Research article Special Issues

Fuzzy adaptive event-triggered distributed control for a class of nonlinear multi-agent systems

  • Received: 19 November 2023 Revised: 04 December 2023 Accepted: 10 December 2023 Published: 14 December 2023
  • In this work, we examine an adaptive and event-triggered distributed controller for nonlinear multi-agent systems (MASs). Second, we present a fuzzy adaptive event-triggered distributed control approach using a Lyapunov-based filter and the backstepping recursion technique. Next, the controller and adaptive rule presented guarantee that all tracking errors between the leader and the follower converge in a limited area close to the origin. According to the Lyapunov stability theory, this demonstrates that all other signals inside the closed loop are assured to be semi-globally, uniformly and finally constrained. Finally, simulation tests are conducted to illustrate the effectiveness of the control mechanism.

    Citation: Siyu Li, Shu Li, Lei Liu. Fuzzy adaptive event-triggered distributed control for a class of nonlinear multi-agent systems[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 474-493. doi: 10.3934/mbe.2024021

    Related Papers:

  • In this work, we examine an adaptive and event-triggered distributed controller for nonlinear multi-agent systems (MASs). Second, we present a fuzzy adaptive event-triggered distributed control approach using a Lyapunov-based filter and the backstepping recursion technique. Next, the controller and adaptive rule presented guarantee that all tracking errors between the leader and the follower converge in a limited area close to the origin. According to the Lyapunov stability theory, this demonstrates that all other signals inside the closed loop are assured to be semi-globally, uniformly and finally constrained. Finally, simulation tests are conducted to illustrate the effectiveness of the control mechanism.



