
ERA, 31(3): 1344–1364. 

DOI: 10.3934/era.2023069 

Received: 03 November 2022 

Revised: 10 December 2022 

Accepted: 26 December 2022 

Published: 10 January 2023 

http://www.aimspress.com/journal/ERA 

 

Research article 

Detection of cigarette appearance defects based on improved YOLOv4 

Guowu Yuan, Jiancheng Liu, Hongyu Liu, Yihai Ma, Hao Wu and Hao Zhou* 

School of Information, Yunnan University, Kunming 650504, China 

* Correspondence: Email: zhouhao@ynu.edu.cn; Tel: 8687165033748. 

Abstract: Appearance defects are visible factors that affect the quality of cigarettes. Most of the 
consumer complaints received by tobacco companies are caused by appearance defects of cigarettes. 
Therefore, it is of great significance to reduce cigarettes with appearance defects. At present, tobacco 
factories mainly detect the appearance quality of cigarettes through manual sampling inspection. The 
manual method has low detection efficiency, it is difficult to unify the judgment standard, and it is 
easy to cause secondary pollution to cigarettes. According to the features of cigarette appearance 
defects, the YOLOv4 (You Only Look Once Version 4) model was improved for cigarette appearance 
defect detection. We have improved the following: 1) the channel attention mechanism was 
introduced into YOLOv4 to improve the detection precision; 2) the K-means++ algorithm was used 
to optimize the selection of clustering centers; 3) the spatial pyramid pooling (SPP) was replaced 
with atrous spatial pyramid pooling (ASPP) to improve the defect detection ability with different 
sizes; 4) the α-CIoU loss function was used to improve the detection precision. The mAP of our 
improved method reached 91.77%, the precision reached 93.32%, and the recall reached 88.81%. 
Compared with other models, our method has better comprehensive performance and better 
detection ability. 
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1. Introduction 

The tobacco industry is an important industry in China and an important source of national and local 
fiscal revenue. In recent years, consumers have raised the requirements for cigarette quality. The 
appearance quality of cigarettes is most easily noticed by consumers. Therefore, tobacco companies need 
to reduce appearance defects and avoid cigarettes with appearance defects from entering the market. 
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At present, a high-speed cigarette production line can produce 150–200 cigarettes per second. 
With manual inspection of appearance defects, it has been difficult to meet the requirements. 
Tobacco companies are eager to automatically detect the appearance defects of cigarettes through 
computer vision. According to the detection results, the cigarettes with appearance defects can be 
automatically removed in the production line. Next, according to the statistical data of defect 
detection, the production line can be adjusted to reduce the probability of defective cigarettes. These 
operations can improve cigarette quality and reduce production costs. 

With the development of deep learning, AlexNet [1], visual geometry group network (VGG16) [2], 
residual network (ResNet) [3] and other networks have been applied in many detection and 
classification applications. Automatic detection for product quality has been applied to bamboo strips, 
textiles, steel strips, circuit boards, etc. Gao et al. [4] used the improved CenterNet network to 
classify 10 appearance defects of bamboo strips, and the average detection accuracy (mean 
Average Precision, mAP) reached 76.9%. Liu [5] proposed a detection method based on 
improved Faster Regions with CNN features (R-CNN), which classified nearly 20 kinds of 
defects on cloth, and the mAP reached 63.4%. Ding et al. [6] added a hole convolution layer to the 
AlexNet network to increase the receptive field, and the average accuracy and average recall rate of 
cloth defect classification reached 85%. Kou et al. [7] proposed a Faster-RCNN-based steel strip 
defect detection model, FRDNet, which achieved a mAP of 67.7% on the GC10-DET steel strip 
defect data set, which was 4.9% higher than the original model. Xu et al. [8] applied the improved 
YOLOv3 model to the surface defect detection of steel plates, and the accuracy of the test set was 
improved by 23.3% compared with the original YOLOv3. Lawal [9] applied the spatial pyramid 
pool and mish activation function to YOLOv3, and the improved model improved the recognition 
accuracy of tomatoes to 96.4%. Roy et al. [10–12] added a dense module to the YOLOv4 backbone 
network and modified the PANet and activation functions. The improved model achieved fast speed 
and high accuracy in the detection of plant diseases and insect pests, in the detection of mango 
growth period and in the detection of apple diseases and insect pests. 

Some scholars have also studied the detection and classification of cigarette appearance defects. 
Xiao [13] analyzed the area ratio of the incomplete part to judge the defect, but this method has a 
high rate of false detections. Li et al. [14] used the maximum contour area determination method to 
detect obvious appearance defects of cigarettes and then used template matching to detect cigarettes 
with small defects. Yuan et al. [15] proposed a classification method for cigarette appearance defects 
based on the ResNeSt model, and the classification accuracy reached 92.04%. However, only the 
classification was performed, and the location of the defects was not given. Liu et al. [16] proposed a 
detection method based on improved YOLOv5s for cigarette appearance defects, and the detection 
accuracy reached 90.9%. Liu et al. [17] proposed an improved CenterNet-based cigarette appearance 
defect detection method. The average detection accuracy mAP was 95.01%, but the detection speed 
is only 45 fps and needs to be further improved. 

The cigarette samples are long and narrow images, and the defects belong to small targets. To 
obtain statistical information such as the category and location of cigarette defects, we regard it as a 
target detection problem. The classification models, such as VGG16, ResNet, Xception and 
EfficientNet, cannot locate the defects. The object detection model, such as YOLO, can not only 
classify the defects but also locate them. The location is helpful to reduce the probability of defective 
cigarettes by adjusting the production lines. YOLO is one of the most important target detection 
models, and it has advantages in precision and speed. In this paper, we improved YOLOv4 for 
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detecting the appearance defects of cigarettes. Our method improved the generation method of a 
priori boxes, then introduced the attention mechanism, replaced the spatial pyramid pooling (SPP) 
structure with the atrous spatial pyramid pooling (ASPP) structure and improved the loss function. 
The experimental results showed that our improved model achieved 91.77% mAP, 93.32% precision 
rate and 88.81% recall rate. 

2. Overview of the appearance defects of cigarettes 

During industrial production, some defective products will inevitably occur for various reasons. 
In the process of cigarette production, cigarette defects are related to many factors. For example, 
problems such as high-speed operation of the assembly line and poor quality of cigarette raw 
materials will cause cigarette defects. 

The cigarette appearance images used in our experiments are from Yunnan branch of China 
Tobacco Industry Company, Limited. The images are captured by the high-speed industrial cameras 
on the automated production line. The front and back images of cigarettes can be captured at 
different positions of the production line. A standard cigarette is 84 mm in length and 7.8 mm in 
diameter. Therefore, the aspect ratio of the sample image is about 10:1. 

Cigarettes are generally composed of two parts: the longer part with shredded tobacco is called 
the cigarette stick, and the shorter part with filter material is called the filter tip. According to the 
location and the appearance defect cause, appearance defects can be divided into four categories: 
“Dotted”, “Folds”, “Untooth” and “Unfilter.” “Untooth” refers to the misalignment of the wrapping 
paper of the cigarette during the production process, which is mainly caused by the production 
machine. “Folds” refers to a wrinkle-like shape on the cigarette, which is mainly caused by the 
production machine rolling the filter tip with the filter paper or rolling the cigarette with the cigarette 
stick paper. “Dotted” refers to spots of different sizes on the cigarette, which are mainly formed by 
unqualified printing of cigarette paper and filter tips, or dyeing in the later stage. “Unfilter” defects 
are mainly caused by running out of filter paper or a failure of the production machine to pack the 
filter paper. Images of the appearance defects of cigarettes are shown in Figure 1. We define normal 
cigarettes as those without appearance defects; see Figure 2. 

 

(a) Untooth 
 

(b) Folds 
 

(c) Dotted 

 

(d) Unfilter 

Figure 1. Cigarettes with a defective appearance. 
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Figure 2. Cigarette with a normal appearance. 

3. Materials and methods 

3.1. Introduction to the YOLOv4 model structure 

The YOLO network was proposed by Redmon et al. [18] in 2016. YOLOv2, YOLOv3 and 
YOLOv4 are improved versions. Through comparative experiments on cigarette defect datasets, we 
have found that YOLOv4 is more effective than others. Therefore, we chose YOLOv4 for defect 
detection. 

The YOLOv4 network can be divided into four parts: the backbone feature extraction network, 
SPP structure [19], path aggregation network (PANet) [20] and detection head. The network structure 
of YOLOv4 is shown in Figure 3. 

 

Figure 3. The network structure of YOLOv4. 

3.2. Adding the channel attention mechanism module 

The principle of channel attention mechanism is similar to how people can focus on an 
important feature when they look at pictures [21]. This method can improve the effectiveness of 
feature extraction. In computer vision, it can better learn the relevant features to improve the 
detection accuracy of the target. 

The YOLOv4 model cannot automatically learn the importance of different channel features, 
and it cannot make full use of the extracted features. These disadvantages affect the classification 
and regression effect. We integrate a channel attention mechanism (SENet) into the backbones of 
YOLOv4, which can better focus on the relationship between different channels of the feature map, 
thus improving the effectiveness of feature extraction. This module can improve the detection 
accuracy of cigarette appearance defects. The SENet structure is shown in Figure 4: 
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Figure 4. SENet structure. 

As shown in Figure 4, the channel attention module mainly included three processes: squeeze, 
excitation and scale. The SENet module gives more weight to important information and less weight 
to unimportant information. This can save resources, quickly obtain the most effective information 
and make better use of image features. 

3.3. Prior box 

The prior box is a rectangle designed according to the common sizes and proportions of the 
detected objects. It has a significant impact on the accurate prediction of the targets. The YOLOv4 
model has a large difference in the prior box size, and the size is suitable for microsoft common 
objects in context (COCO), visual object classes (VOC) and other datasets but not for small targets, 
such as cigarette appearance defects. To make the prior box more suitable for cigarette appearance 
defects, we introduced K-means++ clustering to further adjust the size of the prior box. When the 

K-means++ algorithm selects the initial cluster center, the distance between the cluster centers 
should be as far as possible. The algorithm can make the model obtain the optimal prior box and 
improve detection accuracy. 

The steps of the K-means++ algorithm are as follows: 

Algorithm 1: K-means++ clustering algorithm 

Input: Data set 1 2{ , ,..., }nR x x x= , n  is the number of data 

Output: Cluster center points 1 2{c , c ,..., c }k , k  is the number of center points 

Algorithm steps: 
1) Select one point randomly from R  as the initial cluster center point 1c ; 

2) The minimum distance ( )id x  of each sample from the nearest cluster center is calculated; 

3) Calculate the probability ( )
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3.4. ASPP 

SPPNet extracts the features through several multi-scale pooling operations, and it then 
combines the features and inputs them into the later fully connected layer. SPP was used in the 
YOLOv4 algorithm. This method can obtain the features of different receptive fields, but the features 
cannot reflect the grammatical relationship between the local and the overall. Therefore, we have 
adopted the ASPP [22] module, which can gather the features of multi-scale context and improve the 
detection ability for different sizes targets. 

Atrous spatial pyramid pooling network (ASPPNet) was proposed in 2017, and it uses atrous 
convolution [23]. The principle of atrous convolution is shown in Figure 5. It effectively increases 
the receptive field. Its implementation uses the dilation rate. Figure 5(a) is a schematic diagram of an 
ordinary convolution (dilation rate = 1), and its receptive field after convolution is 3. Figure 5(b) is a 
schematic comparison of a dilated convolution (dilation rate = 2), and its receptive field after 
convolution was 5. 

  

(a) Dilation rate =1 (b) Dilation rate = 2 

Figure 5. Schematic diagram of the dilated convolution. 

The size of the dilated convolution kernel 'k  can be calculated by Eq (1): 

  ' 1 ( 1)k k k r      (1) 

where k  is the size of the initial convolution kernel, and r  is the dilation rate.  

The size of the corresponding receptive field mf  can be calculated by Eq (2): 

  
1
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      (2) 

where m refers to m layer, and iS  refers to the step length of i layer. 
ASPPNet inputs the image into several dilated convolutional layers with different dilation rates, 

as shown in Figure 6. Then, the feature obtained by these convolutions is fused with the result of the 
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input image after global average pooling. This method can effectively extend the feature channel. 

 

Figure 6. Schematic diagram of the ASPP structure applied in our model. 

We replaced the SPP in the YOLOv4 with the ASPP. The ASPP can reduce the missed detection 
rate of cigarette appearance defects and learn the characteristics of defect targets with different sizes 
by increasing the receptive field. 

3.5. Improvement of the loss function 

The choice of the loss function has a certain impact on the performance of the network, such as 
affecting the convergence of the loss function and the detection accuracy of the model. In the 
YOLOv4 network, the complete intersection over union (CIoU) is used to define the loss function. 
This floss function was proposed by Zheng et al. [24], along with distance intersection over union 
(DIoU). In the field of target detection, the most basic loss functions are the intersection over union 
(IoU) and the generalized intersection over union (GIoU) [25]. 

The IoU calculates the intersection and parallel ratio of the prediction box and the real box. 
Using the IoU, the loss function IoUL  is calculated as follows: 

 1 1
IoU

A B
L IoU

A B
= - = -




  (3) 

where A  represents the area of the real box, and B  represents the area of the prediction box. 
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The IoU calculates the intersection ratio, which can reflect the detection effect. However, the 
IoU has many shortcomings. The GIoU, DIoU and CIoU were proposed on the basis of the IoU. The 
GIoU added the closure area as a penalty item. Furthermore, the DIoU considered the Euclidean 
distance between the center points of the prediction box and the regression box on the basis of the 
GIoU. The final CIoU considered the aspect ratio on the basis of DIoU. 

Using the CIoU, the loss function CIoUL  is calculated as follows: 

 
 2

2

,
1 1

gt

CIoU

b bA B
L CIoU v

A B c


     




  (4) 

where b  and gtb  represent, respectively, the central point of the prediction box and the real box, 
  represents the Euclidean distance of the two central points, c  represents the diagonal distance 
of the minimum closure region containing both the prediction box and the real box,   is the weight 
function, and v  is used to measure the similarity of the aspect ratio. b  and v  are calculated 
as follows: 
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where gtw  and gth  represent the width and height of the real box, and w  and h  represent the 
width and height of the prediction box. 

He et al. [26] proposed the α-CIoU in 2021, which is an improvement on the CIoU. The loss 
function CIoULa-  is calculated as follows: 

 1CIoUL CIoU a
a- = -   (7) 

where α generally takes an integer greater than 1. 
This power α can increase the gradient of IoU to improve the regression accuracy. In this paper, 

we adopt CIoULa-  to improve the detection accuracy. In the experiment, by adjusting with different 

values of α, the detection accuracy will change. In Section 4.7, the experimental results are 
presented. 

3.6. Improved YOLOv4 model structure 

After the above four improvements, the model structure of our network is shown in Figure 7. 
Compared with Figure 3, we replaced the SPP structure in the YOLOv4 network with the ASPP 
structure, and we then added the SENet module to the PANet structure. These enable our model to 
better extract the features of different-size images and pay more attention to important features. The 
prior box selection and loss function in the network are also improved to make them more suitable 
for the cigarette appearance defect dataset. 
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Figure 7. Schematic diagram of our improved model. 

4. Results and discussion 

4.1. Experimental dataset 

The image dataset of cigarette appearance defects used in the experiment was from the Yunnan 
branch of China Tobacco Industry Company, Limited. The images were captured by high-speed 
industrial cameras on the automated production line, and they were grayscale images. 

After data enhancement, the dataset contained 16,200 images, including “Normal”, “Dotted”, 
“Folds”, “Untooth” and “Unfilter.” First, all images were labeled, and then they were randomly 
divided according to a ratio of about 6:2:2. The numbers of each category are shown in Table 1. 

Table 1. Statistics of the cigarette appearance image dataset. 

Appearance type Training set Validation set Test set 

Normal 1800 700 540 

Dotted 2100 640 560 

Unfilter 2000 650 700 

Folds 1900 650 710 

Untooth 1920 600 730 

As can be seen from Table 1, after data enhancement, the samples in all categories were roughly 
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balanced, which is more conducive to network training. 

4.2. Training process analysis  

Figure 8 shows the loss function curves for our YOLOv4 model and the original YOLOv4 
model under equal conditions. In this paper, an epoch was set to 300. From Figure 13, the original 
model only converged when the epoch was about 235, while our improved model converged when 
the epoch was about 225. Therefore, it can be seen that our training time was shorter, the loss value 
was lower, and the effect of our model was better. 

 

Figure 8. Comparison of loss curve. 

4.3. Experiment configuration and evaluation index 

In the experimental software, the operating system was Windows 10, the programming platform 
was PyCharm, and the architecture was based on PyTorch. For the hardware, the CPU was an Intel 
Core i7-10700k, the memory was 32 GB, and the GPU was an RTX 2080Ti. During training, the 
batch size was 16, the iterations epoch was 300, and the learning rate was 10-4. 

The evaluation indexes used in the experiments were accuracy, precision, recall, average 
precision (AP), mAP and processing frames per second (FPS). The accuracy (A), precision (P) and 
recall (R) are as follows: 

 p N

p N p N

T T
A

T T F F




  
 (8) 
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where pT  is the number of samples that were positive and also correctly classified as positive, and 

p
F  is the number of samples that were negative but incorrectly classified as positive. N

T  is the 

number of samples that were negative and also correctly classified as negative, and NF  is the 

number of samples that were positive but classified as negative. 
After obtaining the P and R of each category, a precision-recall (P-R) curve can be shown. AP is 

represented by the area surrounded by the P-R curve and coordinates, and mAP is the average of the 
AP values of all categories. The AP and mAP are calculated as follows: 

 
1

0
dAP PR R    (11) 

 
1

1
( )

N

k

mAP AP k
N 

    (12) 

where N  represents the total number of categories, and ( )AP k  represents the AP of the 
category k . 

4.4. Experimental comparison of defect detection effects 

Figures 9–13 show the detection effects of five cigarette appearance types. Figure 9 shows the 
detection results of normal cigarettes. Since normal cigarettes have no special features, to identify 
more features, the labeling frame was arbitrarily marked, so the detection frame was also distributed 
in any possible position. This allowed us to compare and maximize the elimination of irrelevant 
parameters, so that the network model could learn better results, and the appearance of the cigarettes 
could be better detected. As shown in Figure 9, the detection confidence of the original method was 0.77, 
and it was 0.86 after the improvement. The detection confidence of the original algorithm in Figure 
10 was 0.90, and it was 0.98 after the improvement. In Figure 11, the original algorithm missed 
detection, and it was 1.0 after the improvement. The detection confidence of the original algorithm in 
Figure 12 was 0.84, and it was 1.0 after the improvement. The detection confidence of the original 
algorithm in Figure 13 was 0.95, and it was 0.96 after the improvement. 

 
(a) Original YOLOV4 model 

 
(b) Our improved model 

Figure 9. Comparison of the original model and our improved model in the normal type. 
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(a) Original YOLOV4 model 

 

(b) Our improved model 

Figure 10. Comparison of the original model and our improved model in the dotted type. 

 

(a) Original YOLOV4 model 

 

(b) Our improved model 

Figure 11. Comparison of the original model and our improved model in the folds type. 

 

(a) Original YOLOV4 model 

 

(b) Our improved model 

Figure 12. Comparison of the original model and our improved model in the untooth type. 

In general, the original algorithm had a low detection accuracy for cigarette appearance defects, 
and there was leakage detection, while the improved algorithm had a higher detection accuracy of 
cigarette appearance defects, and the positioning was more accurate, while leakage detection and 
error inspection were rare. 
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(a) Original YOLOV4 model 

 

(b) Our improved model 

Figure 13. Comparison of the original model and our improved model in the unfilter type. 

4.5. Comparison of detection accuracy in various cigarette samples 

The various types of defect detection by our improved model are shown in Figure 14. The AP of 
“normal” and “untooth” was low, and other defects were nearly 100%. The main reasons are that 
several defects with high AP are more obvious, while normal cigarettes have no obvious 
characteristics and thus have low AP. 

 

Figure 14. The AP of our improved model in various cigarette samples. 

The P-R curves of defect detection by our improved model are shown in Figure 15. It is obvious 
that our improved model has achieved good detection results in the classes of “dotted,” “folds” and 
“unfilter” but unsatisfactory detection performance for “normal” and “untooth.” 

Figures 16 and 17 show the precision and recall curves of our improved model. The “Dotted,” 
“Folds,” and “Unfilter” types had higher precision and recall rates, while the “Untooth” and “normal” 
types had lower precision and recall rates. 
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(a) Dotted (b) Folds 

  
(c) Untooth (d) Unfilter 

 
(e) Normal 

Figure 15. The P-R curves of our improved model. 
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(a) Dotted (b) Folds 

  
(c) Untooth (d) Unfilter 

 
(e) Normal 

Figure 16. Precision curves of our improved model. 
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(a) Dotted (b) Folds 

  
(c) Untooth (d) Unfilter 

 
(e) Normal 

Figure 17. The recall curves of our improved model. 

4.6. Experimental comparison of data augmentation  

Mosaic is a built-in data augmentation of the YOLOv4. This method randomly cuts four images 
and splices them into a new image. New images are used as training data. Because the aspect ratio of 
the cigarette image is about 10:1, we found that the mosaic is not suitable for the cigarette dataset. 
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Therefore, we used additional data augmentation, such as image inversion, Gaussian blur, horizontal 
mirror inversion, affine transformation and brightness transformation. 

In the four experiments shown in Table 2, we compared the mAP of our improved model with 
YOLOv4’s using four data enhancement methods. Among them, the data augmentation of 
experiment 1 is mosaic, experiment 2 had no data augmentation, experiment 3 had our data 
augmentation, and experiment 4 combined the mosaic method and our data augmentation. 

From Table 2, we can see that the two models’ mAP  values both decreased when the mosaic 
data enhancement was added. When only using our data augmentation method, the effect is the best. 
So, the original Mosaic was removed. Therefore, we replaced the mosaic with our data augmentation 
in the experiment. 

Table 2. Comparison of data augmentation in the YOLOv4 model. 

Experiment Data augmentation 
mAP /% 
(original YOLOv4) 

mAP /% 
(Our improved YOLOv4) 

1 Mosaic 85.05 88.92 

2 No data augmentation 86.32 90.58 

3 Our data augmentation 87.71 91.77 

4 
Mosaic + Our data 
augmentation 

86.89 90.93 

4.7. Comparison of different powers α in the loss function 

In Formula 7 of Section 4.6, the loss function CIoULa-  is calculated using the power α. Table 3 

shows comparative experiments on different powers α in the loss function. 

Table 3. Comparison of detection performance using different powers α in the loss function. 

𝛼 Precision/% Recall/% mAP/% 

1 92.38 88.29 91.23 

2 92.43 88.10 91.52 

3 93.87 88.81 91.77 

4 92.41 88.13 91.46 

We found that the detection performance is the best when the power α is 3. Therefore, we finally 
chose 3 CIoUL -  as the loss function of this study. 

4.8. Ablation experiment 

Table 4 shows the ablation experiment results. These experiments were based on the YOLOV4 
which replaced the mosaic with our data augmentation. 
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Table 4. Comparison of the results of adding different modules. 

