wang, C. Xia, Z. Chen, Leader-following consensus of second-order multi-agent systems with intermittent communication via persistent-hold control, Neurocomputing, 471 (2022), 183–193. https://doi.org/10.1016/j.neucom.2021.10.111 doi: 10.1016/j.neucom.2021.10.111
    [22] M. Zochowski, Intermittent dynamical control, Phys. D, 145 (2000), 181–190. https://doi.org/10.1016/S0167-2789(00)00112-3 doi: 10.1016/S0167-2789(00)00112-3
    [23] C. Li, G. Feng, X. Liao, Stabilization of nonlinear systems via periodically intermittent control, IEEE Trans. Circuits Syst. Express Briefs, 54 (2007), 1019–1023. https://doi.org/10.1109/TCSII.2007.903205 doi: 10.1109/TCSII.2007.903205
    [24] C. Pan, H. Bao, Exponential synchronization of complex-valued memristor-based delayed neural networks via quantized intermittent control, Neurocomputing, 404 (2020), 317–328. https://doi.org/10.1016/j.neucom.2020.04.097 doi: 10.1016/j.neucom.2020.04.097
    [25] S. Yang, C. Li, T. Huang, Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control, Neural Networks, 75 (2016), 162–172. https://doi.org/10.1016/j.neunet.2015.12.003 doi: 10.1016/j.neunet.2015.12.003
    [26] B. Wang, Y. Zhang, B. Zhang, Exponential synchronization of nonlinear complex networks via intermittent pinning control on time scales, Nonlinear Anal. Hybrid Syst., 37 (2020), 100903. https://doi.org/10.1016/j.nahs.2020.100903 doi: 10.1016/j.nahs.2020.100903
    [27] L. Zhang, J. Liu, Exponential synchronization for delayed coupled systems on networks via graph-theoretic method and periodically intermittent control, Phys. A, 545 (2020), 123733. https://doi.org/10.1016/j.physa.2019.123733 doi: 10.1016/j.physa.2019.123733
    [28] L. Wang, J. Xi, B. Hou, G. Liu, Limited-budget consensus design and analysis for multiagent systems with switching topologies and intermittent communications, IEEE CAA J. Autom. Sin., 8 (2021), 1724–1736. https://doi.org/10.1109/JAS.2021.1004000 doi: 10.1109/JAS.2021.1004000
    [29] Z. Yu, H. Jiang, C. Hu, X. Fan, Consensus of second-order multi-agent systems with delayed nonlinear dynamics and aperiodically intermittent communications, Int. J. Control, 90 (2017), 909–922. https://doi.org/10.1080/00207179.2016.1187305 doi: 10.1080/00207179.2016.1187305
    [30] D. Huang, H. Jiang, Z. Yu, X. Chen, Cluster-delay consensus in multi-agent systems via pinning leader-following approach with intermittent effect, Int. J. Control, 91 (2018), 2261–2272. https://doi.org/10.1080/00207179.2017.1338358 doi: 10.1080/00207179.2017.1338358
    [31] H. Su, Y. Liu, Z. Zeng, Second-order consensus for multiagent systems via intermittent sampled position data control, IEEE Trans. Cybern., 50 (2020), 2063–2072. https://doi.org/10.1109/TCYB.2018.2879327 doi: 10.1109/TCYB.2018.2879327
    [32] Z. Yu, H. Jiang, C. Hu, Second-order consensus for multiagent systems via intermittent sampled data control, IEEE Trans. Syst. Man Cybern. Syst., 48 (2018), 1986–2002. https://doi.org/10.1109/TSMC.2017.2687944 doi: 10.1109/TSMC.2017.2687944
    [33] X. Liu, T. Chen, Synchronization of complex networks via aperiodically intermittent pinning control, IEEE Trans. Syst. Man Cybern. Syst., 60 (2015), 3316–3321. https://doi.org/10.1109/TAC.2015.2416912 doi: 10.1109/TAC.2015.2416912
    [34] Y. Wu, S. Zhuang, C. Ahn, W. Li, Aperiodically intermittent discrete-time state observation noise for consensus of multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), 1243–1253. https://doi.org/10.1109/TSMC.2020.3018156 doi: 10.1109/TSMC.2020.3018156
    [35] S. He, X. Liu, P. Lu, C. Du, H. Liu, Distributed finite-time consensus algorithm for multiagent systems via aperiodically intermittent protocol, IEEE Trans. Circuits Syst. Express Briefs, 69 (2022), 3229–3233. https://doi.org/10.1109/TCSII.2021.3135866 doi: 10.1109/TCSII.2021.3135866
    [36] Z. Zhang, S. Chen, H. Su, Scaled consensus of second-order nonlinear multiagent systems with time-varying delays via aperiodically intermittent control, IEEE Trans. Cybern., 50 (2020), 3503–3516. https://doi.org/10.1109/TCYB.2018.2883793 doi: 10.1109/TCYB.2018.2883793
    [37] S. Dashkovskiy, P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Anal. Hybrid Syst., 26 (2017), 190–200. https://doi.org/10.1016/j.nahs.2017.06.004 doi: 10.1016/j.nahs.2017.06.004
    [38] B. Liu, M. Yang, T. Liu, D. Hill, Stabilization to exponential input-to-state stability via aperiodic intermittent control, IEEE Trans. Autom. Control, 66 (2021), 2913–2919. https://doi.org/10.1109/TAC.2020.3014637 doi: 10.1109/TAC.2020.3014637
    [39] X. Zhu, Z. Tang, J. Feng, J. Park, Aperiodically intermittent event-triggered pinning control on cluster synchronization of directed complex networks, ISA Trans., 138 (2023), 281–290. https://doi.org/10.1016/j.isatra.2023.02.027 doi: 10.1016/j.isatra.2023.02.027
    [40] X. Liu, H. Fu, L. Liu, Leader-following mean square consensus of stochastic multi-agent systems via periodically intermittent event-triggered control, Neural Process Lett., 53 (2021), 275–298. https://doi.org/10.1007/s11063-020-10388-4 doi: 10.1007/s11063-020-10388-4
    [41] F. Yang, Z. Yu, H. Jiang, Distributed finite-time optimisation for multi-agent systems via event-triggered aperiodically intermittent communication, Int. J. Syst. Sci., 53 (2022), 1674–1689. https://doi.org/10.1080/00207721.2021.2019348 doi: 10.1080/00207721.2021.2019348
    [42] B. Liu, M. Yang, B. Xu, G. Zhang, Exponential stabilization of continuous-time dynamical systems via time and event triggered aperiodic intermittent control, IEEE Trans. Autom. Control, 398 (2021), 125713. https://doi.org/10.1016/j.amc.2020.125713 doi: 10.1016/j.amc.2020.125713
    [43] B. Liu, T. Liu, P. Xiao, Dynamic event-triggered intermittent control for stabilization of delayed dynamical systems, Automatica, 149 (2023), 110847. https://doi.org/10.1016/j.automatica.2022.110847 doi: 10.1016/j.automatica.2022.110847
    [44] A. Hu, J. Park, M. Hu, Scaled consensus of second-order nonlinear multiagent systems with time-varying delays via aperiodically intermittent control, IEEE Trans. Cybern., 50 (2020), 3503–3516. https://doi.org/10.1007/s11071-021-06321-6 doi: 10.1007/s11071-021-06321-6
    [45] L. Liu, J. Cao, F. Alsaadi, Aperiodically intermittent event-triggered optimal average consensus for nonlinear multi-agent systems, IEEE Trans. Neural Networks Learn. Syst., 2023. https://doi.org/10.1109/TNNLS.2023.3240427 doi: 10.1109/TNNLS.2023.3240427
    [46] A. Hu, J. Cao, Consensus of multi-agent systems via intermittent event-triggered control, Int. J. Syst. Sci., 48 (2017), 280–287. https://doi.org/10.1080/00207721.2016.1179817 doi: 10.1080/00207721.2016.1179817
    [47] R. Mishra, H. Ishii, Dynamic event-triggered consensus control of discrete-time linear multi-agent systems, IFAC-PapersOnLine, 54 (2021), 123–128. https://doi.org/10.1016/j.ifacol.2021.11.036 doi: 10.1016/j.ifacol.2021.11.036
    [48] W. Chen, Z. Wang, D. Ding, H. Dong, Consensusability of discrete-time multi-agent systems under binary encoding with bit errors, Automatica, 133 (2021), 109867. https://doi.org/10.1016/j.automatica.2021.109867 doi: 10.1016/j.automatica.2021.109867
    [49] C. Xu, B. Li, L. Yang, Semi-global containment of discrete-time high-order multi-agent systems with input saturation via intermittent control, IET Control Theory Appl., 14 (2020), 2303–2309. https://doi.org/10.1049/iet-cta.2020.0110 doi: 10.1049/iet-cta.2020.0110
    [50] Z. Yu, S. Yu, H. Jiang, Finite/fixed-time event-triggered aperiodic intermittent control for nonlinear systems, Chaos Solitons Fractals, 173 (2023), 113735. https://doi.org/10.1016/j.chaos.2023.113735 doi: 10.1016/j.chaos.2023.113735
    [51] Y. Xu, J. Sun, Z. Wu, G. Wang, Fully distributed adaptive event-triggered control of networked systems with actuator bias faults, IEEE Trans. Cybern., 52 (2022), 10773–10784. https://doi.org/10.1109/TCYB.2021.3059049 doi: 10.1109/TCYB.2021.3059049
    [52] D. Cui, W. Zou, J. Guo, Z. Xiang, Adaptive fault-tolerant decentralized tracking control of switched stochastic uncertain nonlinear systems with time-varying delay, Int. J. Adapt. Control Signal Process, 36 (2022), 2971–2987. https://doi.org/10.1002/acs.3491 doi: 10.1002/acs.3491
    [53] C. Wang, X. Chen, J. Cao, J. Qiu, Y. Liu, Y. Luo, Neural network-based distributed adaptive pre-assigned finite-time consensus of multiple TCP/AQM networks, IEEE Trans. Circuits Syst. Regul. Pap., 68 (2021), 387–395. https://doi.org/10.1109/TCSI.2020.3031663 doi: 10.1109/TCSI.2020.3031663
    [54] X. Chen, S. Hu, X. Xie, J. Qiu, Consensus-based distributed secondary control of microgrids: A pre-assigned time sliding mode approach, IEEE CAA J. Autom. Sin., 2023. https://doi.org/10.1109/JAS.2023.123891 doi: 10.1109/JAS.2023.123891
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1093) PDF downloads(107) Cited by(0)

Article outline

Figures and Tables

Figures(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog