In this study, we construct an error estimate for a fully discrete finite element scheme that satisfies the criteria of unconditional energy stability, as suggested in [
Citation: Wenyan Tian, Yaoyao Chen, Zhaoxia Meng, Hongen Jia. An adaptive finite element method based on Superconvergent Cluster Recovery for the Cahn-Hilliard equation[J]. Electronic Research Archive, 2023, 31(3): 1323-1343. doi: 10.3934/era.2023068
In this study, we construct an error estimate for a fully discrete finite element scheme that satisfies the criteria of unconditional energy stability, as suggested in [
[1] | F. Guillen-Gonzalez, G. Tierra, Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models, Comput. Math. Appl., 68 (2014), 821–846. https://doi.org/10.1016/j.camwa.2014.07.014 doi: 10.1016/j.camwa.2014.07.014 |
[2] | J. Cahn, J. Hilliard, Free energy of a nonuniform system. Ⅰ. interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102 |
[3] | A. Karma, W. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57 (1998), 4323–4349. https://doi.org/10.1103/PhysRevE.57.4323 doi: 10.1103/PhysRevE.57.4323 |
[4] | S. Allen, J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta. Matall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2 |
[5] | R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D Nonlinear Phenom., 63 (1993), 410–423. https://doi.org/10.1016/0167-2789(93)90120-P doi: 10.1016/0167-2789(93)90120-P |
[6] | M. Gurtin, D. Polignone, J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815–831. https://doi.org/10.1142/S0218202596000341 doi: 10.1142/S0218202596000341 |
[7] | J. Barret, J. Blowey, H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal., 37 (1999), 286–318. https://doi.org/10.1137/S0036142997331669 doi: 10.1137/S0036142997331669 |
[8] | C. Elliott, D. French, A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal., 26 (1989), 884–903. https://doi.org/10.1137/0726049 doi: 10.1137/0726049 |
[9] | C. Elliott, D. French, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math., 38 (1987), 97–128. https://doi.org/10.1093/imamat/38.2.97 doi: 10.1093/imamat/38.2.97 |
[10] | J. Shen, J. Xu, J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407–416. https://doi.org/10.1016/j.jcp.2017.10.021 doi: 10.1016/j.jcp.2017.10.021 |
[11] | S. Zhao, X. Xiao, X. Feng, An efficient time adaptivity based on chemical potential for surface Cahn-Hilliard equation using finite element approximation, Appl. Math. Comput., 369 (2020), 124901. https://doi.org/10.1016/j.amc.2019.124901 doi: 10.1016/j.amc.2019.124901 |
[12] | J. Shen, X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28 (2010), 1669–1691. https://doi.org/10.3934/dcds.2010.28.1669 doi: 10.3934/dcds.2010.28.1669 |
[13] | Y. Huang, W. Yang, H. Wang, J. Cui, Adaptive operator splitting finite element method for Allen-Cahn equation, Numer. Methods Partial Differ. Equations, 35 (2019), 1290–1300. https://doi.org/10.1002/num.22350 doi: 10.1002/num.22350 |
[14] | D. Kay, A. Tomasi, Color image segmentation by the Vector-Valued Allen-Cahn Phase-Field Model: A multigrid solution, IEEE. Trans. Image Process., 18 (2009), 2330–2339. https://doi.org/10.1109/TIP.2009.2026678 doi: 10.1109/TIP.2009.2026678 |
[15] | X. Feng, Y. Li, Analysis of interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow, IMA J. Numer. Anal., 35 (2015), 1622–1651. https://doi.org/10.1093/imanum/dru058 doi: 10.1093/imanum/dru058 |
[16] | Y. Chen, Y. Huang, N. Yi, A SCR-based error estimation and adaptive finite element method for the Allen-Cahn equation, Comput. Math. Appl., 78 (2019), 204–223. https://doi.org/10.1016/j.camwa.2019.02.022 doi: 10.1016/j.camwa.2019.02.022 |
[17] | Y. Chen, Y. Huang, N. Yi, A decoupled energy stable adaptive finite element method for Cahn-Hilliard-Navier-Stokes equations, Commun. Comput. Phys., 29 (2021), 1186–1212. https://doi.org/10.4208/cicp.OA-2020-0032 doi: 10.4208/cicp.OA-2020-0032 |
[18] | D. Mao, L. Shen, A. Zhou, Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates, Adv. Comput. Math., 25 (2006), 135–160. https://doi.org/10.1007/s10444-004-7617-0 doi: 10.1007/s10444-004-7617-0 |
[19] | Z. Zhang, Z. Qiao, An adaptive time-stepping Strategy for the Cahn-Hilliard Equation, Commun. Comput. Phys., 11 (2012), 1261–1278. https://doi.org/10.4208/cicp.300810.140411s doi: 10.4208/cicp.300810.140411s |
[20] | Y. Li, Y. Choi, J. Kim, Computationally efficient adaptive time step method for the Cahn-Hilliard equation, Comput. Math. Appl., 73 (2017), 1855–1864. https://doi.org/10.1016/j.camwa.2017.02.021 doi: 10.1016/j.camwa.2017.02.021 |
[21] | Y. Huang, N. Yi, The superconvergent cluster recovery method, J. Sci. Comput., 44 (2010), 301–322. https://doi.org/10.1007/s10915-010-9379-9 doi: 10.1007/s10915-010-9379-9 |
[22] | A. Diegel, C. Wang, S. Wise, Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation, arXiv preprint, 2016, arXiv: 1411.5248. https://doi.org/10.48550/arXiv.1411.5248 |
[23] | J. Guo, C. Wang, S. Wise, X. Yue, An $H^2$ convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation, Commun. Math. Sci., 14 (2016), 489–515. https://dx.doi.org/10.4310/CMS.2016.v14.n2.a8 doi: 10.4310/CMS.2016.v14.n2.a8 |
[24] | K. Cheng, C. Wang, S. Wise, X. Yue, A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn–Hilliard equation and its solution by the homogeneous linear iteration method, J. Sci. Comput., 69 (2016), 1083–1114. https://doi.org/10.1007/s10915-016-0228-3 doi: 10.1007/s10915-016-0228-3 |
[25] | J. Guo, C. Wang, S. Wise, X. Yue, An improved error analysis for a second-order numerical scheme for the Cahn-Hilliard equation, J. Comput. Appl. Math., 388 (2021), 113300. https://doi.org/10.1016/j.cam.2020.113300 doi: 10.1016/j.cam.2020.113300 |
[26] | J. Shen, On error estimates of the projection methods for the Navier-Stokes equations: first-order schemes, Math. Comput., 65 (1996), 1039–1065. |
[27] | X. Feng, A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation, Numer. Math., 99 (2004), 47–84. https://doi.org/10.1007/s00211-004-0546-5 doi: 10.1007/s00211-004-0546-5 |
[28] | C. Li, Y. Huang, N. Yi, An unconditionally energy stable second order finite element method for solving the Allen–Cahn equation, J. Comput. Appl. Math., 353 (2019), 38–48. https://doi.org/10.1016/j.cam.2018.12.024 doi: 10.1016/j.cam.2018.12.024 |
[29] | Y. Yan, W. Chen, C. Wang, S. Wise, A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation, Commun. Comput. Phys., 23 (2018), 572–602. |
[30] | K. Cheng, W. Feng, C. Wang, S. Wise, An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation, J. Comput. Appl. Math., 362 (2019), 574–595. https://doi.org/10.1016/j.cam.2018.05.039 doi: 10.1016/j.cam.2018.05.039 |