Experiment K-means++ SENet ASPP 3-CIoU mAP/% 

1 − − − − 87.71 

2 √ − − − 88.02 

3 √ √ − − 89.99 

4 √ √ √ − 91.23 

5 √ √ √ √ 91.77 

First, experiment 1 was the YOLOV4 with our data augmentation, and its mAP is 87.71%. 
Second, when the K-means++ algorithm was introduced to select the initial cluster center, the model 
could obtain the optimal prior box, which led to a 0.31% rise in mAP. Third, when the SENet module 
was introduced to learn the relevant features, it led to a 1.97% rise in mAP. Fourth, the ASPP module 
was introduced, and it led to a 1.24% rise in mAP. Fifth, the 3-CIoU was introduced, and it led to a 
0.54% rise in mAP. It can be seen from Table 5 that the mAP was improved when the four different 
modules were gradually added. 

4.9.  Comparison experiment with other models 

To verify the progressiveness of our improved model, we compared the main performance index 
with other models on the cigarette appearance image dataset, such as Faster R-CNN, YOLOv4, 
YOLOv5, YOLOP, YOLOX, SSD and CenterNet. The experimental results are shown in Table 5. 

Table 5. Comparison experiment with other models. 

Algorithm Precision/% Recall/% mAP/% FPS 

Faster R-CNN 83.12 82.65 82.83 39 

YOLOv4 87.87 84.76 86.89 60 

YOLOv5 89.89 82.98 90.73 76 

YOLOP 89.23 81.25 84.31 84 

YOLOX 89.91 83.02 90.75 77 

SSD 81.47 79.91 81.03 47 

CenterNet 92.65 78.30 88.87 54 

Ours 93.32 88.81 91.77 53 

It can be concluded from the results in Table 5 that our model is the best in precision, recall and 
mAP, but the average detection speed is not optimal, and it is slower than YOLOv4, YOLOv5, 
YOLOP, YOLOX and CenterNet. 

In the detection of cigarette appearance defects, detection accuracy is the most important. 
Because a high-speed cigarette production line can produce 150-200 cigarettes per second, all 
models above cannot achieve real-time detection in our experimental software and hardware 
platform. In our experimental platform, the CPU is an Intel Core i7-10700k, the memory is 32 GB, 
and the GPU is NVIDIA GeForce RTX 2080Ti. Due to experimental conditions, we cannot test our 
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model in a better hardware environment. On better hardware, such as NVIDIA GeForce RTX 3090Ti 
and NVIDIA H100, we believe that detection speed can be improved. 

5. Conclusions 

This paper proposed a defect detection method for the cigarette appearance dataset. The main 
work aimed to discuss how to optimize the network of the original YOLOv4 algorithm and improve 
the detection accuracy of the model. 

In this paper, ASPP is used instead of SPP, and an SE attention mechanism is added to the 
network to help extract features. Then, we replaced K-means with K-means++ and replaced the Mish 
activation function with α-CIoU activation function to improve convergence speed and detection 
accuracy. Finally, according to the characteristics of the cigarette data set, the Mosaic data 
enhancement method of the original model was replaced. The ablation experiment shows that the 
improvement in this paper has a positive contribution to the accuracy improvement of YOLOv4 on 
the cigarette data set. Comparative experiments show that the improved model achieved 91.77% 
mAP, 93.32% precision and 88.81% recall on the cigarette data set. 

The method proposed in this paper is helpful to control the outflow of defective cigarettes and 
to improve factory efficiency. It can further replace traditional manual detection methods, improve 
large-scale industrial production efficiency and further realize automatic detection. 

Our improved model has a significant improvement in various accuracy index, but the detection 
speed is not optimal. In the future, we will further improve the model under the premise of ensuring 
accuracy. We will mainly focus on reducing the amount of calculation and model size and improving 
the detection speed. For example, the convolution is replaced by a depthwise separable convolution, 
and the backbone network is CSP Darknet53, which can be replaced with a lighter network. If we are 
lucky to have new scientific research funding, we will also update the experimental equipment and 
improve the detection speed of our method. 
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