    加载中


    [1] J. Li, X. Xiang, S. Yang, Robust adaptive neural network control for dynamic positioning of marine vessels with prescribed performance under model uncertainties and input saturation, Neurocomputing, 484 (2022), 1–12. https://doi.org/10.1016/j.neucom.2021.03.136 doi: 10.1016/j.neucom.2021.03.136
    [2] Z. Wang, S. L. Yang, X. B. Xiang, A. Vasilijevic, N. Miskovic, D. Nad, Cloud-based mission control of USV fleet: architecture, implementation and experiments, Control Eng. Pract., 106 (2021), 104657. https://doi.org/10.1016/j.conengprac.2020.104657 doi: 10.1016/j.conengprac.2020.104657
    [3] M. Abdoos, N. Mozayani, A. L. C. Bazzan, Holonic multi-agent system for traffic signals control, Eng. Appl. Artif. Intell., 26 (2013), 1575–1587. https://doi.org/10.1016/j.engappai.2013.01.007 doi: 10.1016/j.engappai.2013.01.007
    [4] Z. Ji, H. Lin, S. Cao, Q. Qi, H. Ma, The complexity in complete graphic characteri-zations of multiagent controllability, IEEE Trans. Cybern., 51 (2020), 64–76. https://doi.org/10.1109/TCYB.2020.2972403 doi: 10.1109/TCYB.2020.2972403
    [5] Z. J. Ji, H. Lin, H. S. Yu, Protocols design and uncontrollable topologies construction for multi-agent networks, IEEE Trans. Autom. Control, 60 (2014), 781–786. https://doi.org/10.1109/TAC.2014.2335971 doi: 10.1109/TAC.2014.2335971
    [6] S. Liu, Z. J. Ji, H. Z. Ma, Jordan form-based algebraic conditions for controllability of multiagent systems under directed graphs, Complexity, 2020 (2020), 7685460. https://doi.org/10.1155/2020/7685460 doi: 10.1155/2020/7685460
    [7] B. Wei, F. Xiao, Y. Shi, Synchronization in Kuramoto oscillator networks with sampled-data updating law, IEEE Trans. Cybern., 50 (2019), 2380–2388. https://doi.org/10.1109/TCYB.2019.2940987 doi: 10.1109/TCYB.2019.2940987
    [8] P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Trans. Autom. Control, 52 (2007), 1680–1685. https://doi.org/10.1109/TAC.2007.904277 doi: 10.1109/TAC.2007.904277
    [9] W. P. M. H. Heemels, M. C. F. Donkers, A. R. Teel, Periodic event-triggered control for linear systems, IEEE Trans. Autom. Control, 58 (2012), 847–861. https://doi.org/10.1109/TAC.2012.2220443 doi: 10.1109/TAC.2012.2220443
    [10] X. M. Zhang, Q. L. Han, Event-triggered dynamic output feedback control for networked control systems, IET Control Theory Appl., 8 (2014), 226–234. https://doi.org/10.1049/iet-cta.2013.0253 doi: 10.1049/iet-cta.2013.0253
    [11] A. Kazemy, J. Lam, X. M. Zhang, Event-triggered output feedback synchronization of master–slave neural networks under deception attacks, IEEE Trans. Neural Networks Learn. Syst., 33 (2020), 952–961. https://doi.org/10.1109/TNNLS.2020.3030638 doi: 10.1109/TNNLS.2020.3030638
    [12] H. Y. Liu, G. M. Xie, L. Wang, Necessary and sufficient conditions for solving consensus problems of double‐integrator dynamics via sampled control, Int. J. Robust Nonlinear Control, 20 (2010), 1706–1722. https://doi.org/10.1002/rnc.1543 doi: 10.1002/rnc.1543
    [13] W. Yu, W. Zheng, G. Chen, W. Ren, J. Cao, Second-order consensus in multi-agent dynamical systems with sampled position data, Automatica, 47 (2011), 1496–1503. https://doi.org/10.1016/j.automatica.2011.02.027 doi: 10.1016/j.automatica.2011.02.027
    [14] K. J. Åström, B. Bernhardsson, Comparison of periodic and event-based sampling for first-order stochastic systems, IFAC Proc. Volumes, 32 (1999), 5006–5011. https://doi.org/10.1016/S1474-6670(17)56852-4 doi: 10.1016/S1474-6670(17)56852-4
    [15] X. D. Li, S. J. Song, J. H. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
    [16] R. H. Middleton, G. C. Goodwin, D. J. Hill, D. Q. Mayne, Design issues in adaptive control, IEEE Trans. Autom. Control, 33 (1988), 50–58. https://doi.org/10.1109/9.360 doi: 10.1109/9.360
    [17] J. M. Mendel, Fuzzy logic systems for engineering: a tutorial, Proc. IEEE, 83 (1995), 345–377. https://doi.org/10.1109/5.364485 doi: 10.1109/5.364485
    [18] Y. H. Zhang, J. Sun, H. J. Liang, H. Y. Li, Event-triggered adaptive tracking control for multiagent systems with unknown disturbances, IEEE Trans. Cybern., 50 (2018), 890–901. https://doi.org/10.1109/TCYB.2018.2869084 doi: 10.1109/TCYB.2018.2869084
    [19] X. D. Li, D. X. Peng, J. D. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [20] L. M. Wang, M. F. Ge, Z. G. Zeng, J. H. Hu, Finite-time robust consensus of nonlinear disturbed multiagent systems via two-layer event-triggered control, Inf. Sci., 466 (2018), 270–283. https://doi.org/10.1016/j.ins.2018.07.039 doi: 10.1016/j.ins.2018.07.039
    [21] X. D. Li, D. W. C. Hol, J. D. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024
    [22] C. Deng, C. Wen, J. Huang, X. M. Zhang, Y. Zou, Distributed observer-based cooperative control approach for uncertain nonlinear MASs under event-triggered communication, IEEE Trans. Autom. Control, 67 (2021), 2669–2676. https://doi.org/10.1109/TAC.2021.3090739 doi: 10.1109/TAC.2021.3090739
    [23] P. Guo, C. P. Chen, M. R. Lyu, Cluster number selection for a small set of samples using the Bayesian Ying-Yang model, IEEE Trans. Neural Networks, 13 (2002), 757–763. https://doi.org/10.1109/TNN.2002.1000144 doi: 10.1109/TNN.2002.1000144
    [24] B. L. Zhang, Q. L. Han, X. M. Zhang, Event-triggered $H\infty $ reliable control for offshore structures in network environments, J. Sound Vib., 368 (2016), 1–21. https://doi.org/10.1016/j.jsv.2016.01.008 doi: 10.1016/j.jsv.2016.01.008
    [25] X. M. Zhang, Q. L. Han, Event-triggered $H\infty $ control for a class of nonlinear networked control systems using novel integral inequalities, Int. J. Robust Nonlinear Control, 27 (2017), 679–700. https://doi.org/10.1002/rnc.3598 doi: 10.1002/rnc.3598
    [26] K. Tanaka, M. Sugeno, Stability analysis and design of fuzzy control systems, Fuzzy Sets Syst., 45 (1992), 135–156. https://doi.org/10.1016/0165-0114(92)90113-I doi: 10.1016/0165-0114(92)90113-I
    [27] H. B. Verbruggen, P. M. Bruijn, Fuzzy control and conventional control: what is (and can be) the real contribution of fuzzy systems? Fuzzy Sets Syst., 90 (1997), 151–160. https://doi.org/10.1016/S0165-0114(97)00081-X doi: 10.1016/S0165-0114(97)00081-X
    [28] M. Sugeno, An introductory survey of fuzzy control, Inf. Sci., 36 (1985), 59–83. https://doi.org/10.1016/0020-0255(85)90026-X doi: 10.1016/0020-0255(85)90026-X
    [29] H. Ying, W. Siler, J. J. Buckley, Fuzzy control theory: a nonlinear case, Automatica, 26 (1990), 513–520. https://doi.org/10.1016/0005-1098(90)90022-A doi: 10.1016/0005-1098(90)90022-A
    [30] X. D. Li, X. Y. Yang, S. J. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. https://doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031
    [31] G. Feng, A survey on analysis and design of model-based fuzzy control systems, IEEE Trans. Fuzzy Syst., 14 (2006), 676–697. https://doi.org/10.1109/TFUZZ.2006.883415 doi: 10.1109/TFUZZ.2006.883415
    [32] X. M. Zhang, Q. L. Han, X. Ge, B. Ning, B. L. Zhang, Sampled-data control systems with non-uniform sampling: a survey of methods and trends, Annu. Rev. Control, 55 (2023), 70–91. https://doi.org/10.1016/j.arcontrol.2023.03.004 doi: 10.1016/j.arcontrol.2023.03.004
    [33] P. Cheng, S. He, X. Luan, F. Liu, Finite-region asynchronous H$\infty $ control for 2D Markov jump systems, Automatica, 129 (2021), 109590. https://doi.org/10.1016/j.automatica.2021.109590 doi: 10.1016/j.automatica.2021.109590
    [34] Y. Huang, X. Yue, J. Wang, K. Ma, Z. Huang, Distributed fuzzy adaptive event‐triggered finite‐time consensus tracking control for uncertain nonlinear multi‐agent systems with asymmetric output constraint, Int. J. Robust Nonlinear Control, 33 (2023), 440–465. https://doi.org/10.1002/rnc.6478 doi: 10.1002/rnc.6478
    [35] N. N. Karnik, J. M. Mendel, Introduction to type-2 fuzzy logic systems, in 1998 IEEE International Conference on Fuzzy Systems Proceedings, 2 (1998), 915–920. https://doi.org/10.1109/FUZZY.1998.686240
    [36] G. F. Mauer, A fuzzy logic controller for an ABS braking system, IEEE Trans. Fuzzy Syst., 3 (1995), 381–388. https://doi.org/10.1109/91.481947 doi: 10.1109/91.481947
    [37] Q. Zhou, S. Y. Zhao, H. Y. Li, R. Q. Lu, C. W. Wu, Adaptive neural network tracking control for robotic manipulators with dead zone, IEEE Trans. Neural Networks Learn. Syst., 30 (2018), 3611–3620. https://doi.org/10.1109/TNNLS.2018.2869375 doi: 10.1109/TNNLS.2018.2869375
    [38] H. Y. Li, Y. Wu, M. Chen, R. Lu, Adaptive multigradient recursive reinforcement learning event-triggered tracking control for multi-agent systems, IEEE Trans. Neural Networks Learn. Syst., 34 (2023), 144–156. https://doi.org/10.1109/TNNLS.2021.3090570 doi: 10.1109/TNNLS.2021.3090570
    [39] H. W. Liu, S. L. Du, X. F. Wang, T. Sun, C. Q. Zhong, Consensus of multiagent systems with time-varying delays: an observer-based distributed periodic event-triggered control approach, Asian J. Control, 24 (2022), 712–721. https://doi.org/10.1002/asjc.2630 doi: 10.1002/asjc.2630
    [40] R. E. Precup, H. Hellendoorn, A survey on industrial applications of fuzzy control, Comput. Ind., 62 (2011), 213–226. https://doi.org/10.1016/j.compind.2010.10.001 doi: 10.1016/j.compind.2010.10.001
    [41] C. Ren, S. He, X. Luan, F. Liu, H. R. Karimi, Finite-time L2-gain asynchronous control for continuous-time positive hidden Markov jump systems via T–S fuzzy model approach, IEEE Trans. Cybern., 51 (2020), 77–87. https://doi.org/10.1109/TCYB.2020.2996743 doi: 10.1109/TCYB.2020.2996743
    [42] X. D. Li, X. Y. Yang, J. D. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. https://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981
    [43] X. Meng, B. Jiang, H. R. Karimi, C. C. Gao, Leader–follower sliding mode formation control of fractional-order multi-agent systems: a dynamic event-triggered mechanism, Neurocomputing, 557 (2023), 126691. https://doi.org/10.1016/j.neucom.2023.126691 doi: 10.1016/j.neucom.2023.126691
    [44] D. R. Ding, Q. L. Han, X. H. Ge, J. Wang, Secure state estimation and control of cyber-physical systems: a survey, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2020), 176–190. https://doi.org/10.1109/TSMC.2020.3041121 doi: 10.1109/TSMC.2020.3041121
    [45] C. Xi, J. Dong, Event-triggered adaptive fuzzy distributed tracking control for uncertain nonlinear multi-agent systems, Fuzzy Sets Syst., 402 (2021), 35–50. https://doi.org/10.1016/j.fss.2019.11.005 doi: 10.1016/j.fss.2019.11.005
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1096) PDF downloads(80) Cited by(0)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog