Citation: Guowu Yuan, Jiancheng Liu, Hongyu Liu, Yihai Ma, Hao Wu, Hao Zhou. Detection of cigarette appearance defects based on improved YOLOv4[J]. Electronic Research Archive, 2023, 31(3): 1344-1364. doi: 10.3934/era.2023069
[1] | A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, Commun. ACM, 60 (2017), 84–90. https://doi.org/10.1145/3065386 doi: 10.1145/3065386 |
[2] | K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint, arXiv: 1409.1556. |
[3] | K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90 |
[4] | Q. Q. Gao, B. C. Huang, W. Z. Liu, T. Tong, Detection method of bamboo strip surface defects based on improved CenterNet, J. Comput. Appl., 31 (2020), 1–8. https://doi.org/10.11772/j.issn.1001-9081.2020081167 doi: 10.11772/j.issn.1001-9081.2020081167 |
[5] | Y. Y. Liu, Research on cloth defect detection method based on deep learning, Master thesis, Harbin Institute of Technology in Harbin, 2020. |
[6] | G. X. Ding, H. Huang, Y. Ma, Automatic detection of cloth defects based on laws texture filtering, in Proceedings of 2019 2nd International Conference on Intelligent Systems Research and Mechatronics Engineering (ISRME 2019), (2019), 148–152. |
[7] | X. P. Kou, S. J. Liu, Z. R. Ma, Steel strip defect detection method based on Faster-RCNN, China Metall., 31 (2021), 77–83. https://doi.org/10.13228/j.boyuan.issn1006-9356.20200506 doi: 10.13228/j.boyuan.issn1006-9356.20200506 |
[8] | Q. Xu, H. J. Zhu, H. H. Fan, H. Y. Zhou, G. H. Yu, Study on detection of steel plate surface defects by improved YOLOv3 network, Comput. Eng. Appl., 56 (2020), 265–272. https://doi.org/10.3778/j.issn.1002-8331.2003-0232 doi: 10.3778/j.issn.1002-8331.2003-0232 |
[9] | M. O. Lawal, Tomato detection based on modified YOLOv3 framework. Sci. Rep., 11 (2021), 1447. https://doi.org/10.1038/s41598-021-81216-5 doi: 10.1038/s41598-021-81216-5 |
[10] | A. M. Roy, R. Bose, J. Bhaduri, A fast accurate fine-grain object detection model based on YOLOv4 deep neural network, Neural Comput Appl., 34 (2022), 3895–3921. https://doi.org/10.1007/s00521-021-06651-x doi: 10.1007/s00521-021-06651-x |
[11] | A. M. Roy, J. Bhaduri, Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4, Comput. Electron. Agr., 193 (2022), 106694. https://doi.org/10.1016/j.compag.2022.106694 doi: 10.1016/j.compag.2022.106694 |
[12] | A. M. Roy, J. Bhaduri. A deep learning enabled multi-class plant disease detection model based on computer vision, AI, 2 (2021), 413–428. https://doi.org/10.3390/ai2030026 doi: 10.3390/ai2030026 |
[13] | Z. Y. Xiao, Research and Implementation of Cigarette Defect Detection Algorithm, Master Thesis, Yunnan University in Kunming, 2018. |
[14] | J. Li, H. H. Lu, X. Wang, J. H. Hong, S. Wang, L. X. Shen, et al., Online inspection system for cigarette tipping quality based on machine vision, Tob. Sci. Technol., 52 (2019), 109–114. https://doi.org/10.16135/j.issn1002-0861.2018.0562 doi: 10.16135/j.issn1002-0861.2018.0562 |
[15] | G. W. Yuan, J. C. Liu, H. Y. Liu, R. Qu, H. Zhou, Classification of cigarette appearance defects based on ResNeSt, J. Yunnan Univ.: Nat. Sci. Ed., 44 (2022), 464–470. https://doi.org/10.7540/j.ynu.20210257 doi: 10.7540/j.ynu.20210257 |
[16] | H. Y. Liu, G. W. Yuan, Cigarette appearance defect detection method based on improved YOLOv5s, Comput. Technol. Dev., 32 (2022), 161–167. https://doi.org/10.3969/j.issn.1673-629X.2022.08.026 doi: 10.3969/j.issn.1673-629X.2022.08.026 |
[17] | H. Y. Liu, G. W. Yuan, L. Yang, K. X. Liu, H. Zhou, An appearance defect detection method for cigarettes based on C-CenterNet, Electronics, 11 (2022), 2182. https://doi.org/10.3390/electronics11142182 doi: 10.3390/electronics11142182 |
[18] | J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object detection, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 779–788, https://doi.org/10.1109/CVPR.2016.91 |
[19] | K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition, IEEE Trans Pattern Anal. Mach. Intell., 37 (2015), 1904–1916. https://doi.org/10.1109/TPAMI.2015.2389824 doi: 10.1109/TPAMI.2015.2389824 |
[20] | S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggregation network for instance segmentation, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 8759–8768. https://doi.org/10.1109/CVPR.2018.00913 |
[21] | J. Hu, L. Shen, G. Sun. Squeeze-and-excitation networks, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 7132–7141. https://doi.org/10.1109/CVPR.2018.00745 |
[22] | M. Yang, K. Yu, C. Zhang, Z. Li, K. Yang, DenseASPP for semantic segmentation in street scenes, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 3684–3692. https://doi.org/10.1109/CVPR.2018.00388 |
[23] | F. Yu, V. Koltun., Multi-scale context aggregation by dilated convolutions, preprint, arXiv: 1511.07122. |
[24] | Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, D. Ren, Distance-IoU loss: Faster and better learning for bounding box regression, in Proceedings of the AAAI Conference on Artificial Intelligence, (2020), 12993–13000. https://doi.org/10.1609/aaai.v34i07.6999 |
[25] | H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, S, Savarese, Generalized intersection over union: A metric and a loss for bounding box regression, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 658–666. https://doi.org/10.1109/CVPR.2019.00075 |
[26] | J. He, S. Erfani, X. Ma, J. Bailey, Y. Chi, X. Hua, α-IoU: A family of power intersection over union losses for bounding box regression, preprint, arXiv: 2110.13675 |